㈠ 用7815穩壓器 怎麼用於60v 12A 電路的穩壓 用什麼組合呢,最好有個原理圖,謝謝
電信基站等設備需要多路供電電源,以滿足不同的輸出電壓、輸出電流要求。機房的主電源通常先被轉換為+48V或-48V直流電源,然後根據需要傳送到各個系統設備,最後再轉換成較低等級的電源電壓。
常見的設計方案是利用電源模塊或現成的轉換器(磚)將48VDC(或-48VDC)電源轉換到一個較低的電源電壓,然後再由電源模塊或PCB板上電路將其轉換為要求的各種電壓。一個典型例子是,從48V輸入轉換到8.5V,通常這個8.5V與48V輸入是電氣隔離的。
將8.5V電源分別轉換成用於RF功率放大器的7.5V(基站設備)和用於邏輯電路的5V、3.3/3V,或用於FPGA、處理器核的1.8V電壓。考慮到系統所要求的供電電流和功耗指標,採用開關模式降壓轉換技術從8.5V產生較低的電源,而對於RF級的7.5V電源則大多採用低壓差線性穩壓器(LDO)實現,以滿足射頻電路的低雜訊要求。
線性穩壓器會根據輸出電壓的要求調整輸入與輸出的壓差,因而要消耗一定的功率(電流與輸入/輸出壓差的乘積),表現為調整管的熱耗。為了提高散熱能力,設計人員不得不折中考慮輸入/輸出壓差、功率耗散、調整管選擇等因素,以便在規定的負載電流和輸入電壓范圍內可靠地工作在線性區(非飽和、截止)。在本文介紹的電路中,輸入電源電壓隨著系統負載的變化量可能達到100mV,壓差可能達到900mV,由此可見,8.5V的電源電壓剛好滿足要求。本例中標稱壓差1V剛好能夠接受。
圖1:典型的6.8℃/w散熱器。
多數所謂的LDO其實際壓差會高於1V,因此這些器件需要輸入與輸出之間保持更大的壓差裕量。對於1V壓差,調整管上的功耗為1V×10A=10W。如此大的功耗要求系統提供合理的熱管理方案,並因此會增加小型散熱器及相關材料成本和裝配時間。如圖1所示,採用6.8℃/W典型系數的散熱器(比如Aavid Thermalloy公司的散熱器)和TO-220封裝的的溫升將高出室溫68℃左右(為簡化起見,忽略RθJC降額系數及其它熱阻的影響)。考慮到機架內部其它功率元件,其內部溫度通常要高於外部環境溫度,散熱片甚至可能工作在100oC以上。為了保證系統可靠工作,這種情況下顯然無法使用更小的散熱片。
設計中需要低RDS 場效應管(FET),以降低串聯調整管的壓降,從極性考慮要求使用P溝道器件。而具有相同架構的P溝道FET其導通電阻可能是N溝道FET導通電阻的兩倍以上,另外,P溝道FET的價格也比較高。
為便於比較,我們可以考察一下國際整流器公司(IR)的P溝道管IRF9Z34N和N溝道管IRFZ34,二者的擊穿電壓均為55V。100oC時,P溝道器件的導通電阻為100mΩ,可承載12A電流;而N溝道器件的導通電阻僅為40mΩ,可承載電流為18A。P溝道器件的價格大約貴兩倍。
提供10A峰值電流時,P溝道FET的導通壓降是1V,而具有40mΩ RDSon的N溝道FET的導通壓降為400mV。另一種選擇是使用PNP晶體管,但即使是這樣,集電極與發射極之間的飽和壓降也會達到200mV。還可以選擇性能超過雙極性技術的超低RDSon N溝道FET,但這種器件需要更高的柵極驅動電壓。如果能夠找到驅動超低RDSon N溝道FET的方法的話,上述問題將迎刃而解。
這也正是開關模式轉換器所面臨的一個設計挑戰,為了驅動超低RDSon N溝道FET,可以採用電壓自舉技術:將一個動態開關電壓通過二極體進行交流耦合,再對儲能電容充電,就可得到高於輸出電壓的N溝道FET柵極驅動電壓。如果電路板或電源模塊內含有降壓轉換器,則可利用其開關信號產生線性穩壓器所需的柵極驅動電壓。
圖2a:Villard級聯倍壓電路。
圖2b:倍壓電路輸入為+V,開關幅度為+V,產生2倍(+V)輸出。
也就是說,我們可以將降壓轉換器的開關節點連接到簡單的倍壓電路。常見的倍壓電路是半波系列乘法器,也稱作維拉德(Villard)級聯電路(圖2)。幅度為±Us的交流電壓作用到該電路可以獲得4倍的輸出,即輸出端得到4Us。
開關電壓相對於地電平的擺幅為Us時,該電路可產生4Us的輸出,而降壓轉換器開關節點的擺幅大約為Vin至地電平。因此如果降壓轉換器的供電電壓為8.5V,則其進入電感的開關電壓為0V至+8.5V,得出Us=4.25V,如圖2所示。
如果考慮轉換器的占空比,則需作進一步的復雜計算,因為占空比與輸入、輸出電壓比和負載有關,為便於討論,我們假設占空比為50%,可以利用圖2電路獲得大約17V的電壓。需要輸出更高電壓時,可以級聯更多的倍壓單元電路,一級倍壓使用兩個二極體和兩個電容,可產生低電流直流輸出(圖2a)。
圖3:零壓差穩壓電路框圖。
圖4:零壓差(Z_DO)電路原理圖。
我們可以將上述電路產生的17V DC應用到一個簡單的低電流線性穩壓器(如MAX1616),目的是為低RDSon N溝道FET提供柵極驅動。FET器件採用8.5V供電,輸出7.5V為RF放大器供電,通過電位器分壓反饋網路調節線性穩壓器輸出。該電路利用MAX5060評估板、MAX1616線性穩壓器、N溝道功率MOSFET以及相關的其它元件進行了測試,簡化原理圖如圖3所示,實際電路如圖4所示。
電路工作原理
MAX5060EVKIT降壓轉換器可產生3.3V電壓,輸出電流達20A,開關頻率約為270kHz,由12V輸入產生3.3V輸出。由於圖4電路工作在輕載條件下,負載電流只有1A,作用在電感上的電壓波形占空比為25%,擺幅介於地電平和12V之間。利用該開關電壓驅動倍壓電路,可以在線性穩壓器(MAX1616)的輸入端得到大約24V的直流電壓。實際倍壓輸出為22.7V,能夠為線性穩壓器提供足夠的驅動。線性穩壓器的輸出可驅動低RDSon N溝道FET(IRFZ24N)的柵極。
利用一個可調電源為場效應管供電,從而允許根據輸入、輸出電壓的范圍調節壓降。FET的柵極由MAX1616 LDO的22V輸出驅動,並在分壓網路R1的電壓達到1.24V之前始終將場效應管驅動在導通狀態,隨後關閉FET驅動器,使穩壓器保持平衡。
電阻R2和電容C2通過抑制高速瞬態響應和雜訊來控制環路的動態特性。電阻R2還可作為線性穩壓器的自身負載吸收FET關閉時的電流。通過選擇分壓網路的電阻比設置輸出電壓值。在該應用中,R1選用250kΩ電位器,因此能讓MAX1616的輸出擺幅從1.25V上升到22V以上。
在不同輸入電壓、負載下觀察FET柵極驅動電壓的跌落測量壓差,由此確定電路進入閉環控制的工作點。一旦柵極驅動跌落到MAX1616 LDO所能提供的22V以下,電路將進入穩壓調整狀態。測量調整管兩端的輸入、輸出電壓之差,可以確定電源電壓、負載變化范圍內的壓降。
這種方法已經被證明是確定線性調整管壓降的行之有效的途徑,它從側面反映了MOSFET的RDSon,圖5以表格和圖形的方式給出了對該電路的性能測試結果。
圖5:圖4所示Z_DO電路的測試結果。
零壓差穩壓器電路的主要性能。
本文小結
圖4所示電路提供了一個零壓差穩壓器(Z_DO),可利用N溝道、低RDSon FET實現,MOSFET的柵極通過倍壓電路驅動。降低輸出負載會減小輸入、輸出之間的壓差,空載時達到零。大電流應用中,該電路能夠降低穩壓過程中的調整管損耗,進而降低對散熱器及其他熱管理技術的要求。
基站系統的LDO要求1V的壓差裕量,採用Z_DO可大大降低這一裕量,對於需要10A輸出電流的應用,可以選擇具有極低RDSon的場效應管IRF1324,其RDSon低於1mΩ,利用該FET構建的Z_DO理想情況下的壓差為每安培1mV。
在本文提供的例子中,所使用的FET即使在最糟糕的工作條件下也能有效降低調整管的功耗,考慮到負載變化及其他因素的影響,只需100mV的壓差裕量,再加上FET RDSon需要的10mV壓差,可以將原來的8.5V中間電壓降至7.61V。總壓差為110mV,10A電流對應的功耗為1.1W,節省大約9W的功率。利用表面貼裝器件可直接通過PCB的覆銅區域散熱,因此可以很容易解決熱管理問題。總之,使用IRF1324可省去散熱器,降低成本,簡化安裝過程,並為系統節省9W的能耗。
Z_DO還可用於電池供電系統,系統所能提供的壓差裕量會隨著電池的工作電壓而發生顯著變化,Z_DO在這樣的系統可有效延長電池的工作時間。
備注: 本電路只是原理電路,只在直流輕載下進行過測試。讀者可以對其作進一步的開發,以優化動態負載響應及低輸入/輸出壓差特性。
㈡ 誰有克隆技術的資料,快,3小時之內解答
克隆是英文 clone的音譯,簡單講就是一種人工誘導的無性繁殖方式。但克隆與無性繁殖是不同的。無性繁殖是指不經過雌雄兩性生殖細胞的結合、只由一個生物體產生後代的生殖方式,常見的有孢子生殖、出芽生殖和分裂生殖。由植物的根、莖、葉等經過壓條、扦插或嫁接等方式產生新個體也叫無性繁殖。綿羊、猴子和牛等動物沒有人工操作是不能進行無性繁殖的。科學家把人工遺傳操作動、植物的繁殖過程叫克隆,這門生物技術叫克隆技術。
克隆技術的設想是由德國胚胎學家於1938年首次提 出的,1952年,科學家首先用青蛙開展克隆實驗,之後不斷有人利用各種動物進行克隆技術研究。由於該項技術幾乎沒有取得進展,研究工作在80年代初期一度進入低谷。 後來,有人用哺乳動物胚胎細胞進行克隆取得成功。 1996年7月5日,英國科學家伊恩·維爾穆特博士用成年羊體細胞克隆出一隻活產羊,給克隆技術研究帶來了重大突破,它突破了以往只能用胚胎細胞進行動物克隆的技術難 關,首次實現了用體細胞進行動物克隆的目標,實現了更高意義上的動物復制。研究克隆技術的目標是找到更好的辦法改變家畜的基因構成,培育出成群的能夠為消費者提供可能需要的更好的食品或任何化學物質的動物。
克隆的基本過程是先將含有遺傳物質的供體細胞的核移 植到去除了細胞核的卵細胞中,利用微電流刺激等使兩者融合為一體,然後促使這一新細胞分裂繁殖發育成胚胎,當胚胎發育到一定程度後(羅斯林研究所克隆羊採用的時間約為 6天)再被植入動物子宮中使動物懷孕使可產下與提供細胞 者基因相同的動物。這一過程中如果對供體細胞進行基因改造,那麼無性繁殖的動物後代基因就會發生相同的變化。培育成功三代克隆鼠的「火奴魯魯技術」與克隆多利羊技術的主要區別在於克隆過程中的遺傳物質不經過培養液的培養,而是直接用物理方法注入卵細胞。這一過程中採用化學刺激法代替電刺激法來重新對卵細胞進行控制。1998年7月 5日,日本石川縣畜產綜合中心與近畿大學畜產學研究室的科學家宣布,他們利用成年動物體細胞克隆的兩頭牛犢誕生。這兩頭克隆牛的誕生表明克隆成年動物的技術是可重復的。
當蘇格蘭的羅斯林研究所1996年利用克隆技術克隆出小羊多利後,這一成果立即被譽為本世紀最重大的也是最有爭論的科技突破之一。這一突破帶來的好處是顯而易見的。 利用這一技術可以在搶救珍奇瀕危動物、復制優良家畜個體、 擴大良種動物群體、提高畜群遺傳素質和生產性能、提供足量試驗動物、推進轉基因動物研究、攻克遺傳性疾病、研製 高水平新葯、生產可供人移植的內臟器官等研究中發揮作用。
在肯定了這種技術的正面作用的同時,人們更大程度上表示了對這種技術的擔憂,他僑銜�綣�褂貌壞保�庵旨際蹩贍芏隕��肪巢��て詰牟渙加跋歟�恍┛蒲Ъ胰銜�? 果在畜牧業中大量推廣這種無性繁殖技術,很可能破壞生態平衡,導致一些疾病的大規模傳播;如果將其應用在人類自身的繁殖上,將產生巨大的倫理危機。
克隆羊多莉的身份被披露後,美國俄勒岡科學家也證實他們於1996年8月已經利用克隆胚胎培育出猴子;又有傳說,比利時一醫生已無意中克隆出一個男孩。盡管比利時科學家否認克隆人的報道,但是各國政府對克隆技術在法律 和倫理方面可能造成的影響非常重視,美、德、法、英、加 等國紛紛成立專家小組研究這一問題,科學家們也要求對這 一領域的研究加以限制。世界衛生組織總幹事中島宏和歐盟委員會負責科研的委員1997年3月11日分別發表聲明 和談話,表示反對進行人體克隆試驗。目前各國對這項技術較為一致的看法是制定法律加強對這種技術的管理,並嚴禁用它復制人類。克隆出小羊多利的英國科學家維爾穆特也說, 用來克隆多利的那種技術效率極低,在他成功克隆出多利之前該技術曾導致先天缺損動物的出生。將這種技術用於人類 是「非常不人道的」。
中國政府也十分重視克隆技術及其提出的相關問題,國家科委和農業部等部門已多次召開有各方面專家參加的研討、 座談會,並就有關問題達成共識。專家們認為,動物克隆技術的成功是科學研究上的一個重大事件,它既有有益的一面, 又有不利的可能,必須採取措施加以規范,嚴格控制住有害的一面,使這項技術造福於人類。
1997年11月11日,聯合國教科文組織第29屆 大會在巴黎通過一項題為《世界人類基因組與人權宣言》的文件,明確反對用克隆技術繁殖人。文件指出,應當利用生物學、遺傳學和醫學在人類基因組研究方面的成果,但是, 這咱研究必須以維護和改善公眾的健康狀況為目的,違背人 的尊嚴的作法,如用克隆技術繁殖人的作法,是不能允許的。
1998年1月12日,歐洲19個國家在法國巴黎簽署了一項嚴格禁止克隆人的協議(european protocol on banning human cloning)。這是國際上第一個禁止克隆人的 法律文件,是對《歐洲生物醫學條約》的補充。這項禁止克 隆人協議規定,禁止各簽約國的研究機構或個人使用任何技術創造與一活人或死人基因相似的人,否則予以重罰。違反協議的研究人員和醫生將被禁止從事研究和行醫,有關研究 所或醫院的執照將被吊銷。如果簽約國研究機構或個人在歐洲以外地區進行這類活動也將追究法律責任。在協議上簽字的國家有法國、丹麥、立陶宛、芬蘭、希臘、愛爾蘭、意大 利、拉脫維亞、盧森堡、摩爾多瓦、挪威、葡萄牙、羅馬尼 亞、斯洛維尼亞、西班牙、瑞典、馬其頓、土耳其和聖馬利諾。
克隆技術的發展
克隆,是Clone的譯音,意為無性繁殖,克隆技術即無性繁殖技術。前不久報道的英國羅斯林研究所試驗成功的克隆羊多利,是首次利用體細胞克隆成功的,它在生物工程史上揭開了新的一頁。
克隆技術已經歷了三個發展時期:
第一個時期是微生物克隆,即由一個細菌復制出成千上萬個和它一模一樣的細菌而變成一個細菌群。
第二個時期是生物技術克隆,如DNA克隆。
第三個時期就是動物克隆,即由一個細胞克隆成一個動物。
在自然界,有不少植物具有先天的克隆本能,如番薯、馬鈴薯、玫瑰等插枝繁殖的植物。而動物的克隆技術,則經歷了由胚胎細胞到體細胞的發展過程。早在本世紀50年代,美國的科學家以兩棲動物和魚類作研究對象,首創了細胞核移植技術,他們研究細胞發育分化的潛能問題,細胞質和細胞核的相互作用問題。1986年英國科學家魏拉德森首次把胚胎細胞利用細胞核移植法克隆出一隻羊,以後又有人相繼克隆出牛、羊、鼠、兔、猴等動物。我國的克隆技術也頗有成就,80年代末,我國克隆出一隻兔,1991年西北農業大學發育研究所與江蘇農學院克隆羊成功,1993年中科院發育生物研究所與揚州大學農學院共同克隆出一批山羊,1995年華南師大和廣西農大合作克隆出牛,接著中國農科院畜牧研究所於1996年克隆牛獲得成功。而美國最近克隆猴取得成功,日本科學家也聲稱他們繁殖出200多頭「克隆牛」。以上所述的克隆動物,都是用胚胎細胞作為供體細胞進行細胞核移植而獲得成功的。
1997年2月英國羅斯林研究所宣布克隆成功的小羊多利,是用乳腺上皮細胞作為供體細胞進行細胞核移植的,它翻開了生物克隆史上嶄新的一頁,突破了利用胚胎細胞進行核移植的傳統方式,使克隆技術有了長足的進展。整個克隆過程如下:科學家選取了三隻母羊,先將一隻母羊的卵細胞中所有遺傳物質吸出,然後將另一隻6歲母羊的乳腺細胞與之融合,形成一個含有新遺傳物質的卵細胞,並促使它分裂發育成胚胎,當這一胚胎生長到一定程度時再將它植入第三隻母羊的子宮中,由它孕育並產下克隆羊多利。多利酷像提供乳腺細胞的6歲母羊。 小羊多利是世界上第一個利用體細胞克隆成功的動物。克隆多利的成功,從理論上說明了高度分化細胞,經過一定手段處理之後,也可回復到受精卵時期的合子功能;說明了在發育過程中,細胞質對異源的細胞核的發育有調控作用。它對生物遺傳疾病的治療、優良品種的培育和擴群等提供了重要途徑,對物種的優化、瀕危動物的種質保存,對轉基因動物的擴群均有一定作用。 自克隆小羊多利成功後,世界各國引起強烈的反響,有的看作福音,有的則視為禍水,筆者以為對新技術應採取支持態度,生物克隆取得突破,最大的好處是培養大量品質優良的家畜,豐富人們的物質生活,使畜牧業的成本降低,效率提高,還可提供某些葯物原料以提高人類免疫功能等等。在小羊多利之前,羅斯林研究所曾培育出一隻奶中含治療血友病葯物原料的轉基因羊,一家公司以50萬英鎊的高價買去。如果利用體細胞大批「復制」這只羊,就可挽救更多患者的生命。另外,利用克隆技術可以大量復制珍稀動物,挽救瀕危物種,調節大自然的生態平衡,為人類造福,何來憂患呢?當然,克隆技術也可能帶來負面影響,一些克隆動物在遺傳上是全等的,一種特定病毒或其它疾病的感染,將會帶來災難,如果無計劃克隆動物,會擾亂物種的進化規律,干擾性別比例,這種對生物界的人為控制會帶來許多意想不到的危害。但只要採取相應的研究對策,制訂科學的克隆計劃,這種負效應就可以避免。
至於克隆人,這是一個沒有意義的研究課題,當代生物史證明,克隆技術只能復制出外貌特徵相同的生物,不能克隆出被復制者原有的才能。人的思想才能受後天的制約。所以,即使有人能克隆出酷似歷史上的偉大領袖、偉大科學家那樣的人物,也僅在外貌上相同,卻缺乏偉大領袖、偉大科學家那樣的思想、氣質、才能,試問這樣的克隆具有什麼意義?至於有人主張克隆人以取得人體器官,用於醫學上人體器官的移植,這也是不可行的。因為克隆出來的人首先是一個公民,他享有人權,如果克隆人不肯捐贈器官,你發明者也不能侵犯人權。 至於克隆無頭的人,那也是不現實的,因為克隆人要生存,首先要吃飯,要思維,沒有頭顱是不可能的,我們總不能培植一個無頭的植物人吧?而且,最重要的是克隆人不符合世情國情,當今世界人口急劇膨脹,不少國家已實行計劃生育,控制人口增長,在這種情況下怎麼拆巨資做違背社會發展規律的事呢?正如德國研究技術部長呂特格斯所說:「復制人類將不被允許,也一定不會發生。」 目前,克隆技術在英國又有了新的進展,他們把這一技術應用於人類造血事業。英國的PPL公司是克隆技術的經濟後台,它的主管羅思詹姆斯博士說:「從研究多利中我們知道,我們可以用一個細胞製造出一隻轉基因動物。我們現在正利用這一技術生產人類血液中最重要的組成部分,也就是血漿。」他們與羅斯林研究所合作研究一種帶有人類基因的牛和羊。他們先把動物體內的血漿取出,再取代人類的血漿,這種改變了基因的牛和羊體內就含有人類血漿的重要成分,通過對這些動物的飼養、再克隆或繁殖,就可以得到穩定可靠而且相對便宜的血資源,據統計在英國每年價值可達150英鎊。可謂效益匪淺。 克隆技術的前景不可估量。
㈢ α、β、γ射線,紫外線、紅外線的發現者分別是誰
γ射線,波長短於0.2埃的電磁波。首先由法國科學家P.V.維拉德發現,是繼α、β射線後發現的第三種原子核射線。
X射線的發現者威廉·康拉德·倫琴於1845年出生在德國尼普鎮。他於1869年從蘇黎世大學獲得哲學博士學位。在隨後的十九年間,倫琴在一些不同的大學工作,逐步地贏得了優秀科學家的聲譽。1888年他被任命為維爾茨堡大學物理所物理學教授兼所長。1895年倫琴在這里發現了X射線。
1895年9月8日這一天,倫琴正在做陰極射線實驗。陰極射線是由一束電子流組成的。當位於幾乎完全真空的封閉玻璃管兩端的電極之間有高電壓時,就有電子流產生。陰極射線並沒有特別強的穿透力,連幾厘米厚的空氣都難以穿過。這一次倫琴用厚黑紙完全覆蓋住陰極射線,這樣即使有電流通過,也不會看到來自玻璃管的光。可是當倫琴接通陰極射線管的電路時,他驚奇地發現在附近一條長凳上的一個熒光屏(鍍有一種熒光物質氰亞鉑酸鋇)上開始發光,恰好象受一盞燈的感應激發出來似的。他斷開陰極射線管的電流,熒光屏即停止發光。由於陰極射線管完全被覆蓋,倫琴很快就認識到當電流接通時,一定有某種不可見的輻射線自陰極發出。由於這種輻射線的神密性質,他稱之為「X射線」——X在數學上通常用來代表一個未知數。
這一偶然發現使倫琴感到興奮,他把其它的研究工作擱置下來,專心致志地研究X射線的性質。經過幾周的緊張工作,他發現了下例事實。(1)X射線除了能引起氰亞鉑酸鋇發熒光外,還能引起許多其它化學製品發熒光。(2)X射線能穿透許多普通光所不能穿透的物質;特別是能直接穿過肌肉但卻不能透過骨胳,倫琴把手放在陰極射線管和熒光屏之間,就能在熒光屏上看到他的手骨。(3)X射線沿直線運行,與帶電粒子不同,X射線不會因磁場的作用而發生偏移。
1895年12月倫琴寫出了他的第一篇X射線的論文,發表後立即引起了人們極大的興趣和振奮。在短短的幾個月內就有數以百計的科學家在研究X射線,在一年之內發表的有關論文大約就有一千篇!在倫琴發明的直接感召下而進行研究的科學家當中有一位是安托萬·亨利·貝克雷爾。貝克雷爾雖然是有意在做X射線的研究,但是卻偶然發現了甚至更為重要的放射現象。
在一般情況下,每當用高能電子轟擊一個物體時,就會有X射線產生。X射線本身並不是由電子而是由電磁波構成的。因此這種射線與可見輻射線(即光波)基本上相似,不過其波長要短得多。
當然X射線的最著名的應用還是在醫療(包括口腔)診斷中。其另一種應用是放射性治療,在這種治療當中X射線被用來消滅惡性腫瘤或抑制其生長。X射線在工業上也有很多應用,例如,可以用來測量某些物質的厚度或勘測潛在的缺陷。X射線還應用於許多科研領域,從生物到天文,特別是為科學家提供了大量有關原子和分子結構的信息。
發現X射線的全部功勞都應歸於倫琴。他獨自研究,他的發現是前所未料的,他對其進行了極佳的追蹤研究,而且他的發現對貝克雷爾及其他研究人員都有重要的促進作用。
然而人們不要過高地估計倫琴的重要性。X射線的應用當然很有益處,但是不能認為它如同法拉第電磁感應的發現一樣,改變了我們的整個技術;也不能認為X射線的發明在科學理論中有其真正重大的意義。人們知道紫外線(波長要比可見光短)已近一個世紀了,X射線與紫外線相類似,但是它的波長比紫外線還要短,它的存在與經典物理學的觀點完全相符。總之,我認為完全有理由把倫琴遠排在貝克雷爾之後,因為貝克雷爾的發現具有更重大的意義。
倫琴目己沒有孩子,但他和妻子抱養了一個女兒。1901年倫琴獲得諾貝爾物理獎,是獲得該項獎的頭一個人。他於1923年在德國慕尼黑與世長辭。
㈣ 20世紀初物理學兩大危機是什麼
物理學危機
物理學在為我們解釋周邊物質世界的同時,也為我們營造出了內容豐富、思維縝密、不斷創新、妙趣無窮的理論方法和實驗體系。20世紀的近代物理學革命與19到20世紀之交的物理學形勢相關,那時物理學上空有兩朵所謂烏雲,使得一些物理學家驚呼出現了物理學危機。近代物理學革命不僅解決了兩朵烏雲導致的這場危機,而且把整個物理學都置於以量子論和相對論兩大理論為支柱的現代物理學的基礎之上。 F[eWnYT[
6`(; b}[:
19世紀的最後一天,歐洲著名的科學家曾經歡聚一堂,會上,有一位英國著名的物理學家湯姆生,回顧物理學所取得的偉大成就時說,物理大廈已經落成,所剩的只是一些修飾工作,同時他在展望20世紀物理學前景時,卻若有所思地講,動力理論肯定了熱和光是運動的兩種方式,但在它的美麗而晴朗的天空卻被兩朵烏雲籠罩了,第一朵烏雲出現在光的波動理論上,第二朵烏雲出現在關於能量均分的麥克斯韋波茲曼理論上。這兩朵烏雲,現在被量子論跟相對論所驅散,雖然目前今天的物理學,誠然面臨著一些重要的理論與實驗問題亟待解決,比如類星體的能源問題,暗物質、暗能量和反物質的問題,愛因斯坦場方程的宇宙項問題,中微子振盪問題,質子衰變問題等。但是到現在為止,物理學家還沒有人像19世紀20世紀驚呼物理學的危機。相對論和量子論在科學各個領域的擴展與應用,雖然已經取得了很大成功,但科學永無止境,沒有到非常完善的成動,看來一直作為精密科學典範的物理學還是魅力未減,作為其他經驗科學基礎的地位短時期還不會改變。現在我們的科學技術發展的重心開始向生命科學,向信息科學等傾斜,但是物理學依然是基礎,數學依然是基礎,是重要的工具,這一點並沒有改變。物理學的巨大魅力還在於它從理論認識中,延伸出眾多的技術原理,20世紀物理學為我們這個社會提供了四個主要的新技術原理,這就是核能技術,半導體技術,包括大規模集成電路的技術,激光技術和超導技術。半導體技術和激光技術還衍生出網路技術,雖然在20世紀近代物理學革命以後,在約為3/4世紀的時間內,物理學並沒有發生新的基礎性的革命性的重大變革,物理學的進展主要還表現為對於相對論量子論的完善及推廣應用上,但這並不意味著物理學的發展已經走到了盡頭。
在19世紀末,經典物理學理論已經發展到相當完備的階段.幾個主要部門----力學,熱力 O-~?k%>b
:sZx^
學和分子運動論,電磁學以及光學,都已經建立了完整的理論體系,在應用上也取得了巨 .p7 L7}-]
Xq1AEY
大成果.其主要標志是:物體的機械運動在其速度遠小於光速的情況下,嚴格遵守牛頓力 "Wl43jVl
# Bl
學的規律;電磁現象總結為麥克斯韋方程組;光現象有光的波動理論,最後也歸結為麥克 +W7XX.!>
|'Q3S&U)W
斯韋方程組;熱現象有熱力學和統計物理的理論.在當時看來,物理學的發展似乎已達到 Q8aCDI&Y
NG"/!=(c
了顛峰.於是,多數物理學家認為物理學的重要定律均已找到,偉大的發現不會再有了, qOxStC
"tq- ;/>
理論已相當完善了.以後的工作無非是在提高實驗精度和理論細節上作些補充和修正,使 T=y*vF
PSLfs$`
常數測得更精確而已.英國著名物理學家開爾文在一篇瞻望20世紀物理學的文章中,就曾 Y{mtHo
C#M)lYl
談到:"在已經基本建成的科學大廈中,後輩物理學家只要做一些零碎的修補工作就行了." rQU*"V ;
9@E<|ky!
然而,正當物理學界沉浸在滿足的歡樂之中的時候,從實驗上陸續出現了一系列重大發現. 4# :`"(#~U
V6Qv=0
如固體比熱,黑體輻射,光電效應,原子結構cdots cdots這些新現象都涉及物質內部的 l'nSg>y
]`;0YC_81
微觀過程,用已經建立起來的經典理論進行解釋顯得無能為力.特別是關於黑體輻射的實 u`f=WT-
<V3)K)W4
驗規律,運用經典理論得出的瑞利-金斯公式,雖然在低頻部分與實驗結果符合得比較好, }[G="K<T
OV Xf f;
但是,隨著頻率的增加,輻射能量單調地增加,在高頻部分趨於無限大,即在紫色一端發散, z\eru+w)
o@yK*R98$N
這一情況被埃倫菲斯特稱為"紫外災難";對邁克爾遜-莫雷實驗所得出的"零結果"更是令 E[]8v~%
:bcc*zM&c0
人費解,實驗結果表明,根本不存在"以太漂移".這引起了物理學家的震驚,反映出經典物 *ipY|f
(5z/zEb2!
理學面臨著嚴峻的挑戰.這兩件事被當時物理學界的權威稱為"在物理學晴朗的天空的遠 !2*'enNPfw
FO#Y7"y^'
處還有兩朵小小的,令人不安的烏雲".然而就是這兩朵小小的烏雲,給物理學帶來了一場 WYPW: q
Y{O$]y
深刻的革命. Tr#p?NP
!&P(>k17
下表列出了世紀之交物理學上有重大意義的實驗發現: `KO)V[F
&An>4z\d
egin -.47jCZ]f~
Uu)Sqf'
mbox{年代}& mbox{人物}& mbox{貢獻} 0Bae',f
rB=lpA@ay
1895 & mbox{倫琴} & mbox{發現X射線} !sdR,S\;@
Xg8b^x gpR
1896 &mbox{貝克勒爾}& mbox{發現放射性} D[#d@ OK+P
#Bo>AKw-S1
1896 &mbox{塞曼} & mbox{發現磁場使光譜線分裂} !#< j[<Q\
#KFDTsP?
1897 &mbox{J.J湯姆生} &mbox{發現電子} :f>H#x4[
sV k%!
1898 &mbox{盧瑟福} & mbox{發現}alpha.eta mbox{射線}---- &>+AOO(
mUWPNg.F
1898 &mbox{居里夫婦} &mbox{發現放射性元素釙和鐳} {*D:"m
C*O2 :tx
1899--1900 &mbox{盧梅爾和魯本斯等人} &mbox{發現熱輻射能量分布曲線偏離維恩分布率} p:-0F|0
p"DWKH`
--1900 &mbox{維拉德} &mbox{發現了}gammambox{射線} 1bY *Q.
p.P1F2n
1901 &mbox{考夫曼} &mbox{發現電子的質量隨速度增加} t{fGs]Y39t
x'+=!br1/(
1902 &mbox{勒那德} &mbox{發現光電效應基本規律} (9YT m)
o JF+x4j
1902 &mbox{里查森} &mbox{發現熱電子發射規律} 'g^#R,Z`<
!(O 9/zy
1903 &mbox{盧瑟福} &mbox{發現放射性元素的蛻變規律} {CD R^wXr]
jag}vcGcr(
end *qF (A HGl
)J:0 FQ
這些新的物理現象,打破了沉悶的空氣,把人們的注意力引向更深入,更廣闊的天地;這一系 @7 >EU
bIu#B?6A&4
列新發現,跟經典物理學的理論體系產生了尖銳的矛盾,暴露了經典物理理論中的隱患,指 TiB bxb[
M_GtFbWF m
出了經典物理學的局限.物理學只有從觀念上,從基本假設上以及從理論體繫上來一番 >2UUha
m~zN2gxZ
徹底的變革,才能適應新的形勢. 8\9Hb(Y
,j4%k$
由於這些新發現,物理學面臨大發展的局面: ;*b6F+nM
-i8'b
1.電子的發現,打破了原子不可分的傳統觀念,開辟了原子研究的嶄新領域; 4x`VTx
K"q&hd.{2H
2.放射性的發現,導致了放射 學的研究,為原子核物理學作好必要的准備; Ig-`]PMht
d5W|?VBEI
3.以太漂移的探索,使以太理論處於重重矛盾之中.為從根本上拋開以太存在的假設,創立狹 "RV;Y
q3rA]}{
義相對論提供了重要依據; $p-DCq{5
908)d$MsSy
4.黑體輻射的研究導致了普朗克黑體輻射定律的發現.由此提出了能量子假說,為量子理論 !30|=;OXU8
*#ZlBs+
的建立打響了第一炮. 7;jF7R.
o.d`\,
總之,在世紀之交的年代裡,物理學處於新舊交替的階段.這個時期,是物理學發展史上不平 23MJ]hD.wW
)%Twa&JD
凡的時期.經典理論的完整大廈,與晴朗天空的遠方漂浮著兩朵烏雲,構成了19世紀末的畫 x/b}eW Rs
7k7Sz0
卷;20世紀初,新現象,新理論如雨後春筍般不斷涌現,物理學界思想異常活躍,堪稱物理學 Y#JR@@pQ
V|Pq!Wmb?
的黃金時代.這些新現象與經典理論之間的矛盾,迫使人們沖破原有理論的框架,擺脫經典 o@miKUh~^
tysh,=X
理論的束縛,在微觀理論方面探索新的規律,建立新的理論. <N_lYKX3
F~mvlW
二舊量子論的建立 e _1y(
G{IJ lr`
20世紀初,新的實驗事實不斷發現,經典物理學在解釋一些現象時出現了困難,其中表現最 @u` P e7m
'l90'K
為明顯和突出的是以下三個問題:1.黑體輻射問題;2.光電效應問題;3.原子穩定性和原子 ^ a a=,94
N <) H.
光譜.量子概念就是在對這三個問題進行理論解釋時作為一種假設而提出的. HX!a)pe
5D5P
2.1 黑體輻射的研究 =u.e~gr6r
Q"yX2=OJe
熱輻射是19世紀發展起來的一門新學科,它的研究得到了熱力學和光譜學的支持,同時用到 +` K cT@z
a^nzjhx
了電磁學和光學的新興技術,因此發展很快.到19世紀末,由這個領域又打開了一個缺口,即 f8JgByS3v
c*SQ55Dp
關於黑體輻射的研究,導致了量子論的誕生. {rlxKh33
8Be "d+F
為了得出和實驗相符合的黑體輻射定律,許多物理學家進行了各種嘗試. VpgADX/q
e vo2Kgh
1893年德國物理學家維恩(Winhelm Wein,1864-1928)提出一個黑體輻射能量分布定律,即 _#jJ~
qr^0x{.''
維恩公式.這個公式在短波部分與實驗中觀察到的結果較為符合,但是在長波部分則明顯地 ;:U)[AvD
<p8<#"`
與實驗不符.1900年英國物理學家瑞利(Rayleigh)和金斯(J.H.Jeans)又提出一個輻射定律, 7D ddSX>\
VHoj@j4
即瑞利-金斯公式,這個公式在長波部分與觀察一致,而在短波(高頻)部分則與實驗大相徑庭, -gNRa$I*,o
WX,O5StDg
導致了所謂的"紫外災難".這個"災難"使多數物理學家敏銳地看到,經典物理正面臨著嚴重 lyc\[r[:I
Ge1 k5
的危機.
李醒民:物理學危機的產生及其實質 PvqDX/yS
[內容提要] 本文在考察了物理學危機的產生及物理學家對危機反應的基礎上,著重論述了物理學危機的實質。作者認為,物理學危機主要是物理學本身的危機,物理學危機在哲學上的表現則是由物理學本身的危機派生出來的,而且,哲學方面的危機也主要是機械唯物主義的危機。 c#e<#tX
l cNPyk
一、物理學危機的產生 ziH$M
自1687年牛頓的集大成著作《自然哲學的數學原理》出版以來,物理學此後兩百年間基本上是在牛頓力學的理論框架內發展起來的。到十九世紀後期,已經形成了經典物理學的嚴整理論體系,幾乎能說明所有已知的物理現象。當時,囿於機械論自然觀的物理學家普遍認為,一切物理現象都能夠從力學的角度來說明,未來的物理學真理將不得不在小數點後第六位中去尋找。 4P#^K<o
? ~ybYt"_
正當物理學家怡然自得、盲目樂觀之時,一些實驗事實卻在他們心頭暗暗地投下了陰影。1887年.邁克耳孫和莫雷通過精密的實驗,發現在地球和以太之間並沒有顯著的相對運動,從而動搖了較為流行的菲涅耳的靜止以太說。但是,靜止以太說不僅為電磁理論所要求,而且也受到早先的光行差現象和斐索實驗的支持。這樣,作為光現象和電磁現象傳播媒質的以太這一力學模型在性質上就難以自圓其說,光學和電磁學的力學基礎於是面臨著某種危險。 M3/H
^[email protected]
經典理論所無法解釋的新的實驗事實,即所謂的「反常現象」接踵而來,氣體比熱的實驗結果也與能量均分定理發生了尖銳的沖突。十九世紀中葉,玻耳茲曼和麥克斯韋提出的能量均分定理能夠解釋許多現象,對於常溫下的一般固體和單原子氣體的比熱,也能給出比較滿意的答案。但是對於雙原子和多原子氣體,實測的定壓熱容量與定容熱容量之比顯著地大於理論計算值。開耳芬1900年4月27日在英國皇家學會的講演中,曾稱上述兩個疑難為「在熱和光的動力理論上空的十九世紀的烏雲」 。 \<|+oT6@
r7)=XB]QR
開耳芬畢竟把物理學的天空看得過於晴朗了。其實,當時物理學的天空並非只有「兩朵烏雲」,早在他講演之前,就已經是「黑雲壓城城欲摧」,「山雨欲來風滿樓」了!事實上,在十九世紀末,光電效應、黑體輻射,原子光譜等實驗事實也接二連三地和經典物理學理論發生了嚴重的對立。 =b3i1eYA88
^S!@pH+I*
物理學危機可以說是從1895年之後真正開始的。特別是由於放射性的發現和研究,有力地沖擊了原子不可分、質量不可變的傳統物質觀念。就連那些頑固堅持舊觀點的人,也無法反對大量確鑿的實驗證據,至多隻能抱一種走著瞧的態度。 V@& |yc,h
qk#?Kn8'!
1895年11月8日到12月28日,倫琴在德國維爾茨堡大學實驗室研究陰極射線時發現了X射線。倫琴的發現不僅引起了驚訝,而且產生了轟動,它打開了一個奇妙的新世界。隨後,鈾放射性(1896年)、電子(1897年)、放射性元素釙和鐳(1898年)等一系列沖擊經典物理學理論基礎的新發現紛至沓來。在此基礎上,盧瑟福和索迪於1902年提出了元素嬗變理論。 {HDnE~
^GUKW|1@
這一系列接踵而至的新發現不僅動搖了整個物理學的基礎,而且也震撼了兩百多年來在自然科學領域占統治地位的機械自然觀,於是出現了所謂的物理學危機。面對著無法納入力學理論框架的新事物,當時在一些科學家中間曾流行著諸如「物質消失了」,「科學破產了」之類的奇談怪論。這一切,在物理學界造成了一定的思想混亂,進一步加深了物理學危機的嚴重性。 h%L ?nF
kvTD5IV*
二、物理學家對危機的反應 $Xt^F@
qEVi_
在世紀之交,物理學家是怎樣看待物理學危機的呢? U3wk h qlB
KYn o1i
當時,物理學家一開始都沒有覺察到物理學危機,至少是沒有意識到危機的嚴重性。他們依然堅信經典力學的理論框架是整個理論物理學大廈賴以建立的基礎,是所有其它科學分支賴以產生的根源。誰也沒有想過,整個物理學的基礎可能需要從根本上加以改造。 pu;(r%s.
at ?
英國科學界元老開耳芬沒有覺察到物理學危機。他只是認為,物理學的發展不過是遇到了幾個較為嚴重的困難而已,這些困難能夠通過適當的方案逐一加以解決,而無須觸動整個物理學的基礎。因此他對於動搖這個基礎的新實驗和新理論往往持懷疑態度,甚至公開站出來反對。 !m+ zf9]
p~G gs
引起所謂「紫外災難」的黑體輻射問題本來大大加劇了經典物理學的危機。可是,就連當時深深捲入這個問題的維恩、瑞利、洛倫茲等人都沒有意識到這種危機。他們力圖在經典理論的框架內解決難題,因而始終找不到正確的出路。甚至連量子論的創始人普朗克當時也沒有認識到這種危機。因此,他的開創性的工作不是自覺的,而是被迫的。難怪普朗克在邁出了關鍵性的一步後便開始猶豫彷徨,他懷疑自己的推導可能有某種缺陷,竭力設法把量子論與經典理論調和起來。至於維恩、瑞利,直到1905年都不同意量子概念,洛倫茲在1908年的羅馬講演中也表示難以接受普朗克的理論。 0r$P_k
Ckyf<^7U
在玻耳茲曼看來,實際上存在著一種危機,但它只是哲學危機,而物理學本身不存在危機。玻耳茲曼1904年在美國聖路易斯國際技術與科學會議的講話中表示,問題在於哲學錯誤而不在於科學研究的不可矯正的缺點。物理學的迅猛發展清楚地表明,錯誤在於把研究某些普遍特徵的問題,如因果性的本質、物質和力的概念等任務託付給哲學了,而「哲學在闡明這些問題時顯然是無能為力的。」 玻耳茲曼認為,反對哲學的斗爭是使物理學獲得解放的首要條件,因而他十分激烈地進行了這一斗爭。玻耳茲曼是一位堅定的機械唯物主義者,他所反對的當然是一些唯心主義的哲學流派。他之所以這樣做,是因為無論在他生前或死後,以實證論為代表的唯心主義哲學思潮廣為流行,許多人錯誤地認為物理學危機導致了科學的破產和唯物主義的失敗,從而引起了一定的思想混亂。例如奧斯特瓦爾德就宣稱,物理學的發展已經面臨著危機。要消除這種危機,只能藉助於物質消失的哲學見解,把實體的屬性讓給能量(即唯能論)。皮爾遜也聲稱,「當前的危機實際在於」,「人們把物質看做是物理學的基本概念,」「現在似乎很顯然,電必定比物質吏為根本。」皮爾遜由此得出唯心主義的結論:「渴求給每一個概念都賦予客觀性,是完全沒有必要的。」 這些一度時髦的哲學很容易把物理學引入歧途,玻耳茲曼堅決反對它們是值得稱道的。但是,他的作法沒有、也不可能取得過大成效,因為作為他的戰鬥武器的機械唯物主義也正處於深刻的危機之中。而且,他又斷然否認物理學本身存在危機,這就使他無法對症下葯。因此玻耳茲曼雖然早先為經典物理學的發展做出了傑出的貢獻,但是在世紀之交物理學大變革時期,他卻看不到變革經典理論及其基礎的必要性和緊迫性,未能對已經出現的物理學革命的形勢提出有預見性的見解。 *FR0-HlR
Fsj l &
1905年之前,愛因斯坦還是一個默默無聞的年輕人,他不可能有多少言論和文章公諸於世。但是,從他後來的追憶以及別人所寫的有關材料中,我們可以清楚地看到,愛因斯坦在世紀之交對物理學危機具有深邃的洞察和獨到的見解。在前人的實驗和研究工作的基礎上,愛因斯坦看到物理學危機表現在兩個基本方面。其一是力學和電動力學兩種理論體系之間嚴重不協調。在這方面,他認為消除危機的出路是:擺脫居統治地位的教條式的頑固,擯棄絕對空間和絕對時間觀念,就能為整個物理學找到一個可靠的新基礎。其二是由於普朗克對熱輻射的研究而突然使人意識到危機的嚴重性。這就好像地基從下面給挖掉了,無論在什麼地方也看不到能夠進行建築的堅實基礎了。值得注意的是,愛因斯坦透過一些實驗事實與舊理論的矛盾,進一步察覺到經典物理學理論基礎,即其基本概念和基本原理的危機。因此,他漸漸對那種根據已知事實用構造性的努力去發現真實定律的可能性感到絕望了;他確信,只有發現一個普遍的形式原理,才能使我們得到可靠的結果。由於愛因斯坦對物理學危機和擺脫危機的出路具有真知灼見,因此他能夠以破竹之勢,於1905年一舉在上述兩方面取得劃時代的突破,全面打開了物理學革命的新局面,使物理學有可能消除危機。 ^aNkh,S,
3` b9%
在當時科學界的知名人士當中,對物理學發展形勢看得最為清楚的是法國數學家、物理學家和天文學家昂利•彭加勒。他在1905年出版的《科學的價值》中,第一個明確地提出了物理學危機,並對它進行了比較全面的分析和論述。彭加勒認為,物理學危機是新的實驗發現與經典物理學的基本原理發生了無法調和的矛盾。危機是好事而不是壞事,它預示著一種行將到來的變革(彭加勒把鐳譽為「當代偉大的革命家」),是物理學進入新階段的前兆。他正確地指出,要擺脫危機,就要在新實驗事實的基礎上重新改造物理學,使力學讓位於一個更為廣泛的概念。他一再肯定經典理論的固有價值,尖銳地批判了「科學破產」的錯誤論點。他還預見到了新力學的大致圖景,對科學的前途滿懷信心
三、物理學危機的實質 *!Ito}T
~})JN`?72
盡管彭加勒在《科學的價值》中專用一章(第八章:物理學當前的危機)詳盡地論述了物理學危機,但是他主要是從物理學的角度看待這個問題的,他沒有徹底地從認識論的角度加以發揮,正如列寧所說,「他對這個問題的哲學方面沒有多大興趣」。 Sg:N=v\
gz~gCQ
可是,法國的哲學問題著作家萊伊在《現代物理學家的物理學理論》(1907年)一書中非常詳細地論述了這一方面。在談到物理學危機的實質究竟是什麼時,萊伊說,在十九世紀前六十年中,物理學家在一切根本問題上是彼此一致的。他們相信對自然界的純粹力學的解釋,他們認為物理學無非是比較復雜的力學,即分子力學。他們只是在把物理學歸結為力學的方法問題上,在機械論的細節問題上有分歧。現在,物理化學的科學展示給我們的景況看來是完全相反的。嚴重的分歧代替了從前的一致,而且這種分歧不是在細節上,而是在基本的、主導的思想上。一方面,萊伊指出,物理學危機是「新的大發現所引起的典型的發育上的危機,」「危機會引起物理學的改革(沒有這點就不會有進化和進步)」,「從而新的時期就開始了。」「在若干年後觀察事件的歷史家,會很容易地在現代人只看到沖突、矛盾、分裂成各種學派的地方,看到一種不斷的進化。看來,物理學近年來所經歷的危機也是屬於這類情況的(不管哲學的批判根據這個危機做出什麼結論)。」另一方面,萊伊又指出,「對傳統機械論所作的批判破壞了機械論的這個本體論實在性的前提。在這種批判的基礎上,確立了對物理學的一種哲學的看法。」「依據這種看法,科學不過是符號的公式,是作記號的方法。」(轉引自文獻[5],第259~262,311~312頁,以下引用該書只注頁碼)列寧在分析了物理學危機和萊伊的有關評論後強調指出:「觀代物理學危機的實質就是:舊定律和基本原理被推翻,意識之外的客觀實在被拋棄,這就是說,唯物主義被唯心主義和不可知論代替了。」(第264頁) !pE^K
t4B?
對於物理學危機的實質的看法,目前存在著兩種不同的見解。第一種見解認為,列寧強調了危機的兩個方面,即物理學方面和哲學方面。例如,有人說,這兩方面在於:第一,這是舊概念、理論、原則等等與物理學的最新發現相矛盾;第二,這否定了在意識之外存在著客觀實在。有人雖然也認為,物理學危機是物理學理論的變革和做出唯心主義認識論的結論相結合所造成的,但是卻強調,關鍵在於做出唯心主義的結論所造成的。第二種見解則斷然認為,物理學根本不存在什麼危機問題。例如,有人說:「危機」不是發生在物理學問題上,而是發生在哲學認識論問題上。有人說:危機並不是由自然科學本身引起的,而是唯心主義和不可知論侵入了自然科學領域的結果。 l .NdNv0
Cx9M:
第二種見解顯然是錯誤的。首先,它完全違背前述的物理學發展的歷史事實,這是最根本的一點。事實上,物理學危機是物理學本身發展過程中出現的一種必然現象,它是新的革命性的發現與舊的基本概念和基本原理發生了尖銳的、不可調和的矛盾的結果,而不是唯心主義和不可知論侵入自然科學領域的結果。要知道,物理學不僅在它的孕育時期,而且從它誕生的第一天起就遭到過唯心主義和不可知論的侵襲(甚至還沒有擺脫神學觀念),此後也無時無刻不受到侵襲,但是物理學並沒有老是處於危機狀態。可見,唯心主義和不可知論侵入物理學並不是物理學危機產生的根本原因。 /uV<qAYF
05==Gj5
其次,科學發展的「危機—革命」觀(恕我用此名詞代表彭加勒等人的科學發展觀)是符合某些科學部門在某個歷史時期的發展實際的。最早提出物理學危機的彭加勒就依據歷史事實認為,當前的物理學危機是物理學本身的危機,其實質是新的實驗事實與經典物理學的基本原理(卡諾原理、相對性原理、牛頓原理、拉瓦錫原理、邁爾原理)發生了尖銳的矛盾,這些矛盾是在舊理論框架內無法解決的。彭加勒認為,物理學發展史向我們表明,物理學在此之前已經歷過一次危機(中心力物理學的危機),它促使我們「捨去舊的見解」把物理學推向一個新的階段(原理物理學)。彭加勒指出,當前原理物理學又面臨危機,而擺脫危機的出路在於:「力學必須讓位於一個較為廣泛的概念,這種概念將能解釋力學,而力學卻不能解釋這種概念。」 !V}$zJi
Y$7.5D "d
被譽為自然科學大革新家的愛因斯坦不僅在世紀之交洞察到經典物理學在兩個方面存在著嚴重的危機,而且後來還多次闡述他的科學發展的「危機-革命」觀。在愛因斯坦看來,差不多科學上的重大進步都是由於舊理論遇到危機,在實在跟我們的理解之間發生劇烈沖突時出現的,這種沖突迫使我們排除根深蒂固的偏見,創造出新觀念和新理論,從而導致科學革命。愛因斯坦在1922年8月寫了一篇文章,題目就叫做「論理論物理學的現代危機」 。他在該文中指出,一定的基本概念和基本假設(基本原理)構成了物理學的基礎。「科學的進步會引起它的基礎的深刻的變革」,「近二十年來已經弄清楚,物理學的這個基礎……抵抗不住新的實驗數據的沖擊」,它同實驗「甚至產生了內在矛盾」(危機),從而標志著「整個物理學的基礎可能需要從根本上加以改造」(革命)。愛因斯坦的這些議論具有真知灼見。 ^TaA^s.
1 |{
當代科學史家和科學哲學家庫恩進一步使「危機-革命」觀系統化。庫恩在《科學革命的結構》一書中不僅把「危機」作為他的科學發展的動態模式(前科學→常規科學→危機→科學革命→新的常規科學……)的重要環節,而且用相當篇幅專門論述了「危機」。在庫恩看來,當一種反常現象達到看來是常規科學的另一個難題的地步時,就開始轉化為危機和非常科學。一切危機都是從一種範式開始變模糊時開始的,同時一切危機都隨著範式的新的候補者出現,以及隨後為接受它斗爭而告終。危機是科學發展進程中的一個重要階段,是新理論誕生的前奏。危機的意義在於,它可以指示更換工具的時刻已經到來。危機是新理論出現所必需的前提條件,只有清醒地認識到危機和產生危機的根源,才有可能毅然決然地拋棄舊理論框架,自覺地尋找新理論框架,並以此為基礎重建新的理論體系;相反,看不到危機的根源和危機的嚴重性,就難以感覺到變革舊理論基礎的必要性和緊迫性,至多隻能在舊理論的框架內修修補補,甚至還會把別人所發現的觸及舊理論基礎的新現象、所提出的革命性的.新概念和新理論當做異端邪說而加以反對。而不能容忍危機的人,無疑已經被迫拋棄科學。庫恩的這些思想是值得肯定和借鑒的,物理
㈤ 永動機的探索之路
永動技術曾經一度讓科學界為之瘋狂,引發了一段時間的研究熱潮。隨著技術的發展與驗證,人們普遍認為永動技術是偽科學,但這仍然難以阻止一些愛好者(包括科學專業人士)的狂想與創造熱情,他們一直企圖能打破物理學定律,發明出改變世界的永動機。其中一些關於永動機的奇思異想不乏思維的閃光。
巴斯卡拉的輪子
最早的永動機資料記載之一,出自於印度數學家和天文學家巴斯卡拉在1150年左右的作品中。他設計的永動機是由一個輪子以及輪緣周圍的水銀軸條組成的不平衡機器,其中輪子的重量分布是不平衡的,當輪子轉動後,水銀隨之移動,為輪子持續轉動提供推動力,如此循環往復,使輪子持續運轉著。
可以說,巴斯卡拉的輪狀永動機的影響是非常大的,因為他新奇的想法引起了許多科學家的好奇心。在此後的幾個世紀里,基於他的永動機概念,出現了許多不同版本的輪狀機器。其中不乏一些牛氣的科學家,例如達·芬奇、維拉德等。
而且,有趣的是,巴斯卡拉之所以誕生如此奇思妙想,是因為印度哲學中自我更新和生生不息的哲學理念的影響。可見,哲學與宗教的影響力有多大。
德雷貝爾的永動機
17世紀到19世紀可謂是永動機探索的黃金年代,在那兩百年中,各種奇思異想的的永動機粉墨登場,層出不窮。
1604年,當德雷貝爾首次展現他的機器時,曾廣泛引發了人們的好奇,其中就包括了英國皇室。這是一個什麼樣的機器呢?實際上,這台機器就是一個造型精美的鍾表,它不需要繞組線圈,能顯示日期和月相,由溫度變化和天氣變化提供能源驅動一個空氣測溫器或氣壓計。
然而,對於這個永動機的能量來源,德雷貝爾僅僅只是提到,這是他利用「空氣的熾烈精神」來維持這個機器的運動的,儼然像一個煉金術士一般(德雷貝爾是那個時代的煉金術士)。因此,沒有人知道德雷貝爾的永動機是如何運動的,其能量又是如何而來的。
在後來給友人的一封信中,德雷貝爾還描述了他設計的更精美的永動機器:一個中央球體被充滿液體的玻璃管包圍的一個器械,球體上鑲嵌著一些金配件和月相刻度盤,周圍還裝飾著神話生物,外觀無比精美。但是,我們不確定的是,這個精美的永動機是否真的存在。
弗魯德的水螺桿
羅伯特·弗魯德是17世紀一個身兼科學家和煉金術師雙重職業的傑出人物。他經常有一些奇怪的想法,比如他認為人們之所以會被閃電擊中,那是因為閃電是上帝憤怒的人間化身。
而永動機也正是他奇思妙想的一個經典。弗魯德於1618年提出了一種「水螺旋」的永動機版本,這個「水螺旋」能利用水循環產生動力,驅動磨石碾磨糧食。當這個永動機設備在1660年由木版雕刻形式呈現在人們眼前時,被廣泛認為是第一個試圖用來產生永久效用動力的設備。其工作原理是這樣的:從頂部水箱中流動以驅動底部左下的大水輪,由該水輪運轉驅動一系列復雜的齒輪和軸,從而帶動底部中央到右上的螺旋水斗,呈現出機器的整體運轉,形成循環的水動力。
雖然該機器設備並不能實際運行,但是,弗魯德並不只是試圖用他的機器打破物理定律。實際上,他可能因為試圖尋找方法來幫助農民才會設計這樣的機器。當時,碾磨糧食需要依賴不間斷的動力,那些生活的比較遠的地方的人,由於沒有合適的自來水源,不得不被迫裝載他們的糧食莊稼,將其拖到磨坊,然後運回農場。如果弗魯德的永動機能運轉起來,將會使無數的農民生活得更容易,那貢獻就不言而喻了。
考克斯的時鍾
作為一名著名的倫敦鍾表師,考克斯對時鍾的興趣非常濃厚,而且也希望自己能造出一個能永恆運動的時鍾。1774年,考克斯製造出了他的永恆動力時鍾,這個時鍾類似於其他的機械時鍾,唯一不同的是它不需要繞組線圈。
該時鍾被包裹在玻璃中,其利用地球大氣的壓力變化作為外部能源,使其產生類似繞組運動機制的動力。而內部原動力則是嵌在鍾體內的水銀壓力計,水銀通過上升或下跌來產生動力,且使內部的表輪轉向同一方向,形成一圈一圈循環運轉的效果。
當時,考克斯表示,這是一個能永恆運動的時鍾,而這個時鍾也確實在不需要再加外力的情況下運行了差不多150年。這是第一個被廣泛接受的永恆運動時鍾的例子,它在運行的100度年中,在歐洲各地相繼展出成為轟動多年的奇跡。但遺憾的是,在19世紀30年代,它還是結束了其運行使命,所以,它只能算是一個製作精妙的時鍾罷了。不過有悲有喜,考克斯在這個時鍾中應用的技術,例如金剛石為軸承運轉,氣壓變化等,應用在了現代手錶時鍾上。
卡彭電堆
1870年出生的卡彭是羅馬尼亞的一位工程師和物理學家,他一生致力於研究機械工程、熱動力學以及電化學等學科。1904年到1909年,卡彭在完成博士論文後,研究了高頻電流和電流信號的遠距離傳輸,並研究了先進的燃料電池技術。也正是這段時間的研究工作開啟了他創造傳奇永動機的序幕----卡彭電堆(電池組或燃料電池簡稱電堆)電解液。
1950年,這個電堆的原型組裝完成,它主要由兩個串聯電堆推動一個小型電流馬達,馬達產生動力後(轉化成機械能),就會推動一片連接開關的葉片,葉片每旋轉半圈,就會觸發一個開關打開電路,讓電堆充電,然後在第二個旋轉節點關閉電路,如此反復。葉片的旋轉時間是經過計算的,這樣電堆會有一定的時間再次充電,從而實現循環的電流。
這個發明完成後,就被羅馬尼亞國家技術博物館收藏,到2010年,這個電堆竟然已經連續工作了60年!而且,當這個電池開放給一些科學家測試的時候,他們發現,這個電池從發明之初就始終保持著1伏特的電壓大小,其穩定性也讓人大吃一驚。
目前,這個電堆仍然在工作著,但是科學家仍然沒能夠弄清楚這個奇怪的電池是怎麼一回事?為什麼現在它仍然能運行?也許這個電堆在機械能與電能互相轉化的過程中,能量轉化效率極高,以至於幾乎沒什麼損耗,所以連續工作60年仍比較穩定,但總有一天,隨著能量慢慢消耗,這個電堆也會停止運轉。
紐曼的能源機
進入20世紀,隨著科學理論的不斷發展,科學家從根本上否定了永動機的可能性。1911年,美國專利局發布了一則聲明,說不再對永恆運動或自由能源設備發放專利權,因為這種設備在科學上似乎是不可能創造出來的。對一些發明家而言,這意味著他們的工作被科學認可變得更加困難了。自這之後,人們對永動機探索的狂熱性逐漸降低了,但仍然有人堅持不懈。
1979年,一個叫約瑟夫·紐曼的美國科學愛好者聲稱,他發明了一個永動的能源機,其輸出的機械動力總是超越輸入的電力,能源機效率超過100%。該機器的核心動力原則主要是:空間中的電磁能量可以通過原子或化學鏈式反應來提取出來,具體來說,就是把一個旋轉的永久磁鐵嵌入由線圈傳導動力的電磁脈沖中,利用線圈的質能轉化成扭矩和動力來使機器不斷運轉。
同年,紐曼試圖為該能源機申請專利,被美國專利局拒絕,紐曼隨後提起上訴,美國國家標准局為他的設備進行測試,已驗證其效用性。讓人失望的是,1986年,該設備的測試結果顯示,其產出的能量並沒有比輸入的能量更多。
不過,作為一個未完成高中學業的業余科學愛好者,即使沒有人願意支持他的研究計劃,紐曼的奇特思路還是值得肯定的。
大衛·哈默爾的反引力機器
20世紀中期,隨著外星人熱潮的興起,永動機也跟外星人掛鉤起來了。美國人大衛·哈默爾是一個沒有受過正規教育的木匠,在他自述的「難以置信的真實故事」中告訴人們,他被外星人綁架後,被選為自由能源機器和飛船的看護人,獲得了很多先進的信息,如果人們相信他,他將能改變世界。
雖然大衛·哈默爾的說法讓人很是懷疑,但是,哈默爾指出,他的永動引擎使用類似蜘蛛用來在它的蛛網中從一根蛛絲跳到另一根蛛絲的能量(就相當於平移跳動)。這樣的力量能抵消地心引力,並且能讓他建造一個飛行器,將人類與給予他信息的外星人聚集,讓人類與外星人相見。
哈默爾聲稱,他用了20年來構建這個星際設備和引擎,期間,他使用了一系列的磁鐵來建造它,利用離子動力為能源,成功讓他的反重力機器起飛了,不幸的是,據哈默爾自述,這個機器飛起來後就消失在空中了。由於沒有看到其原型,人們始終難以相信哈默爾的闡述。
事實上,只要去仔細尋找,我們就會發現歷史上關於永動機有很多令人驚艷的想法,只是現代科學的發展否定了永動機的可能性,所以,現今人們對永動機與永動技術的關注就越來越少了。雖然永動機從科學上無法成立,但歷史上這些勇敢、不拘一格的探索仍然值得我們記述。
㈥ 紅外線,鐳射光,射線,有哪些方面本質的區別哪些可以用於醫療哪些可以用於民用哪些可以用於軍事
在光譜中波長自760nm至400μm的電磁波稱為紅外線,紅外線是不可見光線。所有高於絕對零度(-273.15℃)的物質都可以產生紅外線。現代物理學稱之為熱射線。醫用紅外線可分為兩類:近紅外線與遠紅外線。
1基本概念
太陽光譜
紅外線是太陽光線中眾多不可見光線中的一種,由英國科學家赫歇爾於1800年發現,又稱為紅外熱輻射,他將太陽光用三棱鏡分解開,在各種不同顏色的色帶位置上放置了溫度計,試圖測量各種顏色的光的加熱效應。結果發現,位於紅光外側的那支溫度計升溫最快。因此得到結論:太陽光譜中,紅光的外側必定存在看不見的光線,這就是紅外線。也可以當作傳輸之媒介。 太陽光譜上紅外線的波長大於可見光線,波長為0.75~1000μm。紅外線可分為三部分,即近紅外線,波長為(0.75-1)~(2.5-3)μm之間;中紅外線,波長為(2.5-3)~(25-40)μm之間;遠紅外線,波長為(25-40)~l000μm 之間。
紅外線是波長介乎微波與可見光之間的電磁波,波長在760納米至1毫米之間,是波長比紅光長的非可見光。覆蓋室溫下物體所發出的熱輻射的波段。透過雲霧能力比可見光強。在通訊、探測、醫療、軍事等方面有廣泛的用途。 俗稱紅外光。
真正的紅外線夜視儀是光電倍增管成像,與望遠鏡原理完全不同,白天不能使用,價格昂貴且需電源才能工作。
近紅外線或稱短波紅外線,波長0.76~1.5微米,穿入人體組織較深,約5~10毫米;遠紅外線或稱長波紅外線,波長1.5~400微米,多被表層皮膚吸收,穿透組織深度小於2毫米。
紅外大氣窗口
近紅外線| (Near Infra-red, NIR)| 700~ 2,000nm | 0.7~2 MICRON
中紅外線 | (Middle Infra-red, MIR)| 3,000~ 5,000nm | 3~5 MICRON
遠紅外線| (Far Infra-red, FIR)| 8,000~14,000nm | 8~14 MICRON
2物理性質
1.有熱效應
2.穿透雲霧的能力強
3發現波長
公元1666年牛頓發現光譜並測量出3,900埃~7,600埃(400nm~700nm)是可見光的波長。1800年4月24日英國倫敦皇家學會(ROYAL SOCIETY)的威廉·赫歇爾發表太陽光在可見光譜的紅光之外還有一種不可見的延伸光譜,具有熱效應。他所使用的方法很簡單,用一支溫度計測量經過棱鏡分光後的各色光線溫度,由紫到紅,發現溫度逐漸增加,可是當溫度計放到紅光以外的部分,溫度仍持續上升,因而斷定有紅外線的存在。在紫外線的部分也做同樣的測試,但溫度並沒有增高的反應。紫外線是1801年由RITTER用氯化銀(Silver chloride)感光劑所發現的。底片所能感應的近紅外線波長是肉眼所能看見光線波長的兩倍,用底片可以記錄到的波長上限是13,500埃,如果再加上其它特殊的設備,則最高可以達到20,000埃,再往上就必須用物理儀器偵測了。
4特點測試
紅外線波長較長, (無線電、微波、紅外線、可見光。波長按由長到短順序),給人的感覺是熱的感覺,產生的效應是熱效應,那麼紅外線在穿透的過程中穿透達到的范圍是在一個什麼樣的層次?如果紅外線能穿透到原子、分子內部,那麼會引起原子、分子的膨大而導致原子、分子的解體。真的是這樣嗎?而事實上呢?紅外線頻率較低,能量不夠,遠遠達不到原子、分子解體的效果。因此,紅外線只能穿透了原子分子的間隙中,而不能穿透到原子、分子的內部,由於紅外線只能穿透到原子、分子的間隙,會使原子、分子的振動加快、間距拉大,即增加熱運動能量,從宏觀上看,物質在融化、在沸騰、在汽化,但物質的本質(原子、分子本身)並沒有發生改變,這就是紅外線的熱效應。
因此我們可以利用紅外線的這種激發機制來燒烤食物,使有機高分子發生變性,但不能利用紅外線產生光電效應,更不能使原子核內部發生改變。
同樣的道理,我們不能用無線電波來燒烤食物,無線電波的波長實在太長無法穿透到有機高分子間隙更不用說使其變性達到食物烤熟的目的。
通過上述我們知道:波長越短,頻率越高、能量越大的波穿透達到的范圍越大;波長越長,頻率越低、能量越小的波穿透達到的范圍越小。
5遠紅外線
遠紅外線的發現 公元1800年德國科學家"赫歇爾"發現太陽光中的紅外線外側所圍繞著一種用肉眼無法看見的
遠紅外線
光源,波長介於5.6-1000UM的「遠紅外線」,經過這種光源照射時,會對有機體產生放射、穿透、吸收、共振的效果。美國太空總署(NASA)研究報告指出,在紅外線內,對人體有幫助4-14微米的遠紅外線,能滲透人體內部15cm,從內部發熱,從體內作用促進微血管的擴張,使血液循環順暢,達到新陳代謝的目的,進而增加身體的免疫力及治癒率。 但是根據黑體輻射理論,一般的材料要產生足夠強度的遠紅外線,並不容易,通常必須藉助特殊物質作能量的轉換,將它所吸收的熱量經由內部分子的振動再發放較長波長的遠紅外線出來。
6輻射源區
白熾發光區
Actinic range,又稱「光化反應區」,由白熾物體產生的射線,自可見光域到紅外域。如燈泡(鎢絲燈,TUNGSTEN FILAMENT LAMP),太陽。
熱體輻射區
Hot-object range,由非白熾物體產生的熱射線,如電熨斗及其它的電熱器等,平均溫度約在400℃左右。
發熱傳導區
Calorific range,由滾沸的熱水或熱蒸汽管產生的熱射線。平均溫度低於200℃,此區域又稱為「非光化反應區」(Non-actinic)。
溫體輻射區
Warm range,由人體、動物或地熱等所產生的熱射線,平均溫度約為40℃左右。站在照相與攝影技術的觀點來看感光特性:光波的能量與感光材料的敏感度是造成感光最主要的因素。波長愈長,能量愈弱,即紅外線的能量要比可見光低,比紫外線更低。但是高能量波所必須面對的另一個難題就是:能量愈高穿透力愈強,無法形成反射波使感光材料擷取影像,例如X光,就必須在被照物體的背後取像。因此,攝影術就必須往長波長的方向——「近紅外線」部分發展。以造影為目標的近紅外線攝影術,隨著化學與電子科技的進展,演化出下列三個方向:
1.近紅外線底片:以波長700nm~900nm的近紅外線為主要感應范圍,利用加入特殊染料的乳劑產生光化學反應,使此一波域的光變化轉為化學變化形成影像。
2.近紅外線電子感光材料:以波長700nm~2,000nm的近紅外線為主要感應范圍,它是利用以硅為主的化合物晶體產生光電反應,形成電子影像。
3.中、遠紅外線熱像感應材料:以波長3,000nm~14,000nm的中紅外線及遠紅外線為主要感應范圍,利用特殊的感應器及冷卻技術,形成電子影像。
7治療作用
原理
紅外線照射體表後,一部分被反射,另一部分被皮膚吸收。皮膚對紅外線的反射程度與色素沉著的狀況有關,用波長0.9微米的紅外線照射時,無色素沉著的皮膚反射其能量約60%;而有色素沉著的皮膚反射其能量約40%。長波紅外線(波長1.5微米以上)照射時,絕大部分被反射和為淺層皮膚組織吸收,穿透皮膚的深度僅達0.05~2毫米,因而只能作用到皮膚的表層組織;短波紅外線(波長1.5微米以內)以及紅色光的近紅外線部分透入組織最深,穿透深度可達10毫米,能直接作用到皮膚的血管、淋巴管、神經末梢及其他皮下組織。
在紅外線區域中,對人體最有益的波段就是4到14這個波段范圍,這個在醫術界裡面統稱為「生育光線」,因為這個紅外線波段對生命的生長有這促進的作用,這個紅外線對活化細胞組織,血液循環有很好的作用,能夠提高人的免疫力,加強人體的新陳代謝。[1]
紅外線紅斑
足夠強度的紅外線照射皮膚時,可出現紅外線紅斑,停止照射不久紅斑即消失。大劑量紅外線多次照射皮膚時,可產生褐色大理石樣的色素沉著,這與熱作用加強了血管壁基底細胞層中黑色素細胞的色素形成有關。
治療作用
紅外線治療作用的基礎是溫熱效應。在紅外線照射下,組織溫度升高,毛細血管擴張,血流加快,物質代謝增強,組織細胞活力及再生能力提高。紅外線治療慢性炎症時,改善血液循環,增加細胞的吞噬功能,消除腫脹,促進炎症消散。紅外線可降低神經系統的興奮性,有鎮痛、解除橫紋肌和平滑肌痙攣以及促進神經功能恢復等作用。在治療慢性感染性傷口和慢性潰瘍時,改善組織營養,消除肉芽水腫,促進肉芽生長,加快傷口癒合。紅外線照射有減少燒傷創面滲出的作用。紅外線還經常用於治療扭挫傷,促進組織腫張和血腫消散以及減輕術後粘連,促進瘢痕軟化,減輕瘢痕攣縮等。
紅外線對血液的作用
因為紅外線能夠深入人體的皮下組織,所以利用紅外線反應,使皮下深層皮膚溫度上升,擴張微血管,促進血液循環,復活酵素,強化血液及細胞組織代謝,對細胞恢復年輕有很大的幫助並能改善貧血。調節血壓:高血壓及動脈硬化一般是神經系統、內分泌系統,腎臟等細小動脈收縮及狹窄所造成。遠紅外線擴張微血管,促進血液循環能使高血壓降低,又能改善低血壓症狀。
紅外線對關節的作用
紅外線深透力可達肌肉關節深處,使身體內部溫暖,放鬆肌肉,帶動微血管網的氧氣及養分交換,並排除積存體內的疲勞物質和乳酸等老化廢物對消除內腫,緩和酸痛之效果卓越。
紅外線對自律神經的作用
自律神經主要是調節內臟功能,人長期處在焦慮狀態,自律神經系統持續緊張,會導致免疫力降低,頭痛,目眩,失眠乏力,四肢冰冷。紅外線可調節自律神經保持在最佳狀態,以上症狀均可改善或祛除。
紅外線對護膚美容的作用
紅外線照射人體產生共鳴吸收,能將引起疲勞及老化的物質,如乳酸、游離脂肪酸、膽固醇、多餘的皮下脂肪等,籍毛囊口和皮下脂肪的活化性,不經腎臟,直接從皮膚代謝。因此,能使肌膚光滑柔嫩。遠紅外線的理療效果能使體內熱能提高,細胞活化,因此促進脂肪組織代謝,燃燒分解,將多餘脂肪消耗掉,進而有效減肥。
紅外線對循環系統的作用
遠紅外線照射的全面性和深透性,對於遍布全身內外無以數計的微循環組織系統,是唯一能完全照顧的理療方式。微循環順暢之後,心臟收縮壓力減輕,氧氣和養分供應充足,自然身輕體健。強化肝臟功能:肝臟是體內最大的化學工廠,是血液的凈化器。遠紅外線照射引起的體內熱深層效應,能活化細胞,提高組織再生能力,促進細胞生長,強化肝臟功能,提高肝臟解毒、排毒作用,使內臟環境保持良好狀態,可說是最佳的防病戰略。[2]
紅外線對眼的作用
由於眼球含有較多的液體,對紅外線吸收較強,因而一定強度的紅外線直接照射眼睛時可引起白內障。白內障的產生與短波紅外線的作用有關;波長大於1.5微米的紅外線不引起白內障。
光浴對機體的作用
光浴的作用因素是紅外線、可見光線和熱空氣。光浴時,可使較大面積,甚至全身出汗,從而減輕腎臟的負擔,並可改善腎臟的血液循環,有利於腎功能的恢復。光浴作用可使血紅蛋白、紅細胞、中性粒細胞、淋巴細胞、嗜酸粒細胞增加,輕度核左移;加強免疫力。局部浴可改善神經和肌肉的血液供應和營養,因而可促進其功能恢復正常。全身光浴可明顯地影響體內的代謝過程,增加全身熱調節的負擔;對植物神經系統和心血管系統也有一定影響。
設備與治療方法
紅外線光源
1.紅外線輻射器
將電阻絲纏在瓷棒上,通電後電阻絲產熱,使罩在電阻絲外的碳棒溫度升高(一般不超過500℃),發射長波紅外線為主。
紅外線輻射治療儀
紅外線輻射器有立地式和手提式兩種。立地式紅外線輻射器的功率可達600~1000瓦或更大。
近年我國一些地區製成遠紅外輻射器供醫用,例如有用高硅氧為元件,製成遠紅外輻射器。
2.白熾燈
在醫療中廣泛應用各種不同功率的白熾燈泡做為紅外線光源。燈泡內的鎢絲通電後溫度可達2000~2500℃。
白熾燈用於光療時有以下幾種形式:
立地式白熾燈:用功率為250~1000W的白熾燈泡,在反射罩間裝一金屬網,以為防護。立地式白熾燈,通常稱為太陽燈。
手提式白熾燈:用較小功率(多為200W以下)的白熾燈泡,安在一個小的反射罩內,反射罩固定在小的支架上。
3.光浴裝置
可分局部或全身照射用二種。根據光浴箱的大小不同,在箱內安裝40~60W的燈泡6~30個不等。光浴箱呈半圓形,箱內固定燈泡的部位可加小的金屬反射罩。全身光浴箱應附溫度計,以便觀察箱內溫度,隨時調節。
紅外線治療的操作方法
1.患者取適當體位,裸露照射部位。
2.檢查照射部位對溫熱感是否正常。
3.將燈移至照射部位的上方或側方,距離一般如下:
功率500W以上,燈距應在50~60cm以上;功率250~300W,燈距在30~40cm;功率200W以下,燈距在20cm左右。
4.應用局部或全身光浴時,光浴箱的兩端需用布單遮蓋。通電後3~5分鍾,應詢問患者的溫熱感是否適宜;光浴箱內的溫度應保持在40~50℃。
5.每次照射15~30分鍾,每日1~2次,15~20次為一療程。
6.治療結束時,將照射部位的汗液擦乾,患者應在室內休息10~15分鍾後方可外出。
[附]注意事項
(1)治療時患者不得移動體位,以防止燙傷。
(2)照射過程中如有感覺過熱、心慌、頭暈等反應時,需立即告知工作人員。
(3)照射部位接近眼或光線可射及眼時,應用紗布遮蓋雙眼。
(4)患部有溫熱感覺障礙或照射新鮮的瘢痕部位、植皮部位時,應用小劑量,並密切觀察局部反應,以免發生灼傷。
(5)血循障礙部位,較明顯的毛細血管或血管擴張部位一般不用紅外線照射。
照射方式的選擇和照射劑量
1.不同照射方式的選擇
紅外線照射主要用於局部治療,在個別情況下,如小兒全身紫外線照射時也可配合應用紅外線做全身照射。局部照射如需熱作用較深,則優先選用白熾燈(即太陽燈)。治療慢性風濕性關節炎可用局部光浴;治療多發性末梢神經炎可用全身光浴。
2.照射劑量
決定紅外線治療劑量的大小,主要根據病變的特點、部位、患者年齡及機體的功能狀態等。紅外線照射時患者有舒適的溫熱感,皮膚可出現淡紅色均勻的紅斑,如出現大理石狀的紅斑則為過熱表現。皮溫以不超過45℃為准,否則可致燙傷。
主要適應症和禁忌症
(一)適應症
風濕性關節炎,慢性支氣管炎,胸膜炎,慢性胃炎,慢性腸炎,神經根炎,神經炎,多發性末梢神經炎,痙攣性麻痹、弛緩性麻痹,周圍神經外傷,軟組織外傷,慢性傷口,凍傷,燒傷創面,褥瘡,慢性淋巴結炎,慢性靜脈炎,注射後硬結,術後粘連,瘢痕攣縮,產後缺乳,乳頭裂,外陰炎,慢性盆腔炎,濕疹,神經性皮炎,皮膚潰瘍等。
(二)禁忌症
有出血傾向,高熱,活動性肺結核,重度動脈硬化,閉塞性脈管炎等。
[附]處方舉例
(1)紅外線照射雙膝關節:燈距40cm,30分鍾,每日一次,7次。適應症:慢性風濕性關節炎
(2)紅外線照射右側胸廓(下半部)燈距50cm,20分鍾,每日一次,8次。適應症:右側乾性胸膜炎
(3) 太陽燈照射腰骶部:燈距40cm,20~30分鍾,每日一次,6次。適應症:腰骶神經根炎
(4)全身光浴:箱內溫度40~45℃,20~30分鍾,每日一次,8次。適應症:多發性末梢神經炎
(5)左小腿局部光浴:20~30分鍾,每日一次,8次。適應症:左側腓總神經外傷
8污染問題
紅外線近年來在軍事、人造衛星以及工業、衛生、科研等方面的應用日益廣泛,因此紅外線污染問題也隨之產生。紅外線是一種熱輻射,對人體可造成高溫傷害。較強的紅外線可造成皮膚傷害,其情況與燙傷相似,最初是灼痛,然後是造成燒傷。紅外線對眼的傷害有幾種不同情況,波長為7500~13000埃的紅外線對眼角膜的透過率較高,可造成眼底視網膜的傷害。尤其是11000埃附近的紅外線,可使眼的前部介質(角膜晶體等)不受損害而直接造成眼底視網膜燒傷。波長19000埃以上的紅外線,幾乎全部被角膜吸收,會造成角膜燒傷(混濁、白斑)。波長大於 14000埃的紅外線的能量絕大部分被角膜和眼內液所吸收,透不到虹膜。只是13000埃以下的紅外線才能透到虹膜,造成虹膜傷害。人眼如果長期暴露於紅外線可能引起白內障。
紅外線可以人為製造,自然界中也廣泛存在,在焊接過程中也會產生,危害焊工眼部健康;一般的生物都會輻射出紅外線,體現出來的宏觀效應就是熱度。
我們知道,熱產生的原因,是組成物質的粒子做不規則運動.這個運動同時也輻射出電磁波,這些電磁波大部分都是紅外線。
1.太陽光到了晚上的確是幾乎沒有了,但是地球上的物質都會輻射紅外線,有的強烈有的平靜。紅外線照相是通過接收各種物質發出的紅外線,再把他們展現出來,但是其本身不是通過發出紅外線來照相的。
2.紅外線透視和夜視是分別利用了紅外線的不同性質。前面的夜視是因為人的肉眼不能看見紅外線,而特殊設計的照相機和夜視儀卻專門接受紅外線,所以會出現我們覺得一片漆黑,而相機卻能拍到東西,因為實際上到處都是紅外線,對於紅外照相機和夜視儀來講是一片光明。
透視則是利用紅外線的波長比可見光要長,可以穿過一些可見光不能通過的面料(比如混棉和尼龍),所以通過一定的選擇濾波,可以得到這些面料後面的圖像。
9應用實例
生活中高溫殺菌,紅外線夜視儀,監控設備,手機的紅外口,賓館的房門卡,汽車、電視機的遙控器、洗手池的紅外感應,飯店門前的感應門
主動式紅外夜視儀
具有成像清晰、製作簡單等特點,但它的致命弱點是紅外探照燈發出的紅外光會被敵人的紅外探測裝置發現。60年代,美國首先研製出波動式的熱像儀,它不發射紅外光,不易被敵發現,並具有透過霧、雨等進行觀察的能力。
1982年4月─6月,英國和阿根廷之間爆發馬爾維納斯群島戰爭。4月13日半夜,英軍攻擊阿根廷守軍據守的最大據點斯坦利港。3000名英軍布設的雷區,突然出現在阿軍防線前。英國的所有槍支、火炮都配備了紅外夜視儀,能夠在黑夜中清楚地發現阿軍目標。而阿軍卻缺少夜視儀,不能發現英軍,只有被動挨打的份。在英軍火力准確的打擊下,阿軍支持不住,英軍趁機發起沖鋒。到黎明時,英軍已佔領了阿軍防線上的幾個主要制高點,阿軍完全處於英軍的火力控制下。6月14日晚9時,14 000名阿軍不得不向英軍投降。英軍領先紅外夜視器材贏得了一場兵力懸殊的戰斗。
1991年海灣戰爭中,在風沙和硝煙彌漫的戰場上,由於美軍裝備了先進的紅外夜視器材,能夠先於伊拉克軍的坦克而發現對方,並開炮射擊。而伊軍只是從美軍坦克開炮時的炮口火光上才得知大敵在前。由此可以看出紅外夜視器材在現代戰爭中的重要作用。
透視望遠鏡
就像F717 晚上把夜視開啟來,再加個濾光鏡,就可以透視了,不過對全棉的衣服透視效果最差。這本來是一項有用的功能,然而很快用戶就發現這種紅外線夜視鏡片的功能不僅可應用於夜間望遠而且還可以透過人的衣服偷看到身體。而製造這種夜視附件的廠商為YAMADA DENSHI,這家公司原本是為軍隊及防衛及應用生產光傳攝像頭的。
紅外熱成像儀
起源:六十年代早期,瑞典AGA公司研製成功第二代紅外成像裝置,它是在紅外尋視系統的基礎上以增加了測溫的功能,稱之為紅外熱像儀。
開始由於保密的原因,在發達的國家中也僅限於軍用,投入應用的熱成像裝置可的黑夜或濃厚幕雲霧中探測對方的目標,探測偽裝的目標和高速運動的目標。由於有國家經費的支撐,投入的研製開發費用很大,儀器的成本也很高。以後考慮到在工業生產發展中的實用性,結合工業紅外探測的特點,採取壓縮儀器造價。降低生產成本並根據民用的要求,通過減小掃描速度來提高圖像解析度等措施逐漸發展到民用領域。
六十年代中期,AGA公司研製出第一套工業用的實時成像系統(THV),該系統由液氮致冷,110V電源電壓供電,重約35公斤,因此使用中便攜性很差,經過對儀器的幾代改進,1986年研製的紅外熱像儀已無需液氮或高壓氣,而以熱電方式致冷,可用電池供電;1988年推出的全功能熱像儀,將溫度的測量、修改、分析、圖像採集、存儲合於一體,重量小於7公斤,儀器的功能、精度和可靠性都得到了顯著的提高。
九十年代中期,美國FSI公司首先研製成功由軍用技術(FPA)轉民用並商品化的新一紅外熱像儀(CCD)屬焦平面陣列式結構的一種凝成像裝置,技術功能更加先進,現場測溫時只需對准目標攝取圖像,並將上述信息存儲到機內的PC卡上,即完成全部操作,各種參數的設定可回到室內用軟體進行修改和分析數據,最後直接得出檢測報告,由於技術的改進和結構的改變,取代了復雜的機械掃描,儀器重量已小於二公斤,使用中如同手持攝像機一樣,單手即可方便地操作。 原理:紅外熱成像儀是根據凡是高於一切絕對零度(-273.15℃)以上的物體都有輻射紅外線的基本原理、利用目標和背景自身輻射紅外線的差異來發現和識別目標的儀器。
特點:由於各種物體紅外線輻射強度不同、從而使人、動物、車輛、飛機等清晰地被觀察到,而且不受煙、霧及樹木等障礙物的影響,白天和夜晚都能工作。是目前人類掌握的最先進的夜視觀測器材。但由於價格特別昂貴,目前只能被應用於軍事上,但由於熱成像的應用范圍非常廣泛、電力、地下管道、消防醫療、救災、工業檢測等方面都有巨大的市場,隨著社會經濟的發展、科學技術的進步、紅外熱成像這項高技術在二、三十年內必將大規模地應用於民間市場、為人類做出貢獻。
10國家標准
與紅外線相關的現行國家標准
GB/T 4333.10-1990 硅鐵化學分析方法紅外線吸收法測定碳量
GB/T 11261-2006 鋼鐵氧含量的測定脈沖加熱惰氣熔融-紅外線吸收法
GB/T 4702.14-1988 金屬鉻化學分析方法紅外線吸收法測定碳量
GB/T 5059.7-1988 鉬鐵化學分析方法紅外線吸收法測定碳量
GB 4706.85-2008 家用和類似用途電器的安全紫外線和紅外線輻射皮膚器具的特殊要求
GB/T 4699.6-2008 鉻鐵和硅鉻合金硫含量的測定紅外線吸收法和燃燒中和滴定法
GB/T 4701.10-2008 鈦鐵硫含量的測定紅外線吸收法和燃燒中和滴定法
GB/T 4699.4-2008 鉻鐵和硅鉻合金碳含量的測定紅外線吸收法和重量法
GB/T 5686.7-2008 錳鐵、錳硅合金、氮化錳鐵和金屬錳硫含量的測定紅外線吸收法和燃燒中和滴定法
GB/T 7731.12-2008 鎢鐵硫含量的測定紅外線吸收法和燃燒中和滴定法
GB/T 3654.6-2008 鈮鐵硫含量的測定燃燒碘量法、次甲基藍光度法和紅外線吸收法
GB/T 5686.5-2008 錳鐵、錳硅合金、氮化錳鐵和金屬錳碳含量的測定紅外線吸收法、氣體容量法、重量法和庫侖法
GB/T 4702.16-2008 金屬鉻硫含量的測定紅外線吸收法和燃燒中和滴定法
GB/T 5059.9-2008 鉬鐵硫含量的測定紅外線吸收法和燃燒碘量法
GB/T 8704.3-2009 釩鐵硫含量的測定紅外線吸收法及燃燒中和滴定法
GB/T 8704.1-2009 釩鐵碳含量的測定紅外線吸收法及氣體容量法
GB/T 4701.8-2009 鈦鐵碳含量的測定紅外線吸收法
GB/T 24224-2009 鉻礦石硫含量的測定燃燒-中和滴定法、燃燒-碘酸鉀滴定法和燃燒-紅外線吸收法
GB/T 23140-2009 紅外線燈泡
GB/T 24583.6-2009 釩氮合金硫含量的測定紅外線吸收法
GB/T 24583.4-2009 釩氮合金碳含量的測定紅外線吸收法
GB/T 24583.7-2009 釩氮合金氧含量的測定紅外線吸收法
GB/T 7731.10-1988 鎢鐵化學分析方法紅外線吸收法測定碳量
GB/T 25930-2010 紅外線氣體分析器試驗方法
GB/T 25929-2010 紅外線氣體分析器技術條件
GB/T 13193-1991 水質總有機碳(TOC) 的測定非色散紅外線吸收法
㈦ 有關克隆作文!求……
1996年7月里的一天,對英國愛丁堡羅斯林(Roslin)研究所由伊恩·維爾穆特(I. Wilmut)①領導的科學研究小組全體成員來講,是一個令人激動的日子。對全世界來說,也是值得慶賀的一天。因為在這一天,一隻妊娠了148天的震驚世界的小羊來到了這個世界。這只羊的身世與眾不同,它既無父親,又無母親,它是科學家們用「克隆技術」復制出來的一隻小綿羊。經過幾個月的精心呵護,這隻身世不凡的小綿羊茁壯成長,並獲得了一個動聽的名字——多莉(Dolly)。
克隆是英文clone的音譯,簡單講就是一種人工誘導的無性繁殖方式。但克隆與無性繁殖是不同的。無性繁殖是指不經過雌雄兩性生殖細胞的結合、只由一個生物體產生後代的生殖方式,常見的有孢子生殖、出芽生殖和分裂生殖。由植物的根、莖、葉等經過壓條或嫁接等方式產生新個體也叫無性繁殖。綿羊、猴子和牛等動物沒有人工操作是不能進行無性繁殖的。科學家把人工遺傳操作動物繁殖的過程叫克隆,這門生物技術叫克隆技術。
世界各大小媒體均對「克隆羊」 多莉產生的前前後後作了詳盡的報道,並在全世界范圍內引發了一場空前的「克隆技術」發展利弊討論。到底是利,還是弊?大家各持己見,互不相讓,可謂是「公說公有理,婆說婆有理」, 實在難說清楚孰是孰非。
不少人認為克隆技術發展將對整個人類社會,尤其是醫學界和生物學界帶來巨大的福音。而持反對意見的主要是那些社會倫理學家。他們認為克隆技術一旦推廣,那將是人類道德的淪喪。他們擔心,培植人類胚胎細胞的計劃最終將導致大量復制人類。當人類的繁衍不是靠自然的交配而生育,卻是靠高科技手段流水線作業式的定型復制,那麼人類還能叫自然人類嗎?地球又該用怎樣的方式來接納這批人類的復製品?
對於克隆問題十分關注的不只是科學家,普通百姓也加入了這場討論之中。
如果有人利用個體克隆技術來克隆人,那會給人類帶來無窮的災難,這說是為什麼許多國家的政府官員明令不準將動物的克隆技術用於人類。民眾對克隆人的看法如何呢? 美國廣播公司(ABC)曾做過一次民意測驗,結果表明:87%的人反對進行人的克隆,82%的人認為克隆人不符合人類的傳統倫理道德,93%的人反對復制自己,53%的人認為如果將人的克隆僅限於醫學目的還是可以的。因此,我們也必須遵循人類的共同法則,反對將羊的克隆技術濫用於人類。
在我看來,在克隆技術的不被用來克隆人類本身,而造成社會秩序混亂的前提下,它的發展還是利大於弊的。
就醫學界而言,現今全世界有成千上萬的人因為失去自身的器官而十分痛苦,克隆技術對於這些人來說,無疑是一大福音。試想,一個從小失明的人能在成年後重見光明,一個因交通事故失去雙手的人能重新「長」出一雙手來……如果克隆的研究獲得成功,白血病、帕金森病②、心臟病和癌症等疾病患者帶來生的希望。而且這種治療方法會最大程度地減少副作用的產生。
克隆技術的發展對生物學界也是有很大益處的。目前人類對自然界的各種生物乃至人類本身的了解還是十分有限的。如果能運用先進的克隆技術對某些生物進行研究,那麼將大大提高研究的效率,從而加快生物界乃至人類社會發展的進程。
刀,可以用來殺人,也可以用來救人,關鍵看它掌握在什麼人手中。「科學是一柄雙刃劍」,善良的人們可以利用它來為人類服務,為人類造福,而邪惡的人們卻能用它來危害人類的生存。任何科學技術的發展,都有利有弊,只要人類正確運用克隆技術,那麼它一定會有益於人類。如果我們只看到它的弊端,而畏縮不前,那麼人類社會就不會有發展,也不會有進步。我們不能因噎廢食,因為那樣只能使人類固步自封,這就是我們想看到的結果嗎?我堅信,只要能正確對待克隆技術,那麼人類一定會從中受益匪淺。
克隆一詞是英文單詞clone的音譯,作為名詞,c1one通常被意譯為無性繁殖系。同一克隆內所有成員的遺傳構成是完全相同的,例外僅見於有突變發生時。自然界早已存在天然植物、動物和微生物的克隆,例如:同卵雙胞胎實際上就是一種克隆。然而,天然的哺乳動物克隆的發生率極低,成員數目太少(一般為兩個),且缺乏目的性,所以很少能夠被用來為人類造福,因此,人們開始探索用人工的方法來生產高等動物克隆。這樣,克隆一詞就開始被用作動詞,指人工培育克隆動物這一動作。
目前,生產哺乳動物克隆的方法主要有胚胎分割和細胞核移植兩種。克隆羊"多莉",以及其後各國科學家培育的各種克隆動物,採用的都是細胞核移植技術。所謂細胞核移植,是指將不同發育時期的胚胎或成體動物的細胞核,經顯微手術和細胞融合方法移植到去核卵母細胞中,重新組成胚胎並使之發育成熟的過程。與胚胎分割技術不同,細胞核移植技術,特別是細胞核連續移植技術可以產生無限個遺傳相同的個體。由於細胞核移植是產生克隆動物的有效方法,故人們往往把它稱為動物克隆技術。
採用細胞核移植技術克隆動物的設想,最初由漢斯·施佩曼在1938年提出,他稱之為"奇異的實驗",即從發育到後期的胚胎(成熟或未成熟的胚胎均可)中取出細胞核,將其移植到一個卵子中。這一設想是現在克隆動物的基本途徑。
從1952年起,科學家們首先採用青蛙開展細胞核移植克隆實驗,先後獲得了蝌蚪和成體蛙。1963年,我國童第周教授領導的科研組,首先以金魚等為材料,研究了魚類胚胎細胞核移植技術,獲得成功。
哺乳動物胚胎細胞核移植研究的最初成果在1981年取得——卡爾·伊爾門澤和彼得·霍佩用鼠胚胎細胞培育出發育正常的小鼠。1984年,施特恩·維拉德森用取自羊的未成熟胚胎細胞克隆出一隻活產羊,其他人後來利用牛、豬、山羊、兔和獼猴等各種動物對他採用的實驗方法進行了重復實驗。1989年,維拉德森獲得連續移核二代的克隆牛。1994年,尼爾·菲爾斯特用發育到至少有120個細胞的晚期胚胎克隆牛。到1995年,在主要的哺乳動物中,胚胎細胞核移植都獲得成功,包括冷凍和體外生產的胚胎;對胚胎幹細胞或成體幹細胞的核移植實驗,也都做了嘗試。但到1995年為止,成體動物已分化細胞核移植一直未能取得成功。克隆簡介
自從 1997 年 2 月 23 日國外新聞媒介報導 ( 正式科學論文發表在 1997 年 2 月 27 日出版的《自然》雜志上 ) 蘇格蘭科學家利用體細胞培養克隆羊成功的消息後,在全世界引起了一陣沖擊波,我國著名遺傳學家吳昊教授稱之為「克隆風暴」。對於一項科學成果,反響如此之廣泛和強烈,從新聞界、科學界,到哲學、倫理界,再到政府部門和立法機構,一直到廣大公眾,無不對克隆技術表示關注。究竟何謂克隆,該項技術有何價值和意義,以及如何面對「克隆時代」,都成為人們討論的焦點。
一、克隆的概念
眾所周知,生物的繁衍是通過生殖完成的。生物的繁殖有兩種方式:一種叫有性生殖,一種叫無性生殖。
有性生殖是通過兩性生殖細胞 ( 精子和卵子 ) 的融合,並發育形成後代的生殖方式。無性生殖則不經過兩性生殖細胞的結合,而是由生物體自身的分裂生殖或其體細胞生長發育形成個體。無性生殖多見於植物與某些動物 ( 如單細胞動物與低等動物 ) 。
克隆是英文「 clone 」的音譯,來自希臘文 klon , 原意為苗或嫩枝,指以無性生殖或營養生殖的一些植物。隨著時間的推移和科學的發展,它的含義增加了許多內容,如一個細胞在體外培養下產生的一群細胞;由「親本」序列產生的 DNA 序列等等。概言之, 克隆是指由一個細胞或個體,通過無性繁殖手段,獲得遺傳上相同的細胞群或個體群。
我國古典名著《西遊記》里的孫悟空,只要拔撮毫毛吹口仙氣,就能「變」出許多孫悟空。因為拔一撮毫毛必須帶下一群細胞,這一群細胞就能培養出一群相同的孫大聖。這也歸屬於無性生殖。只不過孫大聖本領高強,能在瞬間「克隆」出千百個自己而已。簡而言之,克隆就是無性生殖,就是「復制」、「翻版」。
二、植物的克隆
無性生殖 ( 克隆 ) 本來是一種低級的生殖方式。生物進化的層次越低,越有可能採取這種生殖方式,進化層次越高,則越不可能採取這種生殖方式。由於低級生物,如微生物,採取自行分裂的方法繁殖,分裂後子代與親代的遺傳物質完全一樣,因此在這個意義上微生物沒有「個體」,它們也沒有死亡。雖然在嚴格的意義上,微生物的親代與子代仍然會有若干差異,因為它們的外界營養環境仍然會有差異,但從高等動物的角度看,這種差異似乎太微不足道了。在這種差異可以不計的條件下,人們可以說,對微生物來說,它們是不死的。死亡是生物進化到較高階段的產物。現在生物醫學研究中用克隆技術在體外培養的正常細胞或癌細胞,也稱為「永生細胞株」,意思也是說這些細胞是「不死的」。
生物醫學研究進入微觀層次,運用克隆技術來培養正常或異常細胞的永生細胞株,雖然是一件難度很大的工作,但已經在各國的科學界和醫學界越來越得到重視。在農業上,人們早已用插枝、壓條等方法,來繁殖適合於人類需要的植物。在畜牧業上,各國都在進行用克隆技術產生更多良種動物的研究。但從高等生物成體的體細胞中發育出一個成體,這是克隆技術的一個重大發展。
早在許多年前,美國康奈爾大學研究人員將成熟的胡蘿卜高速攪拌,獲得單個胡蘿卜細胞,然後將這些單個細胞置於生長培養基中,培養出遺傳上完全一樣的胡蘿卜。這個試驗證實了植物細胞全能性學說。所謂植物細胞全能性學說是指植物體的每一個細胞,包括體細胞,都具有發育成完整個體的潛能。
植物細胞全能性學說在植物界已經得到廣泛的證明。現在我們可以植物體的任何一種活的細胞、組織、器官,經過體外人工培養獲得它的完整植株,並產生許多植物。這種技術被稱為組織培養。它已用於工廠化生產花卉、作物 ( 如甘蔗 ) 的試管苗。
三、動物克隆的歷程
關於動物的無性生殖研究,一直是科學家探索的課題。因為人類通過有性生殖的方法,選育家畜品種已有上千年的歷史,結果是產生了一些優良的個體或群體。它們比一般的個體更能滿足人們的需要和願望。譬如,一頭產奶量特別高的奶牛,一群毛產量多的綿羊,一匹得獎的賽馬或一隻優秀的警犬。可是,有性生殖的後代,其性能不一定都同親代一樣,有的甚至不如親代。究其原因,因為卵子或精子只攜帶構成親代的、任意一半的等位基因,而等位基因幾乎可以有無限的組合,因而會產生不同的後代。兄弟、姊妹、兄妹、姊弟之間都有很大的差異,便是因為極難有完全相同的基因型。
所以通過有性生殖保持一種表現型是非常困難的。如果獲得一種理想的表現型如產奶量高的奶牛,再通過無性生殖保持、擴大和繁殖這種表現型,即生產許多遺傳上相同的個體,從經濟角度講顯然是很有價值的。
⒈卵細胞培養成成體
1951 ~ 1959 年,我國著名細胞生物學家朱冼等,用直徑 10 ~ 13um 的玻璃針刺激去卵膜的蟾蜍卵細胞,在世界上首次培養出 25 只蟾蜍成體,即沒有父親的癩蛤蟆。它們最長的可活 8 個月。
在上述試驗中用的是生殖細胞。體細胞能否通過培養獲得動物體呢?即植物細胞具有的全能性,動物細胞是否也具有?每個動物細胞,包括體細胞都具有該物種的全套基因是不容懷疑的,但從體細胞直接培養成動物成體至今尚未成功。為了證明動物細胞也具有全能性,生物學家進行了大量的細胞核移植試驗。
⒉細胞核移植試驗
1939 年,科學家首次在變形蟲中進行核移植試驗。他們將核移到同種去核變形蟲中,結果重組的變形蟲可生長,並繁殖後代。
1963 年起,我國著名生物學家童第周等進行了大量的魚類核移植試驗。其中 1980 年,他們將鯉魚囊胚期細胞核作供體核,鯽魚的未受精去核成熟卵細胞作受體質, 2.7% 的移核卵發育到成魚。鯉鯽移核魚的主要性狀與鯉魚相同,但脊椎骨的數目與鯽魚相同,而側鱗的數目介於這兩種魚之間。這種細胞工程魚生長速度比鯉魚快 22% ,現已在生產上大面積推廣。
1966 年,科學家用兩棲類非洲爪蟾進行核移植試驗。他們將蝌蚪的腸細胞的細胞核移入去核的卵細胞中,結果有 1.5% 的重組細胞發育成體。他們的試驗第一次證明了動物的體細胞也具有全能性,但在哺乳動物體細胞中尚未證明。
⒊用胚胎細胞克隆哺乳動物
1986 年,英國科學家用綿羊的 8 細胞胚胎細胞 ( 在 8 細胞胚胎之前的細胞才能表現全能性 ) 做供核細胞,羊的卵細胞做供質細胞,結果重組細胞能發育成羊成體,此後又相繼用胚胎細胞克隆出牛、鼠、兔、猴等動物。應該指出的是,該試驗並非復制雄性或雌性綿羊,而是復制它們的後代,因此試驗還存在一定的不足或缺陷。
在我國,用胚胎細胞克隆哺乳動物, 80 年代末已克隆出免; 1991 年西北農業大學和江蘇農學院克隆出羊; 1993 年中國科學院發育研究所與揚州大學農學院克隆出山羊; 1995 年華南師大和廣西農業大學克隆出牛。此外,湖南醫學院還克隆出鼠。但是,用胚胎細胞以外的體細胞克隆出哺乳動物,則是由英國科學家維爾穆特開創的。
四、「多莉」的誕生
「多莉」是世界上第一例用體細胞——乳腺上皮細胞,通過細胞核移植技術,在復雜的人工操作下,得到的一隻小綿羊。其操作過程是這樣的:
⒈從蘇格蘭黑臉母羊 ( 甲羊 ) 取出卵子,並把卵子的遺傳物質吸去,成為只有細胞質的卵子。
⒉從妊娠後期 3 個月的母羊 ( 乙羊 ) 取出乳腺上皮細胞, 在體外傳代培養 3 — 6 代,並用葯物處理控制細胞發育使之處於休止期。這是非常關鍵的一步。然後取休止期的細胞作為供體細胞。
⒊將一個供體細胞導入上述卵子的透明帶內腔。然後用電脈沖刺激,使供體細胞和卵子融合,形成重構卵。
⒋把重構卵移植到黑臉母羊 ( 羊丙 ) 的輸卵管里,此前將丙羊的輸卵管結扎,使胚胎不能進入子宮。丙羊起到活體培養胚胎的作用,稱為中間受體。
⒌重構卵移入丙羊輸卵管內 6 天後,從輸卵管沖出胚胎, 挑選正常發育到桑椹期和囊胚期的胚胎。
⒍將 1 — 3 個桑椹胚或囊胚,移植到蘇格蘭黑臉羊 ( 丁羊 ) 的子宮內。胚胎移植到子宮後 , 繼續發育 , 最後生出「多莉」。這只母羊稱為「代母」。
此項用了約 434 個卵子 , 獲得 277 個重構卵 , 移植到中間受體 6 天後,沖出 247 個胚胎 , 其中發育到桑椹胚和囊胚的 29 個 (11.7%) 。把 29 個胚胎移植給 13 只代母,最後生出 1 只「多莉」 , 產羔率僅為 3.4% 。若以重構卵數計算 , 產羔率低於 4 ‰。可見這一技術有待於完善。另外需要說明的是,克隆綿羊技術並沒有做到完全復制,去核卵細胞的細胞質也會含有少量遺傳物質,它對胚胎發育也能起重要甚至是決定性的作用。生物的遺傳是細胞核和細胞質共同作用的結果。細胞質基因也是 DNA 片段 , 其載體主要是一些細胞器,如質體、線粒體等。 細胞質基因在一定程度上是獨立的,一般不受核基因的干擾。與核基因相比盡管細胞核含有 99.9% 的遺傳信息,但個體的性狀表達仍然會受到卵細胞質的影響。因此,從理論上分析,「多莉」羊還不是完全復製品。由於「多莉」只是孤單的一個,所以有人認為,說「多莉」是一克隆動物,並不準確。雖然目前只獲得 1 只「多莉」, 但它是令世人矚目的重大科學成就。
五、克隆技術的意義及經濟價值
波瀾壯闊的人類歷史在很大程度上是由技術推動發展的:金屬製造和改良的農業使文明脫離了石器時代; 19 世紀的工業革命又導致了大機器和大城市的興起;到了 20 世紀,物理學戴上了王冠。物理學家們劈開原子,揭示了相對論和量子理論的奇妙世界,還開發利用了小小的矽片。他們通過原子彈、晶體管、激光和微型集成電路改變了世界。現在,許多專家相信,人類已經做好了用新的科技發展浪潮迎接未來的准備。正如 1996 年諾貝爾獎獲得者、美國賴斯大學的化學家羅伯特·柯爾所說:「現在是物理學和化學的世紀,但下世紀顯然將是生物學的世紀。」許多科學家認為,以克隆綿羊「多莉」誕生為標志,生物學世紀已經提前到來。
克隆技術的突破,引起世人的震驚。人們擔心的是人類的自我復制,而往往忽視了其他方面的應用和意義。其實,它在基礎生命科學、醫學、家業科學研究與生產中,具有重大的理論價值和廣泛的應用前景,並存在著巨大的潛在經濟效益。在未來的 5 ~ 20 年, 將逐步形成和引起一場世界范圍內新的生物技術產業革命。
⒈在基礎生命科學方面,由以往進行基因功能研究主要在小鼠等少數動物身上進行到現在在多種動物身上均可得到實現,這有利於更加清晰地揭示基因功能和生命的本質;提供研究哺乳動物細胞發育全能性及核質關系最有效的手段之一;還可以克隆各種瀕危動物,如國寶大熊貓、金絲猴甚至白鰭豚等。
⒉在醫學科學方面,可以為醫學科學研究提供核基因型完全一致的實驗動物,這有利於醫學家研究目前尚未找到有效治療方 法的疾病,並揭示發病機制;對其進行去分化機制的研究,有助於抗衰老及其機制的研究。
⒊在農業科學方面,可快速培育和擴繁抗病力強、生產性能高的優良動物;可以研究動物的發病機理,尋求新的有效治療葯物。
六、如何迎接「克隆時代」的挑戰
克隆技術的成功,標志著「復制」哺乳動物的最後技術障礙已被突破。隨之而來,在理論上復制人類已成為可能。所以,克隆技術不僅給我們帶來了益處,也向人類提出了嚴峻的挑戰。這一技術一旦應用於人類,將會對人類社會產生極其嚴重的後果。
⒈人類從有性生殖回到了無性生殖,無疑是一個巨大的倒退。
⒉「克隆人」沒有父母,沒有親情,社會將會變得冷酷無情。
⒊「克隆人」成年後也有可能會通過有性繁殖來繁衍後代,不知不覺地就可能造成大量的近親結婚,其後果是不堪設想的。
⒋從社會學的觀點看,人類之所以能不斷發展進步,是靠每個人的不斷努力和奮斗,這種力量的來源除了個人的理想外,就是人們對社會、對家庭的義務,如果沒有贍養老人和撫育下一代的義務,這種力量就會大大地減少,對整個社會的發展也是不利的。
⒌科學家的「復製品」不一定能成為科學家。人的成才除了先天的原因外,後天因素也起著重要的作用。如果這些「復製品」都背上科學家的「包袱」,而不努力學習,社會豈不倒退了嗎?再者,如果有人為了報復社會,大量地克隆弱智人,社會將怎麼辦?如果有人瘋狂地「復制」像希特勒那樣的狂人,加以後天的「培養」,更讓人毛骨聳然……
從克隆綿羊的誕生,使我們想起了 1905 年科學巨匠愛因斯坦提出的能量關系式,預示了原子核內蘊藏著巨大的能量,他萬萬沒有想到這一理論成為了製造原子彈的重要理論。如果克隆技術應用於人類,將是生物界的一個大倒退。因此,我們認為,科學家進行科學研究是無罪的,問題是怎樣應用它。
我們應該「揚長避短」,積極利用克隆技術對人類有益的一面,造福於人類。同時,各國政府應加強立法,加強監管,禁止將克隆技術應用於人類,這樣才能避免人間悲劇的發生。
總之,一次新的技術的產生與成熟,必將會帶來新的挑戰與問題。隨著道德法律的完善,人們終將使之得到良好的應用。
克隆技術在不斷進步,例如「克隆牛」「克隆鼠」「克隆猴」等研究相繼取得巨大成功。但是對於克隆技術一直以來都頗有爭議。任何科學技術的發展,都有利有弊關鍵在於我們要正確運用它。
關鍵詞:克隆(clone)技術、發展進步、道德倫理
1996年7月里的一天,對英國愛丁堡羅斯林(Roslin)研究所由伊恩·維爾穆特(I. Wilmut)①領導的科學研究小組全體成員來講,是一個令人激動的日子。對全世界來說,也是值得慶賀的一天。因為在這一天,一隻妊娠了148天的震驚世界的小羊來到了這個世界。這只羊的身世與眾不同,它既無父親,又無母親,它是科學家們用「克隆技術」復制出來的一隻小綿羊。經過幾個月的精心呵護,這隻身世不凡的小綿羊茁壯成長,並獲得了一個動聽的名字——多莉(Dolly)。
克隆是英文clone的音譯,簡單講就是一種人工誘導的無性繁殖方式。但克隆與無性繁殖是不同的。無性繁殖是指不經過雌雄兩性生殖細胞的結合、只由一個生物體產生後代的生殖方式,常見的有孢子生殖、出芽生殖和分裂生殖。由植物的根、莖、葉等經過壓條或嫁接等方式產生新個體也叫無性繁殖。綿羊、猴子和牛等動物沒有人工操作是不能進行無性繁殖的。科學家把人工遺傳操作動物繁殖的過程叫克隆,這門生物技術叫克隆技術。
世界各大小媒體均對「克隆羊」 多莉產生的前前後後作了詳盡的報道,並在全世界范圍內引發了一場空前的「克隆技術」發展利弊討論。到底是利,還是弊?大家各持己見,互不相讓,可謂是「公說公有理,婆說婆有理」,實在難說清楚孰是孰非。
不少人認為克隆技術發展將對整個人類社會,尤其是醫學界和生物學界帶來巨大的福音。而持反對意見的主要是那些社會倫理學家。他們認為克隆技術一旦推廣,那將是人類道德的淪喪。他們擔心,培植人類胚胎細胞的計劃最終將導致大量復制人類。當人類的繁衍不是靠自然的交配而生育,卻是靠高科技手段流水線作業式的定型復制,那麼人類還能叫自然人類嗎?地球又該用怎樣的方式來接納這批人類的復製品?
對於克隆問題十分關注的不只是科學家,普通百姓也加入了這場討論之中。
反方:如果有人利用個體克隆技術來克隆人,那會給人類帶來無窮的災難,這說是為什麼許多國家的政府官員明令不準將動物的克隆技術用於人類。民眾對克隆人的看法如何呢? 美國廣播公司(ABC)曾做過一次民意測驗,結果表明:87%的人反對進行人的克隆,82%的人認為克隆人不符合人類的傳統倫理道德,93%的人反對復制自己,53%的人認為如果將人的克隆僅限於醫學目的還是可以的。因此,我們也必須遵循人類的共同法則,反對將羊的克隆技術濫用於人類。
在我看來,在克隆技術的不被用來克隆人類本身,而造成社會秩序混亂的前提下,它的發展還是利大於弊的。
正方: 就醫學界而言,現今全世界有成千上萬的人因為失去自身的器官而十分痛苦,克隆技術對於這些人來說,無疑是一大福音。試想,一個從小失明的人能在成年後重見光明,一個因交通事故失去雙手的人能重新「長」出一雙手來……如果克隆的研究獲得成功,白血病、帕金森病②、心臟病和癌症等疾病患者帶來生的希望。而且這種治療方法會最大程度地減少副作用的產生。
克隆技術的發展對生物學界也是有很大益處的。目前人類對自然界的各種生物乃至人類本身的了解還是十分有限的。如果能運用先進的克隆技術對某些生物進行研究,那麼將大大提高研究的效率,從而加快生物界乃至人類社會發展的進程。
白:
刀,可以用來殺人,也可以用來救人,關鍵看它掌握在什麼人手中。「科學是一柄雙刃劍」,善良的人們可以利用它來為人類服務,為人類造福,而邪惡的人們卻能用它來危害人類的生存。任何科學技術的發展,都有利有弊,只要人類正確運用克隆技術,那麼它一定會有益於人類。如果我們只看到它的弊端,而畏縮不前,那麼人類社會就不會有發展,也不會有進步。我們不能因噎廢食,因為那樣只能使人類固步自封,這就是我們想看到的結果嗎?我堅信,只要能正確對待克隆技術,那麼人類一定會從中受益匪淺。
㈧ 關於克隆的資料
關於克隆的資料
克隆是英文clone的音譯,簡單講就是一種人工誘導的無性繁殖方式。但克隆與無性繁殖是不同的。無性繁殖是指不經過雌雄兩性生殖細胞的結合、只由一個生物體產生後代的生殖方式,常見的有孢子生殖、出芽生殖和分裂生殖。由植物的根、莖、葉等經過壓條或嫁接等方式產生新個體也叫無性繁殖。綿羊、猴子和牛等動物沒有人工操作是不能進行無性繁殖的。科學家把人工遺傳操作動物繁殖的過程叫克隆,這門生物技術叫克隆技術。
克隆的基本過程是先將含有遺傳物質的供體細胞的核移植到去除了細胞核的卵細胞中,利用微電流刺激等使兩者融合為一體,然後促使這一新細胞分裂繁殖發育成胚胎,當胚胎發育到一定程度後,再被植入動物子宮中使動物懷孕,便可產下與提供細胞者基因相同的動物。這一過程中如果對供體細胞進行基因改造,那麼無性繁殖的動物後代基因就會發生相同的變化。
克隆技術不需要雌雄交配,不需要精子和卵子的結合,只需從動物身上提取一個單細胞,用人工的方法將其培養成胚胎,再將胚胎植入雌性動物體內,就可孕育出新的個體。這種以單細胞培養出來的克隆動物,具有與單細胞供體完全相同的特徵,是單細胞供體的「復製品」。英國英格蘭科學家和美國俄勒岡科學家先後培養出了「克隆羊」和「克隆猴」。克隆技術的成功,被人們稱為「歷史性的事件,科學的創舉」。有人甚至認為,克隆技術可以同當年原子彈的問世相提並論。
克隆技術可以用來生產「克隆人」,可以用來「復制」人,因而引起了全世界的廣泛關注。對人類來說,克隆技術是悲是喜,是禍是福?唯物辯證法認為,世界上的任何事物都是矛盾的統一體,都是一分為二的。克隆技術也是這樣。如果克隆技術被用於「復制」像希特勒之類的戰爭狂人,那會給人類社會帶來什麼呢?即使是用於「復制」普通的人,也會帶來一系列的倫理道德問題。如果把克隆技術應用於畜牧業生產,將會使優良牲畜品種的培育與繁殖發生根本性的變革。若將克隆技術用於基因治療的研究,就極有可能攻克那些危及人類生命健康的癌症、艾滋病等頑疾。克隆技術猶如原子能技術,是一把雙刃劍,劍柄掌握在人類手中。人類應該採取聯合行動,避免「克隆人」的出現,使克隆技術造福於人類社會。
克隆技術研究現狀
一、克隆的早期研究
克隆一詞是英文單詞clone的音譯,作為名詞,c1one通常被意譯為無性繁殖系。同一克隆內所有成員的遺傳構成是完全相同的,例外僅見於有突變發生時。自然界早已存在天然植物、動物和微生物的克隆,例如:同卵雙胞胎實際上就是一種克隆。然而,天然的哺乳動物克隆的發生率極低,成員數目太少(一般為兩個),且缺乏目的性,所以很少能夠被用來為人類造福,因此,人們開始探索用人工的方法來生產高等動物克隆。這樣,克隆一詞就開始被用作動詞,指人工培育克隆動物這一動作。
目前,生產哺乳動物克隆的方法主要有胚胎分割和細胞核移植兩種。克隆羊「多莉」,以及其後各國科學家培育的各種克隆動物,採用的都是細胞核移植技術。所謂細胞核移植,是指將不同發育時期的胚胎或成體動物的細胞核,經顯微手術和細胞融合方法移植到去核卵母細胞中,重新組成胚胎並使之發育成熟的過程。與胚胎分割技術不同,細胞核移植技術,特別是細胞核連續移植技術可以產生無限個遺傳相同的個體。由於細胞核移植是產生克隆動物的有效方法,故人們往往把它稱為動物克隆技術。
採用細胞核移植技術克隆動物的設想,最初由漢斯·施佩曼在1938年提出,他稱之為「奇異的實驗」,即從發育到後期的胚胎(成熟或未成熟的胚胎均可)中取出細胞核,將其移植到一個卵子中。這一設想是現在克隆動物的基本途徑。
從1952年起,科學家們首先採用青蛙開展細胞核移植克隆實驗,先後獲得了蝌蚪和成體蛙。1963年,我國童第周教授領導的科研組,首先以金魚等為材料,研究了魚類胚胎細胞核移植技術,獲得成功。
哺乳動物胚胎細胞核移植研究的最初成果在1981年取得——卡爾·伊爾門澤和彼得·霍佩用鼠胚胎細胞培育出發育正常的小鼠。1984年,施特恩·維拉德森用取自羊的未成熟胚胎細胞克隆出一隻活產羊,其他人後來利用牛、豬、山羊、兔和獼猴等各種動物對他採用的實驗方法進行了重復實驗。1989年,維拉德森獲得連續移核二代的克隆牛。1994年,尼爾·菲爾斯特用發育到至少有120個細胞的晚期胚胎克隆牛。到1995年,在主要的哺乳動物中,胚胎細胞核移植都獲得成功,包括冷凍和體外生產的胚胎;對胚胎幹細胞或成體幹細胞的核移植實驗,也都做了嘗試。但到1995年為止,成體動物已分化細胞核移植一直未能取得成功。
二、克隆羊「多莉」的意義和引起的反響
以上事實說明,在1997年2月英國羅斯林研究所維爾穆特博士科研組公布體細胞克隆羊「多莉」培育成功之前,胚胎細胞核移植技術已經有了很大的發展。實際上,「多莉」的克隆在核移植技術上沿襲了胚胎細胞核移植的全部過程,但這並不能減低「多莉」的重大意義,因為它是世界上第一例經體細胞核移植出生的動物,是克隆技術領域研究的巨大突破。這一巨大進展意味著:在理論上證明了,同植物細胞一樣,分化了的動物細胞核也具有全能性,在分化過程中細胞核中的遺傳物質沒有不可逆變化;在實踐上證明了,利用體細胞進行動物克隆的技術是可行的,將有無數相同的細胞可用來作為供體進行核移植,並且在與卵細胞相融合前可對這些供體細胞進行一系列復雜的遺傳操作,從而為大規模復制動物優良品種和生產轉基因動物提供了有效方法。
在理論上,利用同樣方法,人可以復制「克隆人」,這意味著以往科幻小說中的獨裁狂人克隆自己的想法是完全可以實現的。因此,「多莉」的誕生在世界各國科學界、政界乃至宗教界都引起了強烈反響,並引發了一場由克隆人所衍生的道德問題的討論。各國政府有關人士、民間紛紛作出反應:克隆人類有悖於倫理道德。盡管如此,克隆技術的巨大理論意義和實用價值促使科學家們加快了研究的步伐,從而使動物克隆技術的研究與開發進入一個高潮。
三、近3年來克隆研究的重要成果
克隆羊「多莉」的誕生在全世界掀起了克隆研究熱潮,隨後,有關克隆動物的報道接連不斷。1997年3月,即「多莉」誕生後1個月,美國、中國台灣和澳大利亞科學家分別發表了他們成功克隆猴子、豬和牛的消息。不過,他們都是採用胚胎細胞進行克隆,其意義不能與「多莉」相比。同年7月,羅斯林研究所和PPL公司宣布用基因改造過的胎兒成纖維細胞克隆出世界上第一頭帶有人類基因的轉基因綿羊「波莉」(Polly)。這一成果顯示了克隆技術在培育轉基因動物方面的巨大應用價值。
1998年7月,美國夏威夷大學Wakayama等報道,由小鼠卵丘細胞克隆了27隻成活小鼠,其中7隻是由克隆小鼠再次克隆的後代,這是繼「多莉」以後的第二批哺乳動物體細胞核移植後代。此外,Wakayama等人採用了與「多莉」不同的、新的、相對簡單的且成功率較高的克隆技術,這一技術以該大學所在地而命名為「檀香山技術」。
此後,美國、法國、荷蘭和韓國等國科學家也相繼報道了體細胞克隆牛成功的消息;日本科學家的研究熱情尤為驚人,1998年7月至1999年4月,東京農業大學、近畿大學、家畜改良事業團、地方(石川縣、大分縣和鹿兒島縣等)家畜試驗場以及民間企業(如日本最大的奶商品公司雪印乳業等)紛紛報道了,他們採用牛耳部、臀部肌肉、卵丘細胞以及初乳中提取的乳腺細胞克隆牛的成果。至1999年底,全世界已有6種類型細胞——胎兒成纖維細胞、乳腺細胞、卵丘細胞、輸卵管/子宮上皮細胞、肌肉細胞和耳部皮膚細胞的體細胞克隆後代成功誕生。
2000年6月,中國西北農林科技大學利用成年山羊體細胞克隆出兩只「克隆羊」,但其中一隻因呼吸系統發育不良而早夭。據介紹,所採用的克隆技術為該研究組自己研究所得,與克隆「多莉」的技術完全不同,這表明我國科學家也掌握了體細胞克隆的尖端技術。
在不同種間進行細胞核移植實驗也取得了一些可喜成果,1998年1月,美國威斯康星一麥迪遜大學的科學家們以牛的卵子為受體,成功克隆出豬、牛、羊、鼠和獼猴五種哺乳動物的胚胎,這一研究結果表明,某個物種的未受精卵可以同取自多種動物的成熟細胞核相結合。雖然這些胚胎都流產了,但它對異種克隆的可能性作了有益的嘗試。1999年,美國科學家用牛卵子克隆出珍稀動物盤羊的胚胎;我國科學家也用兔卵子克隆了大熊貓的早期胚胎,這些成果說明克隆技術有可能成為保護和拯救瀕危動物的一條新途徑。
四、克隆技術的應用前景
克隆技術已展示出廣闊的應用前景,概括起來大致有以下四個方面:(1)培育優良畜種和生產實驗動物;(2)生產轉基因動物;(3)生產人胚胎幹細胞用於細胞和組織替代療法;(4)復制瀕危的動物物種,保存和傳播動物物種資源。以下就生產轉基因動物和胚胎幹細胞作簡要說明。
轉基因動物研究是動物生物工程領域中最誘人和最有發展前景的課題之一,轉基因動物可作為醫用器官移植的供體、作為生物反應器,以及用於家畜遺傳改良、創建疾病實驗模型等。但目前轉基因動物的實際應用並不多,除單一基因修飾的轉基因小鼠醫學模型較早得到應用外,轉基因動物乳腺生物反應器生產葯物蛋白的研究時間較長,已進行了10多年,但目前在全世界范圍內僅有2例葯品進入3期臨床試驗,5~6個葯品進入2期臨床試驗;而其農藝性狀發生改良、可資畜牧生產應用的轉基因家畜品系至今沒有誕生。轉基因動物製作效率低、定點整合困難所導致的成本過高和調控失靈,以及轉基因動物有性繁殖後代遺傳性狀出現分離、難以保持始祖的優良勝狀,是制約當今轉基因動物實用化進程的主要原因。
體細胞克隆的成功為轉基因動物生產掀起一場新的革命,動物體細胞克隆技術為迅速放大轉基因動物所產生的種質創新效果提供了技術可能。採用簡便的體細胞轉染技術實施目標基因的轉移,可以避免家畜生殖細胞來源困難和低效率。同時,採用轉基因體細胞系,可以在實驗室條件下進行轉基因整合預檢和性別預選。在核移植前,先把目的外源基因和標記基因(如LagZ基因和新黴素抗生基因)的融合基因導入培養的體細胞中,再通過標記基因的表現來篩選轉基因陽性細胞及其克隆,然後把此陽性細胞的核移植到去核卵母細胞中,最後生產出的動物在理論上應是100%的陽性轉基因動物。採用此法,Schnieke等(Bio Report,1997)已成功獲得6隻轉基因綿羊,其中3隻帶有人凝血因子IX基因和標記基因(新黴素抗性基因),3隻帶有標記基因,目的外源基因整合率高達50%。Cibelli(Science,1997)同樣利用核移植法獲得3頭轉基因牛,證實了該法的有效性。由此可以看出,當今動物克隆技術最重要的應用方向之一,就是高附加值轉基因克隆動物的研究開發。
胚胎幹細胞(ES)是具有形成所有成年細胞類型潛力的全能幹細胞。科學家們一直試圖誘導各種幹細胞定向分化為特定的組織類型,來替代那些受損的體內組織,比如把產生胰島素的細胞植入糖尿病患者體內。科學家們已經能夠使豬ES細胞轉變為跳動的心肌細胞,使人ES細胞生成神經細胞和間充質細胞和使小鼠ES細胞分化為內胚層細胞。這些結果為細胞和組織替代療法開辟了道路。目前,科學家已成功分離到人ES細胞(Thomson等1998,Science),而體細胞克隆技術為生產患者自身的ES細胞提供了可能。把患者體細胞移植到去核卵母細胞中形成重組胚,把重組胚體外培養到囊胚,然後從囊胚內分離出ES細胞,獲得的ES細胞使之定向分化為所需的特定細胞類型(如神經細胞,肌肉細胞和血細胞),用於替代療法。這種核移植法的最終目的是用於幹細胞治療,而非得到克隆個體,科學家們稱之為「治療克隆」。
克隆技術在基礎研究中的應用也是很有意義的,它為研究配子和胚胎發生,細胞和組織分化,基因表達調控,核質互作等機理提供了工具。
五、克隆技術存在的問題
盡管克隆技術有著廣泛的應用前景,但離產業化尚有很大距離。因為作為一個新興的研究領域,克隆技術在理論和技術上都還很不成熟,在理論上,分化的體細胞克隆對遺傳物質重編(細胞核內所有或大部分基因關閉,細胞重新恢復全能性的過程)的機理還不清楚;克隆動物是否會記住供體細胞的年齡,克隆動物的連續後代是否會累積突變基因,以及在克隆過程中胞質線粒體所起的遺傳作用等問題還沒有解決。
在實踐中,克隆動物的成功率還很低,維爾穆特研究組在培育「多莉「的實驗中,融合了277枚移植核的卵細胞,僅獲得了「多莉」這一隻成活羔羊,成功率只有0.36%,同時進行的胎兒成纖維細胞和胚胎細胞的克隆實驗的成功率也分別只有1.7%和1.1%,即使是使用「檀香山」技術,以分化程度較低的卵丘細胞為核供體,其成功率也只有百分之幾。
此外,生出的部分個體表現出生理或免疫缺限。以克隆牛為例,日本、法國等國培育的許多克隆牛在降生後兩個月內死去;到2000年2月,日本全國已共有121頭體細胞克隆牛誕生,但存活的只有64頭。觀察結果表明,部分犢牛胎盤功能不完善,其血液中含氧量及生長因子的濃度都低於正常水平;有些牛犢的胸腺、脾和淋巴腺未得到正常發育;克隆動物胎兒普遍存在比一般動物發育快的傾向,這些都可能是死亡的原因。
即使是正常發育的「多莉」,也被發現有早衰跡象。染色體的未端被稱為端粒,它決定著細胞能夠分裂的次數:每一次分裂端粒都會縮短,而當端粒耗盡後細胞就失去了分裂能力。1998年,科學家發現「多莉」的細胞端粒比正常的要短,即其細胞處於更衰老的狀態。當時認為,這可能是用成年綿羊的細胞克隆「多莉」造成的,使其細胞具有成年細胞的印記,但這一解釋目前受到了挑戰,美國馬薩諸塞州的醫生羅伯特·蘭扎等用培養的衰老細胞克隆牛,得到6頭小牛,出生5~10個月後發現這些克隆牛的端粒比普通同齡小牛要長,有的甚至比普通新生小牛的端粒還長。現在還不清楚這一現象的原因,也不清楚為何與「多莉「的情況有巨大差別。但這一實驗說明,在一些情況下克隆過程能改變成熟細胞的分子鍾,使其「恢復青春」,關於這種變化對克隆動物壽命的影響,還有待於進一步觀察。
除了以上的理論和技術障礙外,克隆技術(尤其是在人胚胎方面的應用)對倫理道德的沖擊和公眾對此的強烈反應也限制了克隆技術的應用。但幾年來克隆技術的發展表明,世界各科技大國都不甘落後,誰也沒有放棄克隆技術研究。這一點上英國政府的態度非常具有代表性,在1997年2月底宣布中止對「多莉」研究小組投資後不到1個月,英國科技委員會就對克隆技術發表專題報告,表明英國政府將重新考慮這一決定,認為盲目禁止這方面的研究並不是明智之舉,關鍵在於建立一定的規范利用它為人類造福。
回答者:督☆督 - 試用期 一級 3-7 20:59
一、克隆的概念
眾所周知,生物的繁衍是通過生殖完成的。生物的繁殖有兩種方式:一種叫有性生殖,一種叫無性生殖。
有性生殖是通過兩性生殖細胞 ( 精子和卵子 ) 的融合,並發育形成後代的生殖方式。無性生殖則不經過兩性生殖細胞的結合,而是由生物體自身的分裂生殖或其體細胞生長發育形成個體。無性生殖多見於植物與某些動物 ( 如單細胞動物與低等動物 ) 。
克隆是英文「 clone 」的音譯,來自希臘文 klon , 原意為苗或嫩枝,指以無性生殖或營養生殖的一些植物。隨著時間的推移和科學的發展,它的含義增加了許多內容,如一個細胞在體外培養下產生的一群細胞;由「親本」序列產生的 DNA 序列等等。概言之, 克隆是指由一個細胞或個體,通過無性繁殖手段,獲得遺傳上相同的細胞群或個體群。
我國古典名著《西遊記》里的孫悟空,只要拔撮毫毛吹口仙氣,就能「變」出許多孫悟空。因為拔一撮毫毛必須帶下一群細胞,這一群細胞就能培養出一群相同的孫大聖。這也歸屬於無性生殖。只不過孫大聖本領高強,能在瞬間「克隆」出千百個自己而已。簡而言之,克隆就是無性生殖,就是「復制」、「翻版」。
二、植物的克隆
無性生殖 ( 克隆 ) 本來是一種低級的生殖方式。生物進化的層次越低,越有可能採取這種生殖方式,進化層次越高,則越不可能採取這種生殖方式。由於低級生物,如微生物,採取自行分裂的方法繁殖,分裂後子代與親代的遺傳物質完全一樣,因此在這個意義上微生物沒有「個體」,它們也沒有死亡。雖然在嚴格的意義上,微生物的親代與子代仍然會有若干差異,因為它們的外界營養環境仍然會有差異,但從高等動物的角度看,這種差異似乎太微不足道了。在這種差異可以不計的條件下,人們可以說,對微生物來說,它們是不死的。死亡是生物進化到較高階段的產物。現在生物醫學研究中用克隆技術在體外培養的正常細胞或癌細胞,也稱為「永生細胞株」,意思也是說這些細胞是「不死的」。
生物醫學研究進入微觀層次,運用克隆技術來培養正常或異常細胞的永生細胞株,雖然是一件難度很大的工作,但已經在各國的科學界和醫學界越來越得到重視。在農業上,人們早已用插枝、壓條等方法,來繁殖適合於人類需要的植物。在畜牧業上,各國都在進行用克隆技術產生更多良種動物的研究。但從高等生物成體的體細胞中發育出一個成體,這是克隆技術的一個重大發展。
早在許多年前,美國康奈爾大學研究人員將成熟的胡蘿卜高速攪拌,獲得單個胡蘿卜細胞,然後將這些單個細胞置於生長培養基中,培養出遺傳上完全一樣的胡蘿卜。這個試驗證實了植物細胞全能性學說。所謂植物細胞全能性學說是指植物體的每一個細胞,包括體細胞,都具有發育成完整個體的潛能。
植物細胞全能性學說在植物界已經得到廣泛的證明。現在我們可以植物體的任何一種活的細胞、組織、器官,經過體外人工培養獲得它的完整植株,並產生許多植物。這種技術被稱為組織培養。它已用於工廠化生產花卉、作物 ( 如甘蔗 ) 的試管苗。
三、動物克隆的歷程
關於動物的無性生殖研究,一直是科學家探索的課題。因為人類通過有性生殖的方法,選育家畜品種已有上千年的歷史,結果是產生了一些優良的個體或群體。它們比一般的個體更能滿足人們的需要和願望。譬如,一頭產奶量特別高的奶牛,一群毛產量多的綿羊,一匹得獎的賽馬或一隻優秀的警犬。可是,有性生殖的後代,其性能不一定都同親代一樣,有的甚至不如親代。究其原因,因為卵子或精子只攜帶構成親代的、任意一半的等位基因,而等位基因幾乎可以有無限的組合,因而會產生不同的後代。兄弟、姊妹、兄妹、姊弟之間都有很大的差異,便是因為極難有完全相同的基因型。
所以通過有性生殖保持一種表現型是非常困難的。如果獲得一種理想的表現型如產奶量高的奶牛,再通過無性生殖保持、擴大和繁殖這種表現型,即生產許多遺傳上相同的個體,從經濟角度講顯然是很有價值的。
⒈卵細胞培養成成體
1951 ~ 1959 年,我國著名細胞生物學家朱冼等,用直徑 10 ~ 13um 的玻璃針刺激去卵膜的蟾蜍卵細胞,在世界上首次培養出 25 只蟾蜍成體,即沒有父親的癩蛤蟆。它們最長的可活 8 個月。
在上述試驗中用的是生殖細胞。體細胞能否通過培養獲得動物體呢?即植物細胞具有的全能性,動物細胞是否也具有?每個動物細胞,包括體細胞都具有該物種的全套基因是不容懷疑的,但從體細胞直接培養成動物成體至今尚未成功。為了證明動物細胞也具有全能性,生物學家進行了大量的細胞核移植試驗。
⒉細胞核移植試驗
1939 年,科學家首次在變形蟲中進行核移植試驗。他們將核移到同種去核變形蟲中,結果重組的變形蟲可生長,並繁殖後代。
1963 年起,我國著名生物學家童第周等進行了大量的魚類核移植試驗。其中 1980 年,他們將鯉魚囊胚期細胞核作供體核,鯽魚的未受精去核成熟卵細胞作受體質, 2.7% 的移核卵發育到成魚。鯉鯽移核魚的主要性狀與鯉魚相同,但脊椎骨的數目與鯽魚相同,而側鱗的數目介於這兩種魚之間。這種細胞工程魚生長速度比鯉魚快 22% ,現已在生產上大面積推廣。
1966 年,科學家用兩棲類非洲爪蟾進行核移植試驗。他們將蝌蚪的腸細胞的細胞核移入去核的卵細胞中,結果有 1.5% 的重組細胞發育成體。他們的試驗第一次證明了動物的體細胞也具有全能性,但在哺乳動物體細胞中尚未證明。
⒊用胚胎細胞克隆哺乳動物
1986 年,英國科學家用綿羊的 8 細胞胚胎細胞 ( 在 8 細胞胚胎之前的細胞才能表現全能性 ) 做供核細胞,羊的卵細胞做供質細胞,結果重組細胞能發育成羊成體,此後又相繼用胚胎細胞克隆出牛、鼠、兔、猴等動物。應該指出的是,該試驗並非復制雄性或雌性綿羊,而是復制它們的後代,因此試驗還存在一定的不足或缺陷。
在我國,用胚胎細胞克隆哺乳動物, 80 年代末已克隆出免; 1991 年西北農業大學和江蘇農學院克隆出羊; 1993 年中國科學院發育研究所與揚州大學農學院克隆出山羊; 1995 年華南師大和廣西農業大學克隆出牛。此外,湖南醫學院還克隆出鼠。但是,用胚胎細胞以外的體細胞克隆出哺乳動物,則是由英國科學家維爾穆特開創的。
四、「多莉」的誕生
「多莉」是世界上第一例用體細胞——乳腺上皮細胞,通過細胞核移植技術,在復雜的人工操作下,得到的一隻小綿羊。其操作過程是這樣的:
⒈從蘇格蘭黑臉母羊 ( 甲羊 ) 取出卵子,並把卵子的遺傳物質吸去,成為只有細胞質的卵子。
⒉從妊娠後期 3 個月的母羊 ( 乙羊 ) 取出乳腺上皮細胞, 在體外傳代培養 3 — 6 代,並用葯物處理控制細胞發育使之處於休止期。這是非常關鍵的一步。然後取休止期的細胞作為供體細胞。
⒊將一個供體細胞導入上述卵子的透明帶內腔。然後用電脈沖刺激,使供體細胞和卵子融合,形成重構卵。
⒋把重構卵移植到黑臉母羊 ( 羊丙 ) 的輸卵管里,此前將丙羊的輸卵管結扎,使胚胎不能進入子宮。丙羊起到活體培養胚胎的作用,稱為中間受體。
⒌重構卵移入丙羊輸卵管內 6 天後,從輸卵管沖出胚胎, 挑選正常發育到桑椹期和囊胚期的胚胎。
⒍將 1 — 3 個桑椹胚或囊胚,移植到蘇格蘭黑臉羊 ( 丁羊 ) 的子宮內。胚胎移植到子宮後 , 繼續發育 , 最後生出「多莉」。這只母羊稱為「代母」。
此項用了約 434 個卵子 , 獲得 277 個重構卵 , 移植到中間受體 6 天後,沖出 247 個胚胎 , 其中發育到桑椹胚和囊胚的 29 個 (11.7%) 。把 29 個胚胎移植給 13 只代母,最後生出 1 只「多莉」 , 產羔率僅為 3.4% 。若以重構卵數計算 , 產羔率低於 4 ‰。可見這一技術有待於完善。另外需要說明的是,克隆綿羊技術並沒有做到完全復制,去核卵細胞的細胞質也會含有少量遺傳物質,它對胚胎發育也能起重要甚至是決定性的作用。生物的遺傳是細胞核和細胞質共同作用的結果。細胞質基因也是 DNA 片段 , 其載體主要是一些細胞器,如質體、線粒體等。 細胞質基因在一定程度上是獨立的,一般不受核基因的干擾。與核基因相比盡管細胞核含有 99.9% 的遺傳信息,但個體的性狀表達仍然會受到卵細胞質的影響。因此,從理論上分析,「多莉」羊還不是完全復製品。由於「多莉」只是孤單的一個,所以有人認為,說「多莉」是一克隆動物,並不準確。雖然目前只獲得 1 只「多莉」, 但它是令世人矚目的重大科學成就。
五、克隆技術的意義及經濟價值
波瀾壯闊的人類歷史在很大程度上是由技術推動發展的:金屬製造和改良的農業使文明脫離了石器時代; 19 世紀的工業革命又導致了大機器和大城市的興起;到了 20 世紀,物理學戴上了王冠。物理學家們劈開原子,揭示了相對論和量子理論的奇妙世界,還開發利用了小小的矽片。他們通過原子彈、晶體管、激光和微型集成電路改變了世界。現在,許多專家相信,人類已經做好了用新的科技發展浪潮迎接未來的准備。正如 1996 年諾貝爾獎獲得者、美國賴斯大學的化學家羅伯特·柯爾所說:「現在是物理學和化學的世紀,但下世紀顯然將是生物學的世紀。」許多科學家認為,以克隆綿羊「多莉」誕生為標志,生物學世紀已經提前到來。
克隆技術的突破,引起世人的震驚。人們擔心的是人類的自我復制,而往往忽視了其他方面的應用和意義。其實,它在基礎生命科學、醫學、家業科學研究與生產中,具有重大的理論價值和廣泛的應用前景,並存在著巨大的潛在經濟效益。在未來的 5 ~ 20 年, 將逐步形成和引起一場世界范圍內新的生物技術產業革命。
⒈在基礎生命科學方面,由以往進行基因功能研究主要在小鼠等少數動物身上進行到現在在多種動物身上均可得到實現,這有利於更加清晰地揭示基因功能和生命的本質;提供研究哺乳動物細胞發育全能性及核質關系最有效的手段之一;還可以克隆各種瀕危動物,如國寶大熊貓、金絲猴甚至白鰭豚等。
⒉在醫學科學方面,可以為醫學科學研究提供核基因型完全一致的實驗動物,這有利於醫學家研究目前尚未找到有效治療方 法的疾病,並揭示發病機制;對其進行去分化機制的研究,有助於抗衰老及其機制的研究。
⒊在農業科學方面,可快速培育和擴繁抗病力強、生產性能高的優良動物;可以研究動物的發病機理,尋求新的有效治療葯物。
六、如何迎接「克隆時代」的挑戰
克隆技術的成功,標志著「復制」哺乳動物的最後技術障礙已被突破。隨之而來,在理論上復制人類已成為可能。所以,克隆技術不僅給我們帶來了益處,也向人類提出了嚴峻的挑戰。這一技術一旦應用於人類,將會對人類社會產生極其嚴重的後果。
⒈人類從有性生殖回到了無性生殖,