Ⅰ 與非門電路圖原理
1)先溫習三極體構成,在基極看去,基極與發射極,基極與集電極表專現為兩個二極體;屬
2)當A、B都為高電平時,發射結為截止,而T1基極與集電極之間的二極體,和T2、T3的發射結(三個二極體)正向串聯,通過R1接上電源就會導通,所以此時T1基極電壓Vb1=2.1V。T2基極電壓 Vb2=1.4V,T3基極電壓 Vb3=0.7V,T3導通使輸出端Y輸出低電平;
3)當A、B其中一個為低電平時,T1發射結導通,使基極電壓 Vb1=0.7V,這個電壓不足以讓後級的發射結導通,所以T2、T3就截止,T4導通使Y輸出高電平;
從邏輯表現上,就實現了與非門功能。
Ⅱ 誰能給我一份邏輯基本門電路圖
我有,可是這個網頁怎麼我發不了圖呀
Ⅲ 基本門電路的電子電路圖問題
就是一個與非門
Ⅳ 求與門,或門,非門,與非門,或非門,與或門的含義和電路圖
門電路是數字邏輯的一種稱呼,有三種基本邏輯關系,即與、或、非,下面用一般電路來解釋:
1、與門
與:指同時的意思,A和B或者更多的條件,同時具備時,才能有結果,只要有一個條件不具備,就沒有結果。
只有當兩個開關都閉合時,電燈才會亮,就是兩個開關串聯。
2、或門
或:或者的意思,許多條件A,B,C等,其中至少有一個條件具備時,就有結果,只有所有條件都不具備時,才沒有結果。
只需要一個開關閉合,電燈就會點亮,就是兩個開關並聯。
3、非門
非:就是相反的意思,具備條件A,沒有結果,不具備條件A,則有結果。
只有在開關斷開時,電燈才會亮,就是一個開關和電燈並聯。
(資料來源:網路:門電路)
Ⅳ 誰能給我個 異或門電路 的電路圖
異或門電路圖如圖所示:
異或門 (英語:Exclusive-OR gate,簡稱XOR gate,又稱EOR gate、ExOR gate)是數字邏輯版中實現邏輯異或的邏輯門。有多權個輸入端、1個輸出端,多輸入異或門可由2輸入異或門構成。若兩個輸入的電平相異,則輸出為高電平1;若兩個輸入的電平相同,則輸出為低電平0。亦即,如果兩個輸入不同,則異或門輸出高電平。
異或門 能實現模為2的加法,因此,異或門可以實現計算機中的二進制加法。半加器就是由異或門和與門組成的。
Ⅵ 門電路與門邏輯電路圖講解。
門電路的輸入
用以實現基本邏輯運算和復合邏輯運算的單元電路稱為門電路。常用的門電路在邏輯功能上有與門、或門、非門、與非門、或非門、與或非門、異或門等幾種。 「門」是這樣的一種電路:它規定各個輸入信號之間滿足某種邏輯關系時,才有信號輸出,通常有下列三種門電路:與門、或門、非門(反相器)。從邏輯關系看,門電路的輸入端或輸出端只有兩種狀態,無信號以「0」表示,有信號以「1」表示。也可以這樣規定:低電平為「0」,高電平為「1」,稱為正邏輯。反之,如果規定高電平為「0」,低電平為「1」稱為負邏輯,然而,高與低是相對的,所以在實際電路中要選說明採用什麼邏輯,才有實際意義,例如,負與門對「1」來說,具有「與」的關系,但對「0」來說,卻有「或」的關系,即負與門也就是正或門;同理,負或門對「1」來說,具有「或」的關系,但對「0」來說具有「與」的關系,即負或門也就是正與門。
基本的邏輯電路
凡是對脈沖通路上的脈沖起著開關作用的電子線路就叫做門電路,是基本的邏輯電路。門電路可以有一個或多個輸入端,但只有一個輸出端。門電路的各輸入端所加的脈沖信號只有滿足一定的條件時,「門」才打開,即才有脈沖信號輸出。從邏輯學上講,輸入端滿足一定的條件是「原因」,有信號輸出是「結果」,門電路的作用是實現某種因果關系——邏輯關系。所以門電路是一種邏輯電路。基本的邏輯關系有三種:與邏輯、或邏輯、非邏輯。與此相對應,基本的門電路有與門、或門、非門。
集成電路
分立元件組成
門電路可用分立元件組成,也可做成集成電路,但目前實際應用的都是集成電路。由於單一品種的與非門可以構成各種復雜的數字邏輯電路,而器件品種單一,給備件、調試都會帶來很大方便,所以集成電路工業產品中並沒有與門、或門,而供應與非門。
與門電路真值表
A B 結果 0 0 0 0 1 0 1 0 0 1 1 1 或門電路真值表: A B 結果 0 0 0 0 1 1 1 0 1 1 1 1 非門電路真值表: A 結果 0 1 1 0
------------------------------------------
門邏輯電路圖(就是相應電路圖)網路里發不上去
Ⅶ 一個簡單的與門電路圖接法
這個來電路只能對低電平信號源有與功能(本情況下也叫線與)。ABC中任何一個端子為低電壓0,電流在12V電源與該端子間形成迴路,則Y處得到一個低電平(即二極體的通態壓降),這個壓降較小,在邏輯電平中屬於低電平。
所以ABC為輸入端,接控制信號發出端;而Y是輸出端,接被控對象。
Ⅷ 電動門電路圖幫忙解釋下
當啟動控制器KA閉合時,CQK線圈得電吸合,其常開觸點閉合構成自鎖,電機正轉運行,門回上升,當答撞到限位器TSO或LSO時就斷開CQK線圈迴路而失電復位,電機停止。
當啟動控制器GA閉合時,CQG線圈得電吸合,其常開觸點閉合構成自鎖,電機逆轉運行,門下降,當撞到限位器TSC或LSC時就斷開CQG線圈迴路而失電復位,電機停止。
Ⅸ 門電路工作原理
第五節 CMOS邏輯門電路
http://www.fjtu.com.cn/fjnu/courseware/0321/course/_source/web/lesson/char2/j6.htm 看看把
CMOS邏輯門電路是在TTL電路問世之後 ,所開發出的第二種廣泛應用的數字集成器件,從發展趨勢來看,由於製造工藝的改進,CMOS電路的性能有可能超越TTL而成為佔主導地位的邏輯器件 。CMOS電路的工作速度可與TTL相比較,而它的功耗和抗干擾能力則遠優於TTL。此外,幾乎所有的超大規模存儲器件 ,以及PLD器件都採用CMOS藝製造,且費用較低。
早期生產的CMOS門電路為4000系列 ,隨後發展為4000B系列。當前與TTL兼容的CMO器件如74HCT系列等可與TTL器件交換使用。下面首先討論CMOS反相器,然後介紹其他CMO邏輯門電路。
MOS管結構圖
MOS管主要參數:
1.開啟電壓VT
·開啟電壓(又稱閾值電壓):使得源極S和漏極D之間開始形成導電溝道所需的柵極電壓;
·標準的N溝道MOS管,VT約為3~6V;
·通過工藝上的改進,可以使MOS管的VT值降到2~3V。
2. 直流輸入電阻RGS
·即在柵源極之間加的電壓與柵極電流之比
·這一特性有時以流過柵極的柵流表示
·MOS管的RGS可以很容易地超過1010Ω。
3. 漏源擊穿電壓BVDS
·在VGS=0(增強型)的條件下 ,在增加漏源電壓過程中使ID開始劇增時的VDS稱為漏源擊穿電壓BVDS
·ID劇增的原因有下列兩個方面:
(1)漏極附近耗盡層的雪崩擊穿
(2)漏源極間的穿通擊穿
·有些MOS管中,其溝道長度較短,不斷增加VDS會使漏區的耗盡層一直擴展到源區,使溝道長度為零,即產生漏源間的穿通,穿通後
,源區中的多數載流子,將直接受耗盡層電場的吸引,到達漏區,產生大的ID
4. 柵源擊穿電壓BVGS
·在增加柵源電壓過程中,使柵極電流IG由零開始劇增時的VGS,稱為柵源擊穿電壓BVGS。
5. 低頻跨導gm
·在VDS為某一固定數值的條件下 ,漏極電流的微變數和引起這個變化的柵源電壓微變數之比稱為跨導
·gm反映了柵源電壓對漏極電流的控制能力
·是表徵MOS管放大能力的一個重要參數
·一般在十分之幾至幾mA/V的范圍內
6. 導通電阻RON
·導通電阻RON說明了VDS對ID的影響 ,是漏極特性某一點切線的斜率的倒數
·在飽和區,ID幾乎不隨VDS改變,RON的數值很大 ,一般在幾十千歐到幾百千歐之間
·由於在數字電路中 ,MOS管導通時經常工作在VDS=0的狀態下,所以這時的導通電阻RON可用原點的RON來近似
·對一般的MOS管而言,RON的數值在幾百歐以內
7. 極間電容
·三個電極之間都存在著極間電容:柵源電容CGS 、柵漏電容CGD和漏源電容CDS
·CGS和CGD約為1~3pF
·CDS約在0.1~1pF之間
8. 低頻雜訊系數NF
·雜訊是由管子內部載流子運動的不規則性所引起的
·由於它的存在,就使一個放大器即便在沒有信號輸人時,在輸 出端也出現不規則的電壓或電流變化
·雜訊性能的大小通常用雜訊系數NF來表示,它的單位為分貝(dB)
·這個數值越小,代表管子所產生的雜訊越小
·低頻雜訊系數是在低頻范圍內測出的雜訊系數
·場效應管的雜訊系數約為幾個分貝,它比雙極性三極體的要小
一、CMOS反相器
由本書模擬部分已知,MOSFET有P溝道和N溝道兩種,每種中又有耗盡型和增強型兩類。由N溝道和P溝道兩種MOSFET組成的電路稱為互補MOS或CMOS電路。
下圖表示CMOS反相器電路,由兩只增強型MOSFET組成,其中一個為N溝道結構,另一個為P溝道結構。為了電路能正常工作,要求電源電壓VDD大於兩個管子的開啟電壓的絕對值之和,即
VDD>(VTN+|VTP|) 。
1.工作原理
首先考慮兩種極限情況:當vI處於邏輯0時 ,相應的電壓近似為0V;而當vI處於邏輯1時,相應的電壓近似為VDD。假設在兩種情況下N溝道管 TN為工作管P溝道管TP為負載管。但是,由於電路是互補對稱的,這種假設可以是任意的,相反的情況亦將導致相同的結果。
下圖分析了當vI=VDD時的工作情況。在TN的輸出特性iD—vDS(vGSN=VDD)(注意vDSN=vO)上 ,疊加一條負載線,它是負載管TP在 vSGP=0V時的輸出特性iD-vSD。由於vSGP<VT(VTN=|VTP|=VT),負載曲線幾乎是一條與橫軸重合的水平線。兩條曲線的交點即工作點。顯然,這時的輸出電壓vOL≈0V(典型值<10mV ,而通過兩管的電流接近於零。這就是說,電路的功耗很小(微瓦量級)
下圖分析了另一種極限情況,此時對應於vI=0V。此時工作管TN在vGSN=0的情況下運用,其輸出特性iD-vDS幾乎與橫軸重合 ,負載曲線是負載管TP在vsGP=VDD時的輸出特性iD-vDS。由圖可知,工作點決定了VO=VOH≈VDD;通過兩器件的電流接近零值 。可見上述兩種極限情況下的功耗都很低。
由此可知,基本CMOS反相器近似於一理想的邏輯單元,其輸出電壓接近於零或+VDD,而功耗幾乎為零。
2.傳輸特性
下圖為CMOS反相器的傳輸特性圖。圖中VDD=10V,VTN=|VTP|=VT=
2V。由於 VDD>(VTN+|VTP|),因此,當VDD-|VTP|>vI>VTN 時,TN和TP兩管同時導通。考慮到電路是互補對稱的,一器件可將另一器件視為它的漏極負載。還應注意到,器件在放大區(飽和區)呈現恆流特性,兩器件之一可當作高阻值的負載。因此,在過渡區域,傳輸特性變化比較急劇。兩管在VI=VDD/2處轉換狀態。
3.工作速度
CMOS反相器在電容負載情況下,它的開通時間與關閉時間是相等的,這是因為電路具有互補對稱的性質。下圖表示當vI=0V時 ,TN截止,TP導通,由VDD通過TP向負載電容CL充電的情況。由於CMOS反相器中,兩管的gm值均設計得較大,其導通電阻較小,充電迴路的時間常數較小。類似地,亦可分析電容CL的放電過程。CMOS反相器的平均傳輸延遲時間約為10ns。
二、CMOS門電路
1.與非門電路
下圖是2輸入端CMOS與非門電路,其中包括兩個串聯的N溝道增強型MOS管和兩個並聯的P溝道增強型MOS管。每個輸入端連到一個N溝道和一個P溝道MOS管的柵極。當輸入端A、B中只要有一個為低電平時,就會使與它相連的NMOS管截止,與它相連的PMOS管導通,輸出為高電平;僅當A、B全為高電平時,才會使兩個串聯的NMOS管都導通,使兩個並聯的PMOS管都截止,輸出為低電平。
因此,這種電路具有與非的邏輯功能,即
n個輸入端的與非門必須有n個NMOS管串聯和n個PMOS管並聯。
2.或非門電路
下圖是2輸入端CMOS或非門電路。其中包括兩個並聯的N溝道增強型MOS管和兩個串聯的P溝道增強型MOS管。
當輸入端A、B中只要有一個為高電平時,就會使與它相連的NMOS管導通,與它相連的PMOS管截止,輸出為低電平;僅當A、B全為低電平時,兩個並聯NMOS管都截止,兩個串聯的PMOS管都導通,輸出為高電平。
因此,這種電路具有或非的邏輯功能,其邏輯表達式為
顯然,n個輸入端的或非門必須有n個NMOS管並聯和n個PMOS管並聯。
比較CMOS與非門和或非門可知,與非門的工作管是彼此串聯的,其輸出電壓隨管子個數的增加而增加;或非門則相反,工作管彼此並聯,對輸出電壓不致有明顯的影響。因而或非門用得較多。
3.異或門電路
上圖為CMOS異或門電路。它由一級或非門和一級與或非門組成。或非門的輸出。而與或非門的輸出L即為輸入A、B的異或
如在異或門的後面增加一級反相器就構成異或非門,由於具有的功能,因而稱為同或門。異成門和同或門的邏輯符號如下圖所示。
三、BiCMOS門電路
雙極型CMOS或BiCMOS的特點在於,利用了雙極型器件的速度快和MOSFET的功耗低兩方面的優勢,因而這種邏輯門電路受到用戶的重視
。
1.BiCMOS反相器
上圖表示基本的BiCMOS反相器電路,為了清楚起見,MOSFET用符號M表示BJT用T表示。T1和T2構成推拉式輸出級。而Mp、MN、M1、M2所組成的輸入級與基本的CMOS反相器很相似。輸入信號vI同時作用於MP和MN的柵極。當vI為高電壓時MN導通而MP截止;而當vI為低電壓時,情況則相反,Mp導通,MN截止。當輸出端接有同類BiCMOS門電路時,輸出級能提供足夠大的電流為電容性負載充電。同理,已充電的電容負載也能迅速地通過T2放電。
上述電路中T1和T2的基區存儲電荷亦可通過M1和M2釋放,以加快
電路的開關速度。當vI為高電壓時M1導通,T1基區的存儲電荷迅速消散。這種作用與TTL門電路的輸入級中T1類似。同理 ,當vI為低電壓時,電源電壓VDD通過MP以激勵M2使M2導通,顯然T2基區的存儲電荷通過M2而消散。可見,門電路的開關速度可得到改善。
2.BiCMOS門電路
根據前述的CMOS門電路的結構和工作原理,同樣可以用BiCMOS技術實現或非門和與非門。如果要實現或非邏輯關系,輸入信號用來驅動並聯的N溝道MOSFET,而P溝道MOSFET則彼此串聯。正如下圖所示的
2輸入端或非門。
當A和B均為低電平時,則兩個MOSFET MPA和MPB均導通,T1導通而MNA和MNB均截止,輸出L為高電平。與此同時,M1通過MPA和MpB被VDD所激勵,從而為T2的基區存儲電荷提供一條釋放通路。
另一方面,當兩輸入端A和B中之一為高電平時 ,則MpA和MpB的通路被斷開,並且MNA或MNB導通,將使輸出端為低電平。同時,M1A或M1B為T1的基極存儲電荷提供一條釋放道路。因此 ,只要有一個輸入端接高電平,輸出即為低電平。
四、CMOS傳輸門
MOSFET的輸出特性在原點附近呈線性對稱關系,因而它們常用作模擬開關。模擬開關廣泛地用於取樣——保持電路、斬波電路、模數和數模轉換電路等。下面著重介紹CMOS傳輸門。
所謂傳輸門(TG)就是一種傳輸模擬信號的模擬開關。CMOS傳輸門由一個P溝道和一個N溝道增強型MOSFET並聯而成,如上圖所示。TP和TN是結構對稱的器件,它們的漏極和源極是可互換的。設它們的開啟電壓|VT|=2V且輸入模擬信號的變化范圍為-5V到+5V 。為使襯底與漏源極之間的PN結任何時刻都不致正偏 ,故TP的襯底接+5V電壓,而TN的襯底接-5V電壓 。兩管的柵極由互補的信號電壓(+5V和-5V)來控制,分別用C和表示。
傳輸門的工作情況如下:當C端接低電壓-5V時TN的柵壓即為-5V,vI取-5V到+5V范圍內的任意值時,TN均不導通。同時,TP的柵壓為+5V
,TP亦不導通。可見,當C端接低電壓時,開關是斷開的。
為使開關接通,可將C端接高電壓+5V。此時TN的柵壓為+5V ,vI在-5V到+3V的范圍內,TN導通。同時TP的棚壓為-5V ,vI在-3V到+5V的范圍內TP將導通。
由上分析可知,當vI<-3V時,僅有TN導通,而當vI>+3V時,僅有TP導通當vI在-3V到+3V的范圍內,TN和TP兩管均導通。進一步分析
還可看到,一管導通的程度愈深,另一管的導通程度則相應地減小。換句話說,當一管的導通電阻減小,則另一管的導通電阻就增加。由於兩管系並聯運行,可近似地認為開關的導通電阻近似為一常數。這是CMOS傳輸出門的優點。
在正常工作時,模擬開關的導通電阻值約為數百歐,當它與輸入阻抗為兆歐級的運放串接時,可以忽略不計。
CMOS傳輸門除了作為傳輸模擬信號的開關之外,也可作為各種邏輯電路的基本單元電路。
Ⅹ 設計電路 門電路
先捋出其邏輯關系;
1)開鎖條件:當兩個及以上的按鍵同時按下後,鎖就打開內;
2)報警條件:只有兩個按鍵同時容按下時,不報警,而按下一個或者同時按下三個則報警;
所以有:
開鎖 F1 = AB+BC+AC;
報警 F2 = ABC+AB'C'+A'BC'+A'B'C
因此,如果採用74LS138來實現的話,如下圖所示;