㈠ 為什麼在晶體管之後才出現數字電路
在數字電路中晶體管一般工作在飽和與截止區域,以保證晶體管工作在開關狀態。
㈡ 數字電路的發展
從前面的介紹,大家已經了解到數字電路是以二值數字邏輯為基礎的,其工作信號是離散的數字信號。電路中的電子晶體管工作於開關狀態,時而導通,時而截止。
數字電路的發展與模擬電路一樣經歷了由電子管、半導體分立器件到集成電路等幾個時代。但其發展比模擬電路發展的更快。從60年代開始,數字集成器件以雙極型工藝製成了小規模邏輯器件。隨後發展到中規模邏輯器件;70年代末,微處理器的出現,使數字集成電路的性能產生質的飛躍。
數字集成器件所用的材料以硅材料為主,在高速電路中,也使用化合物半導體材料,例如砷化鎵等。
邏輯門是數字電路中一種重要的邏輯單元電路 。TTL邏輯門電路問世較早,其工藝經過不斷改進,至今仍為主要的基本邏輯器件之一。隨著CMOS工藝的發展,TTL的主導地位受到了動搖,有被CMOS器件所取代的趨勢。
近幾年來,可編程邏輯器件PLD特別是現場可編程門陣列FPGA的飛速進步,使數字電子技術開創了新局面,不僅規模大,而且將硬體與軟體相結合,使器件的功能更加完善,使用更靈活。
數字電路或數字集成電路是由許多的邏輯門組成的復雜電路。與模擬電路相比,它主要進行數字信號的處理(即信號以0與1兩個狀態表示),因此抗干擾能力較強。數字集成電路有各種門電路、觸發器以及由它們構成的各種組合邏輯電路和時序邏輯電路。一個數字系統一般由控制部件和運算部件組成,在時脈的驅動下,控制部件控制運算部件完成所要執行的動作。通過模擬數字轉換器、數字模擬轉換器,數字電路可以和模擬電路互相連接。
㈢ 數字電子技術的發展歷史
世界上第一台電子計算機於1946年在美國研製成功,取名ENIAC(Electronic Numerical ENIAC問世以來的短短的四十多年中,電子計算機的發展異常迅速。迄今為止,它的發展大致已經了下列四代。第一代(1946~1957年)是電子計算機,它的基本電子元件是電子管,內存儲器採用水銀延遲線,外存儲器主要採用磁鼓、紙帶、卡片、磁帶等。 第二代(1958~1970年)是晶體管計算機。1948年,美國貝爾實驗室發明了晶體管,10年後晶體管取代了計算機中的電子管,誕生了晶體管計算機。第三代(1963~1970年)是集成電路計算機。隨著半導體技術的發展,1958年夏,美國德克薩斯公司製成了第一個半導體集成電路。 第四代(1971年~日前)是大規模集成電路計算機。隨著集成了上千甚至上萬個電子元件的大規模集成電路和超大規模集成電路的出現,電子計算機發展進入了第四代。
㈣ 急求 數字電路發展史
數字電路是以二值數字邏輯為基礎的,其工作信號是離散的數字信號。電路中的電子晶體管工作於開關狀態,時而導通,時而截止。 數字電路的發展與模擬電路一樣經歷了由電子管、半導體分立器件到集成電路等幾個時代。但其發展比模擬電路發展的更快。從60年代開始,數字集成器件以雙極型工藝製成了小規模邏輯器件。隨後發展到中規模邏輯器件;70年代末,微處理器的出現,使數字集成電路的性能產生質的飛躍。 數字集成器件所用的材料以硅材料為主,在高速電路中,也使用化合物半導體材料,例如砷化鎵等。 邏輯門是數字電路中一種重要的邏輯單元電路 。TTL邏輯門電路問世較早,其工藝經過不斷改進,至今仍為主要的基本邏輯器件之一。隨著CMOS工藝的發展,TTL的主導地位受到了動搖,有被CMOS器件所取代的趨勢。 近年來,可編程邏輯器件PLD特別是現場可編程門陣列FPGA的飛速進步,使數字電子技術開創了新局面,不僅規模大,而且將硬體與軟體相結合,使器件的功能更加完善,使用更靈活。
㈤ 數字電路問題
摘要 選D.200分頻。我的思路是這樣的:因為是全同步16進制計數器,電路結構採用置數方式,且左邊的163作為個位進位,預置數為8,右邊的163為十位計數,預置數為3,那麼左邊先從8開始計數,第一次只計數8次就產生進位,右邊就計數一次,這時一共計數8次,然後左邊自動清零開始計數,每計數16次產生進位,右邊則計數一次,當右邊計數到16時CO產生進位,此時左邊一共產生13次進位,通過非門反相信號重置數兩片計數器,這時左邊又從8開始計數,右邊從3開始計數,那麼綜上所述,就是8 12×16=200,就為200分頻。之前我在考慮非門的傳輸延遲,因為是同步,所以要等時鍾信號到來才會進行清零和置數,但是若又傳輸延遲就該為216分頻但是答案沒有,我就猜想沒有傳輸延遲,當進位信號一產生,置數信號就伴隨產生,在同一個時鍾信號下作用,所以判斷為200分頻
㈥ 數字電路原理大概是個什麼意義
數字電路的原理使用10101的編碼來傳輸信號的。也可看做是0V為低電平;5V為高電平。數字電路的信號是由集成電路產生的。有問題只能更換集成電路。
㈦ 關於數字電路
一,環形計數器
1,環形計數器是將單向移位寄存器的串列輸入端和串列輸出端相連, 構成一個閉合的環.
結構特點:,即將FFn-1的輸出Qn-1接到FF0的輸入端D0.
工作原理:根據起始狀態設置的不同,在輸入計數脈沖CP的作用下,環形計數器的有效狀態可以循環移位一個1,也可以循環移位一個0.即當連續輸入CP脈沖時,環形計數器中各個觸發器的Q端或端,將輪流地出現矩形脈沖.
實現環形計數器時,必須設置適當的初態,且輸出Q3Q2Q1Q0端初始狀態不能完全一致(即不能全為"1"或"0"),這樣電路才能實現計數, 環形計數器的進制數N與移位寄存器內的觸發器個數n相等,即N=n
2,能自啟動的4位環形計數器
狀態圖:
由74LS194構成的能自啟動的4位環形計數器
時序圖
二,扭環形計數器
1,扭環形計數器是將單向移位寄存器的串列輸入端和串列反相輸出端相連,構成一個閉合的環.
實現扭環形計數器時,不必設置初態.扭環形計數器的進制數
N與移位寄存器內的觸發器個數n滿足N=2n的關系
結構特點為:,即將FFn-1的輸出接到FF0的輸入端D0.
狀態圖:
2,能自啟動的4位扭環形計數器
7.4.4 順序脈沖發生器
在數字電路中,能按一定時間,一定順序輪流輸出脈沖波形的電路稱為順序脈沖發生器.
順序脈沖發生器也稱脈沖分配器或節拍脈沖發生器,一般由計數器(包括移位寄存器型計數器)和解碼器組成.作為時間基準的計數脈沖由計數器的輸入端送入,解碼器即將計數器狀態譯成輸出端上的順序脈沖,使輸出端上的狀態按一定時間,一定順序輪流為1,或者輪流為0.前面介紹過的環形計數器的輸出就是順序脈沖,故可不加解碼電路即可直接作為順序脈沖發生器.
一,計數器型順序脈沖發生器
計數器型順序脈沖發生器一般用按自然態序計數的二進制計數器和解碼器構成.
舉例:用集成計數器74LS163和集成3線-8線解碼器74LS138構成的8輸出順序脈沖發生器.
二,移位型順序脈沖發生器
◎移位型順序脈沖發生器由移位寄存器型計數器加解碼電路構成.其中環形計數器的輸出就是順序脈沖,故可不加解碼電路就可直接作為順序脈沖發生器.
◎時序圖:
◎由CT74LS194構成的順序脈沖發生器
見教材P233的圖7.4.6和圖7.4.7
7.5 同步時序電路的設計(略)
7.6 數字系統一般故障的檢查和排除(略)
本章小結
計數器是一種應用十分廣泛的時序電路,除用於計數,分頻外,還廣泛用於數字測量,運算和控制,從小型數字儀表,到大型數字電子計算機,幾乎無所不在,是任何現代數字系統中不可缺少的組成部分.
計數器可利用觸發器和門電路構成.但在實際工作中,主要是利用集成計數器來構成.在用集成計數器構成N進制計數器時,需要利用清零端或置數控制端,讓電路跳過某些狀態來獲得N進制計數器.
寄存器是用來存放二進制數據或代碼的電路,是一種基本時序電路.任何現代數字系統都必須把需要處理的數據和代碼先寄存起來,以便隨時取用.
寄存器分為基本寄存器和移位寄存器兩大類.基本寄存器的數據只能並行輸入,並行輸出.移位寄存器中的數據可以在移位脈沖作用下依次逐位右移或左移,數據可以並行輸入,並行輸出,串列輸入,串列輸出,並行輸入,串列輸出,串列輸入,並行輸出.
寄存器的應用很廣,特別是移位寄存器,不僅可將串列數碼轉換成並行數碼,或將並行數碼轉換成串列數碼,還可以很方便地構成移位寄存器型計數器和順序脈沖發生器等電路.
在數控裝置和數字計算機中,往往需要機器按照人們事先規定的順序進行運算或操作,這就要求機器的控制部分不僅能正確地發出各種控制信號,而且要求這些控制信號在時間上有一定的先後順序.通常採取的方法是,用一個順序脈沖發生器來產生時間上有先後順序的脈沖,以控制系統各部分協調地工作.
順序脈沖發生器分計數型和移位型兩類.計數型順序脈沖發生器狀態利用率高,但由於每次CP信號到來時,可能有兩個或兩個以上的觸發器翻轉,因此會產生競爭冒險,需要採取措施消除.移位型順序脈沖發生器沒有競爭冒險問題,但狀態利用率低.
㈧ 被公認為世界第一台數字電子計算機『ENIAC』是在何地,何時誕生的
計算機_網路 http://ke..com/view/3314.htm]1946年,由美國生產了第一台全自動電子數字計算機「埃尼阿克」(英文縮寫詞是ENIAC,即Electronic Numerical Integrator and Calculator,中文意思是電子數字積分器和計算器)。它是美國奧伯丁武器試驗場為了滿足計算彈道需要而研製成的。主要發明人是電氣工程師普雷斯波·埃克特(J. Prespen Eckert)和物理學家約翰·莫奇勒博士(John W. Mauchly)。這台計算機1946年2月交付使用,共服役9年。它採用電子管作為計算機的基本元件,每秒可進行5000次加減運算。它使用了18000隻電子管,10000隻電容,7000隻電阻,體積3000立方英尺,佔地170平方米,重量30噸,耗電140~150千瓦,是一個名副其實的「龐然大物」。 電腦的學名為電子計算機,是由早期的電動計算器發展而來的。1946年,世界上出現了第一台電子數字計算機「ENIAC」,用於計算彈道。是由美國賓夕法尼亞大學莫爾電工學院製造的,但它的體積龐大,佔地面積170多平方米,重量約30噸,消耗近100千瓦的電力。顯然,這樣的計算機成本很高,使用不便。1956年,晶體管電子計算機誕生了,這是第二代電子計算機。只要幾個大一點的櫃子就可將它容下,運算速度也大大地提高了。1959年出現的是第三代集成電路計算機。最初的計算機由約翰·馮·諾依曼發明(那時電腦的計算能力相當於現在的計算器),有三間庫房那麼大,後逐步發展而成。 世界上第一台個人電腦由IBM於1981年推出。