1. 在站場施工改造中如何保證軌道電路編碼電路的正確性
摘要 軌道電路是信號聯鎖的室外重要設備,起著保證行車和調車作業安全的作用。
2. 請問,CTCS2系統的列車的目標距離曲線模式示意圖怎麼看例如例如補充中的圖怎麼看
圖1中所示的信息可以通過軌道電路碼來分析,前車(圖中右邊畫的小車)所佔用的閉塞分區的碼為紅碼(H),依據規范可知,它後方的碼依次為HU,U,LU,L,L2,L3,L4,L5。而且這些碼的信息可以通過軌道電路傳送到列車上,從而ATP可以收到這些信息。
ATP另外還會從應答器接收信息。這些信息會告訴ATP前方列車會經過的閉塞分區長度和載頻。ATP同時考慮這些信息就能夠得到圖1中所示的模式區線。
閉塞分區是以信號機(或者虛擬信號機)來區分的,它的長度不固定。如果是純CTCS-2級線路的話,一般是1000m長;如果是CTCS-2級+CTCS-3級的話,一般是2000m左右。
3. 軌道交通信號系統的簡介
城市軌道交通信號系統是保證列車運行安全,實現行車指揮和列車運行現代化,提高運輸效率的關鍵系統設備。 城市軌道交通信號系統通常由列車自動控制系統(Automatic Train Control,簡稱ATC)組成,ATC系統包括三個子系統: — 列車自動監控系統(Automatic Train Supervision,簡稱ATS) — 列車自動防護子系統(Automatic Train Protection,簡稱ATP) — 列車自動運行系統(Automatic Train Operation,簡稱ATO) 三個子系統通過信息交換網路構成閉環系統,實現地面控制與車上控制結合、現地控制與中央控制結合,構成一個以安全設備為基礎,集行車指揮、運行調整以及列車駕駛自動化等功能為一體的列車自動控制系統。
列車自動控制系統(ATC)
1、按閉塞布點方式:可分為固定式和移動式。固定閉塞方式中按控制方式,又可分為速度碼模式(台階式)和目標距離碼模式(曲線式)。 2、按機車信號傳輸方式:可分為連續式和點式。 3、按各系統設備所處地域可分為:控制中心子系統、車站及軌旁子系統、車載設備子系統、車場子系統。
固定閉塞ATC系統
固定閉塞ATC系統是指基於傳統軌道電路的自動閉塞方式,閉塞分區按線路條件經牽引計算來確定,一旦劃定將固定不變。列車以閉塞分區為最小行車間隔,ATC系統根據這一特點實現行車指揮和列車運行的自動控制。固定閉塞ATC系統又可分為速度碼模式和目標距離碼模式。 1、 速度碼模式(台階式) 如北京地鐵和上海地鐵1號線分別引進的英國西屋公司和美國GRS公司的ATC系統均屬此類ATC系統,該系統屬70~80年代的產品,技術成熟、造價較低,但因閉塞分區長度的設計受限於最不利線路條件和最低列車性能,不利於提高線路運輸效率。固定閉塞速度碼模式ATC是基於普通音頻軌道電路,軌道電路傳輸信息量少,對應每個閉塞分區只能傳送一個信息代碼,從控制方式可分成入口控制和出口控制兩種,從軌道電路類型劃分可分為有絕緣和無絕緣軌道電路兩種。 以出口防護方式為例,軌道電路傳輸的信息即該區段所規定的出口速度命令碼,當列車運行的出口速度大於本區段的出口命令碼所規定的速度時,車載設備便對列車實施懲罰性制動,以保證列車運行的安全。由於列車監控採用出口檢查方式,為保證列車安全追蹤運行,需要一個完整的閉塞分區作為列車的安全保護距離,限制了線路通過能力的進一步提高和發揮。能提供此類產品的公司有:英國WSL公司、美國GRS公司、法國ALSTOM公司、德國SIEMENZ公司等。 2、 目標距離碼模式(曲線式) 目標距離碼模式一般採用音頻數字軌道電路或音頻軌道電路加電纜環線或音頻軌道電路加應答器,具有較大的信息傳輸量和較強的抗干擾能力。通過音頻數字軌道電路發送設備或應答器向車載設備提供目標速度、目標距離、線路狀態(曲線半徑、坡道等數據)等信息,車載設備結合固定的車輛性能數據計算出適合於列車運行的目標距離速度模式曲線(最終形成一段曲線控制方式),保證列車在目標距離速度模式曲線下有序運行。不僅增強了列車運行的舒適度,而且列車追蹤運行的最小安全間隔縮短為安全保護距離,有利於提高線路的通過能力。如上海地鐵2號線引進美國US&S公司、明珠線引進法國ALSTOM公司和廣州地鐵1、2號線引進德國西門子公司的ATC系統均屬此類。
移動閉塞ATC系統
移動閉塞方式的ATC系統通常採用無線通信、地面交叉感應環線、波導等媒體,向列控車載設備傳遞信息。列車安全間隔距離是根據最大允許車速、當前停車點位置、線路等信息計算得出,信息被循環更新,以保證列車不間斷收到即時信息。 移動閉塞ATC系統是利用列車和地面間的雙向數據通信設備,使地面信號設備可以得到每一列車連續的位置信息,並距此計算出每一列車的運行許可權,動態更新發送給列車,列車根據接收到的運行許可權和自身的運行狀態,計算出列車運行的速度曲線,實現精確的定點停車,實現完全防護的列車雙向運行模式,更有利於線路通過能力的充分發揮。 移動閉塞ATC系統在我國還未有應用實例,國外能提供此類系統的公司有:阿爾卡特公司交叉感應電纜作為傳輸媒介的ATC系統,在加拿大溫哥華「天車線」和香港KCRC西部鐵路等應用,技術比較成熟,但交叉感應軌間電纜給線路日常養護帶來不便;美國哈蒙公司基於擴頻電台通信的移動閉塞應用在舊金山BART線,其系統結構、系統運用尚不成熟;阿爾斯通公司基於波導傳輸信息的移動閉塞正在新加坡西北線試驗段安裝調試。
信號系統基本功能
1、 列車自動監控子系統(ATS) ATS系統由控制中心、車站、車場以及車載設備組成。ATS系統在ATP系統的支持下完成對列車運行的自動監控,實現以下基本功能: (1)通過ATS車站設備,能夠採集軌旁及車載ATP提供的軌道佔用狀態、進路狀態、列車運行狀態以及信號設備故障等控制和監督列車運行的基礎信息。 (2)根據聯鎖表、計劃運行圖及列車位置,自動生成輸出進路控制命令,傳送至車站聯鎖設備,設置列車進路、控制列車停站時分。 (3)列車識別跟蹤、傳遞和顯示功能。系統能自動完成正線區段內列車識別號(服務號、目的地號、車體號)跟蹤,列車識別號可由中央ATS自動生成或調度員人工設定、修改,也可由列車經車—地通信向ATS發送識別號等信息。 (4)列車計劃與實跡運行圖的比較和計算機輔助調度功能。能根據列車運行實際的偏離情況,自動生成調整計劃供調度員參考或自動調整列車停站時分,控制發車時間。 (5)ATS中央故障情況下的降級處理,由調度員人工介入設置進路,對列車運行進行調整,由ATS車站完成自動進路或根據列車識別號進行自動信號控制,由車站人工進行進路控制。 (6)在計算機輔助下完成對列車基本運行圖的編制及管理,並具有較強的人工介入能力。通過設在車輛段的終端,向車輛段管理及行車人員提供必要的信息,以便編制車輛運用計劃和行車計劃。 (7)列車運行顯示屏及調度台顯示器,能對軌道區段、道岔、信號機和在線運行列車等進行監視,能在行調工作站上給出設備故障報警及故障源提示。 (8)能在中央專用設備上提供模擬和演示功能,用於培訓及參觀。能自動進行運行報表統計,並根據要求進行顯示列印。 (9)能在車站控制模式下與計算機聯鎖設備結合,將部分或所有信號機置於自動模式狀態。 (10)向通信無線、廣播、旅客向導系統提供必要的信息。 2 、列車自動防護子系統(ATP) ATP系統由地面設備、車載設備組成,監督列車在安全速度下運行,確保列車一旦超過規定速度,立即施行制動,主要實現以下功能: (1)自動連續地對列車位置進行檢測,並向列車發送必要的速度、距離、線路條件等信息,以確定列車運行的最大安全速度。提供列車速度保護,在列車超速時提供常用制動或緊急制動,保證前行與後續列車之間的安全間隔,滿足正向行車時的設計行車間隔和折返間隔。對反向運行列車能進行ATP防護。 (2)確保列車進路正確及列車的運行安全。確保同一徑路上的不同列車之間具有足夠的安全距離,以及等防止列車側面沖撞。 (3)防止列車超速運行,保證列車速度不超過線路、道岔、車輛等規定的允許速度。 (4)為列車車門的開啟提供安全、可靠的信息。 (5)根據聯鎖設備提供的進路上軌道區間運行方向,確定相應軌道電路發碼方向。 (6)任何車—地通信中斷以及列車的非預期移動(含退行)、任何列車完整性電路的中斷、列車超速(含臨時限速)、車載設備故障等均將產生安全性制動。 (7)實現與ATS的介面和有關的交換信息。 (8)系統的自診斷、故障報警、記錄。 (9)列車的實際速度、推薦速度、目標速度、目標距離等信息的記錄和顯示。具有人工或自動輪徑磨耗補償功能。 3、 列車自動駕駛子系統(ATO) ATO子系統是控制列車自動運行的設備,由車載設備和地面設備組成,在ATP系統的保護下,根據ATS的指令實現列車運行的自動駕駛、速度的自動調整、列車車門控制。 (1)自動完成對列車的啟動、牽引、巡航、惰行和制動的控制,以較高的速度進行追蹤運行和折返作業,確保達到設計間隔及旅行速度。 (2)在ATS監控范圍的入口及各站停車區域(含折返線、停車線)進行車—地通信,將列車有關信息傳送至ATS系統,以便於ATS系統對在線列車進行監控。 (3)控制列車按照運行圖進行運行,達到節能及自動調整列車運行的目的。 (4)ATO自動駕駛時實現車站站台定點停車控制、舒適度控制及節省能源控制。 (5)能根據停車站台的位置及停車精度,自動地對車門進行控制。 (6)與ATS和ATP結合,實現列車自動駕駛、有人或無人駕駛。
信號系統運營模式
1 、ATS自動監控模式 正常情況下ATS系統自動監控在線列車的運行,自動向聯鎖設備下達列車進路命令,列車在ATP的安全保護下由司機按規定的運行圖時刻表駕駛列車運行。控制中心行車調度員僅需監督列車和設備的運行狀況。每天開班前,控制中心調度員選擇當日的行車運行圖/時刻表,經確認或作必要的修改,作為當日行車指揮的依據。 2 、調度員人工介入模式 調度員可通過工作站發出有關行車命令,對全線列車運行進行人工干預。調整列車運行計劃包括對列車實施「扣車」、「終止站停」、改變列車進路、增減列車等。 3、 列車出入車場調度模式 車輛調度員根據當日列車運行圖/時刻表編制車輛運用計劃和場內行車計劃,並傳至控制中心。車場信號值班員按車輛運用計劃設置相應的進路,以滿足列車出入段作業要求。 4、 車站現地控制模式 除設備集中站其他車站不直接參與運營控制,車站聯鎖和車站ATS系統結合實現車站和中央兩級控制權的轉換。在中央ATS設備故障或經車站值班員申請,中央調度員同意放權後,可改由車站現地控制。 在現地控制模式下,車站值班員可直接操從車站聯鎖設備,可將部分信號機置於自動模式狀態,也可將全部信號機設為自動模式狀態,控制中心行車調度員應通過通信調度系統與列車駕駛員、車站值班員保持聯系。 5、 車場控制模式 列車出入場和場內的作業均由場值班員根據用車計劃,直接排列進路。車場與正線之間設置轉換軌,出入場線與正線間採用聯鎖照查聯系保證行車安全。 6、 列車運行控制模式 列車在正線、折返線上的運行作業時,常用ATO自動駕駛模式和ATP監督下的人工駕駛模式,限制人工駕駛和非限制人工駕駛模式均為非常用模式。 (1)ATO自動駕駛模式 列車啟動後,在ATP設備安全保護下,車載ATO設備自動控制列車加速、巡航、惰行、制動,並控制列車在車站的停車位置,開關車門,司機僅需監督ATP/ATO車載設備運行狀況。 (2)ATP監督下的人工駕駛模式 列車啟動後,車載ATP設備根據地面提供的信息,自動生成連續監督列車運行的一次速度模式曲線,實時監督列車運行。司機根據ATP顯示的速度信息駕駛列車,當列車運行速度接近限制速度時,提出報警;當列車運行速度超過限制速度時,ATP車載設備將對列車實施制動。 (3)限制人工駕駛模式 司機以不超過車載ATP的限制速度行車,列車運行安全由司機負責,當列車超過該限制速度時,ATP車載設備則對列車實施制動。 (4)非限制人工駕駛模式 在車載ATP設備故障狀態下運用,ATP將不對列車運行起監控作用。列車運行安全由司機、調度員、車站值班員共同負責。 7 、列車折返模式 列車在ATP監督人工駕駛模式下折返時,列車由人工駕駛自到達股道牽出至折返線,由司機轉換駕駛端,並折返至發車股道。 在ATO有人駕駛模式下折返時,列車能以較合理的速度從到達股道牽出至折返線,由司機轉換駕駛端和啟動列車,然後從折返線進入發車股道。 六、結束語 信號ATC系統依據控制方式以及信息傳輸方式的不同,系統結構組成和配置方式也完全不同,在工程設計中選擇何種配置,須根據行車組織、車輛性能、車站規模、線路條件等,以安全性、可靠性為基本原則,兼顧成熟性、經濟性、合理性,以發揮最大效能為目標,並需適當考慮先進性等。
4. 城市軌道信號與通信系統中ARRP、英文是什麼意思
列車自動控制系統(ATC)
1、按閉塞布點方式:可分為固定式和移動式。固定閉塞方式中按控制方式,又可分為速度碼模式(台階式)和目標距離碼模式(曲線式)。
2、按機車信號傳輸方式:可分為連續式和點式。
3、按各系統設備所處地域可分為:控制中心子系統、車站及軌旁子系統、車載設備子系統、車場子系統。
固定閉塞ATC系統
固定閉塞ATC系統是指基於傳統軌道電路的自動閉塞方式,閉塞分區按線路條件經牽引計算來確定,一旦劃定將固定不變。列車以閉塞分區為最小行車間隔,ATC系統根據這一特點實現行車指揮和列車運行的自動控制。固定閉塞ATC系統又可分為速度碼模式和目標距離碼模式。
1、 速度碼模式(台階式)
如北京地鐵和上海地鐵1號線分別引進的英國西屋公司和美國GRS公司的ATC系統均屬此類ATC系統,該系統屬70~80年代的產品,技術成熟、造價較低,但因閉塞分區長度的設計受限於最不利線路條件和最低列車性能,不利於提高線路運輸效率。固定閉塞速度碼模式ATC是基於普通音頻軌道電路,軌道電路傳輸信息量少,對應每個閉塞分區只能傳送一個信息代碼,從控制方式可分成入口控制和出口控制兩種,從軌道電路類型劃分可分為有絕緣和無絕緣軌道電路兩種。
以出口防護方式為例,軌道電路傳輸的信息即該區段所規定的出口速度命令碼,當列車運行的出口速度大於本區段的出口命令碼所規定的速度時,車載設備便對列車實施懲罰性制動,以保證列車運行的安全。由於列車監控採用出口檢查方式,為保證列車安全追蹤運行,需要一個完整的閉塞分區作為列車的安全保護距離,限制了線路通過能力的進一步提高和發揮。能提供此類產品的公司有:英國WSL公司、美國GRS公司、法國ALSTOM公司、德國SIEMENZ公司等。
2、 目標距離碼模式(曲線式)
目標距離碼模式一般採用音頻數字軌道電路或音頻軌道電路加電纜環線或音頻軌道電路加應答器,具有較大的信息傳輸量和較強的抗干擾能力。通過音頻數字軌道電路發送設備或應答器向車載設備提供目標速度、目標距離、線路狀態(曲線半徑、坡道等數據)等信息,車載設備結合固定的車輛性能數據計算出適合於列車運行的目標距離速度模式曲線(最終形成一段曲線控制方式),保證列車在目標距離速度模式曲線下有序運行。不僅增強了列車運行的舒適度,而且列車追蹤運行的最小安全間隔縮短為安全保護距離,有利於提高線路的通過能力。如上海地鐵2號線引進美國US&
5. 簡述軌道電路的基本原理.它有哪兩個作用
一、軌道電路的原理:
當閉塞區間內無列車行駛時,電流會從電源經由軌道流經繼電器,並使其激磁帶動接點,接通綠燈電路,因此信號機立即顯示平安通行。
假若軌道斷裂,軌道電路因此阻斷,造成繼電器失磁,同樣的信號機亦會顯示險阻禁行的訊息,仍可保障列車行駛安全。當列車駛離整個區間 ,繼電器便會重新激磁 ,綠燈便會再次亮起 ,其他列車便可進。
當設有軌道電路的某段線路上空閑時,軌道電路上的繼電器有足夠的電流通過,吸起被磁化的銜鐵,閉合前接點,從而接通色燈信號機的綠燈電路,顯示綠色燈光,表示前方線路空閑,允許機車車輛佔用。
當機車車輛進入該線路區段時,由於輪對電阻很小,使軌道電路短路,繼電器吸力減弱,釋放銜鐵,使之搭在後接點上,接通信號機的紅燈電路,顯示禁行信號。軌道電路的這一工作性能,能夠防止列車追尾和沖突事故,確保行車安全。
二、作用
1、檢查監督作用:
可以檢查和監督股道是否佔用,防止錯誤的地辦理進路;
可以檢查和監督道岔區段有無機車車輛通過,鎖閉佔用道岔區段的道岔,防止在機車車輛經過道岔時扳動道岔;
檢查和監督軌道上的鋼軌是否完好,當某一軌道電路區段的鋼軌折斷時軌道繼電器也將因無電而釋放銜鐵,防護這一段軌道的信號機也就不能開放等。
2、傳遞信息作用:
傳輸不同的信息,使信號機根據所防護區段及前方鄰近區段被佔用的情況的變化而變換顯示。
(5)軌道電路碼擴展閱讀
軌道電路的組成如下:
(1)導體
軌道電路的導體部分包括:鋼軌、連接夾板、導接線等。其中正線鋼軌採用60kg/M無縫長軌,車廠鋼軌採用50kg/M短軌,連接夾板、導接線主要用於車廠線路和正線折返線、存車線等處。
(2)鋼軌絕緣
正線運營軌道電路以電氣絕緣方式實現相鄰區段軌道電路的分割。電氣絕緣是通過諧振槽路的選頻方式,發送/接收本區段的中心頻率,折返線/存車線及車廠區域的軌道電路以機械絕緣方式分割,機械絕緣包括軌端絕緣、槽形絕緣、絕緣套管和絕緣片等。
(3)送電設備
車廠工頻軌道電路的送電設備包括送電電源、送電(降壓)變壓器、熔斷器等;正線數字軌道電路送電設備包括控制板、輔助板、電源板,耦合單元、感應環線、連接棒線等,實現數字信息的調制、傳送等。
(4)受電設備
車廠工頻軌道電路的受電設備包括升壓變壓器、連接電纜、軌道繼電器等;正線數字軌道電路受電設備也包括控制板、輔助板、電源板,耦合單元、感應環線、連接棒線等,與送電設備不同的是接收鋼軌信息,並對多樣的數字信息進行衰耗、選頻和解碼等,動作軌道繼電器。
(5)限流電阻
限制送電端信號電流,並調整送電端信號的幅值等。
6. 軌道電路的電路分類
1、動作電源
軌道電路可分為直流軌道電路和交流軌道電路。軌道電路電源採用直流,稱為直流軌道電路(已經淘汰)。採用交流供電的軌道電路,稱為交流軌道電路。交流軌道電路的種類很多,頻帶用得很寬,大體可分為三段:低頻300Hz以下;音頻300~3000Hz;高頻10~40kHz。
2、工作方式
軌道電路可分為開路式軌道電路和閉路式軌道電路。閉路式軌道平時處於閉路狀態,當有列車佔用或斷軌,斷線等故障時,接收設備都能及時反映出來,這樣便符合信號設備在故障時能處於最大安全位置的基本原則。
3、電流特性
按照所傳輸的電流特性不同,軌道電路可分為工頻連續式軌道電路和音頻軌道電路,其中,音頻軌道電路又可分為模擬式軌道電路和數字編碼式軌道電路。
工頻連續式軌道電路中傳輸連續交流電流,只能用於監督軌道的佔用與否,不能傳輸對列車的控制信息。目前在城市軌道交通中應用較廣泛的是50 Hz相敏軌道電路。
4、分割方式
軌道電路可分為有絕緣軌道電路和無絕緣軌道電路。有絕緣軌道電路用鋼軌絕緣將軌道電路與相鄰的軌道電路互相隔離,是有絕緣的。編碼中包含了速度車輛段內軌道電路
鋼軌絕緣在車輛運行的沖擊力、剪切力作用下很容易破損,使軌道電路的故障率較高。絕緣節的安裝,給無縫線路帶來一定的麻煩,有時需鋸軌,降低線路的軌道強度,增加線路維護的復雜性。
5、是否包含道岔
車輛段內軌道電路分為無岔區段軌道電路和道岔區段軌道電路。無岔區段軌道電路內鋼軌沒有分支,結構簡單,用於停車線、檢車線、盡頭線調車信號機接近區段,以及兩個差置調車信號機之間的線路。
7. 軌道電路故障處理
FTGS—917型軌道電路是西門子公司研製的遙控音頻無絕緣軌道電路。文章介紹了幾個典型故障並對其進行分析,提出幾點可行性設備修護建議建議。
關鍵詞:FTGS-917型軌道電路故障;分析處理;維護建議
1原始數據
統計軌道電路故障共55次
2故障分析
①由於參數調整不當造成的故障為6次,佔10%,主要原因包括道床狀況變化、初期建設時期遺留調整問題和調諧元件的性能變化。我們提高了對於這種新型軌道電路的認識,已經能夠均衡地考慮G、A、B各個運用方向的調整,在對故障軌道電路調整時將所有方向均調整至可靠的電壓水平,不遺留隱性問題。
以G0204故障為例,此故障的出現是由於供貨商西門子公司為履行質保條款,提供了1次軌道電路調整服務後造成的。在西門子軌道電路專家進行調整後,故障開始出現,我們對軌道電路參數進行測試後,發現電壓數值偏低,在一定條件下容易造成軌道電路進入臨界值,產生「雙通道不一致」故障。經過商議,決定從軌道電路實際狀態出發,摒棄西門子專家的調整策略,重新對該區段進行調整。在調整中我們將原先的平衡電阻值由147Ω降至100Ω,在保證安全的前提下提高了軌道接收電壓,從實際運用情況看,故障已經得到解決。
②由於ATP故障引發的軌道電路故障為5次,佔9%。以G0213的故障解決為例,此故障的典型之處在於,所有的接收電壓均測試正常,驅動繼電器的接收器2板電壓也已給出,但繼電器不能吸起,通過對繼電器板的更換和檢查,也排除了繼電器板故障的可能。這種故障現象之前從未遇到,通過現場跟蹤觀察,我們注意到故障出現時,該區段報文轉換板的L14燈顯示紅燈,表示「發送關斷」,針對這一異常,我們結合電路框圖進行了分析。
報文轉換板顯示「發送關斷」,即L14燈亮,說明繼電器K1落下,而K1繼電器是由LZB軌旁單元直接驅動的(見圖1灰白色部分),首先依次檢查了報文轉換板、FTGS和ATP的連接電纜並確認無異常後,然後又對ATP機櫃的報文發送板件STELA3板進行了更換,故障得到解決。
這樣的故障教會我們,在處理軌道電路紅光帶故障時,也應當注意觀察ATP機櫃上STELA3板的狀態,其P、S、R燈的顯示對於我們進行故障查找有一定的幫助。
③軟體偶發故障特指G0101(折返軌)的列車出清後遺留粉紅光帶故障,由於其發生伴有「kickoff故障」報警,且同時列車自動折返失敗,可以認定CI在處理AR時發生時序的錯誤,造成折返運行時G0101所需的應當由CI給出的1個kickoff缺失,三點檢查失敗。
當列車從A-B的進路進入區段I停穩,然後沿C-D進路牽出,由於區段1是末端軌道區段,故缺乏II處的kickoff,必須由聯鎖給出(圖示右邊彎箭頭)。在列車出清P1道岔所在區段後,再得到紅色kickoff,這樣區段I就集齊了所需的2個kickoff,允許給出空閑表示,若缺失其一,則給出粉紅光帶並伴有「kickoff故障」報警。
④由於放大濾波板、接收1板、纜芯轉換板和轉換單元引起的故障次數分別為5、3、5、13次,占總數的9%、6%、9%和24%,由於我們採用了新的軌道電路維修策略,通過軌道電路的二級保養可以提前檢測出一些放大濾波板的性能缺陷,通過小修可以對轉換單元和纜芯轉換板的性能進行檢測,此類故障已經可以做到一定程度的預防,在計劃修的實施中滲透狀態修的意識。
8. 軌道電路的歷史發展
為了檢查列車佔用鋼軌線路狀態,美國人魯賓遜1870年發明了開路式軌道電路,1872年研製成功了閉路式軌道電路,於1873年首先在賓西法尼亞鐵路試用,從此誕生了鐵路自動信號。中國鐵路在建國前採用的軌道電路傳輸信息少,分布也極不平衡,建國後從50年代中期開始,軌道電路技術在中國有了長足的發展,不僅傳輸的信息量增加而且它的使用已遍及全國鐵路各線,構成了中國鐵路信號技術發展的基礎。
1924年,中國首先在大連-金州間,沈陽-蘇家屯間建成自動閉塞,採用的是交流50Hz二元三位式相敏軌道電路,這是中國最早採用的軌道電路。1.1直流軌道電路和直流脈沖軌道電路
1、直流軌道電路
京奉鐵路在聯鎖閉塞設備中自動控制出站信號機恢復定位,最早用的水銀軌道接觸器。1925年首先在秦皇島及南大寺兩站裝設了直流閉路式軌道電路,取代了水銀軌道接觸器,這是中國最早使用的一種直流軌道電路,軌道電路器材用的是英國麥堪和荷蘭德兩家公司的產品。1942年,在濟南站中修建了進路操縱手柄式繼電電氣集中聯鎖,軌道電路是直流閉路式的,器材為日本產品。1952年,衡陽站建成進路操縱繼電式電氣集中聯鎖。軌道電路也是直流閉路式的,器材是上海華通、新安電機廠新成電器廠的仿美製品。
在50年代初,從蘇聯引進了HP-2型直流軌道電路,曾用在蒸汽牽引區段的小站聯鎖設備中。由於它抗干擾性能差,繼電器不能集中管理,所以使用較少,已逐步被交直流軌道電路所取代。直流軌道電路沒有絕緣破損防護功能,抗干擾性能差,受直流電氣牽引電流的干擾,不能正常工作。
1960年,中國在寶雞-鳳州段建成了第一條單相工頻交流電氣化鐵路。為防止牽引電流的干擾,根據蘇聯資料仿製成一種單軌條式直流軌道電路,曾在寶鳳段各站的站線上使用過。
2、直流脈沖式軌道電路鐵道部科學研究院從52年起便開始研究電沖軌道電路。初期在現場試驗的軌道繼電器為橋式磁系統的偏極繼電器,它的銜鐵材質性能差,接點彈力容易變化,繼電器工作不夠穩定,以後改為極性保持式軌道繼電器。58年,TY-58型電沖軌道電路,首先在沈山線錦州-高台山間,共182Km的雙線區段上裝設了以TY-58型電沖軌道電路為基礎的架空線式電沖自動閉塞。59年又將電沖分為正、負電沖及無電沖三種信息,於是實現了無架空線式電沖自動閉塞,即極性電沖自動閉塞。這種軌道電路結構簡單,傳輸距離較遠,缺點是抗干擾能力差。
60年代,鐵道部科學研究院曾研究利用電沖信息實現與本制式相配套的機車信號,未獲成功。因為鐵道部要求自動閉塞必須有與本制式相配套的機車信號,所以從此電沖軌道電路便逐步被交流計數電碼軌道電路所代替。
電沖軌道電路從50年代初期開始研製,到60年代初期得到廣泛應用,為運輸生產發揮了很好的作用。它是中國第一個自己研製的用作傳輸自動閉塞信息的軌道電路。從這時起,中國才有直流脈沖軌道電路。為發展脈沖式軌道電路提供了寶貴的經驗,是中國軌道電路技術的一個較大的進步。
1968年初,鐵道部科學研究院與沈陽、北京等鐵路局協作,開展了極性頻率脈沖軌道電路的研究,到1972年初,中國用不同方案的極性頻率脈沖軌道電路作為基礎設備,修建了666Km的雙線自動閉塞。極性頻率脈沖軌道電路在試用中曾發生過以下問題:①鄰線干擾,②兩線一地輸電線干擾,③斷軌檢查性能差。為此提出了採用低壓脈沖傳輸的設想。
1974年,完成了統一方案試驗,統一方案集各鐵路局的成熟經驗,採用了熱機備用的冗餘技術,並著重解決了軌道電路的調整、分流及斷軌狀態所存在的問題,同時也解決交流侵入、鄰線干擾及高壓線路接地干擾等問題,經試用後,於1980年通過鐵道部初步技術鑒定,以後便得到了進一步推廣。1.2交流連續式軌道電路
1、交直流軌道電路
滿鐵從1925年開始,在長大線主要車站修建了電氣集中聯鎖,軌道電路用的是N-8型交直流軌道電路和二元二位式軌道電路。交直流軌道電路裝在站內道岔區段上,這是中國最早使用的一種交直流軌道電路,它的器件是日本產品。
中國在50年代中期開始引進信號技術,這時由沈陽信號工廠仿製出KHP-5型和HBP型交直流軌道電路器材。這種軌道電路,在非電化區段的中、小站色燈電鎖器聯鎖和小站電氣集中聯鎖中得到應用。
1959年,中國第一個採用大插入繼電器的590型組合式電氣集中,在北京站建成並交付使用。站內採用HBTIII-200型交直流軌道電路,這種軌道電路與HBP-250型交直流軌道電路相似,器材是沈陽信號工廠仿蘇產品。
1964年中國研製成功AX系列安全型繼電器,1969年利用安全型繼電器設計的JZXC-480型交直流軌道電路,首先在南翔站使用,此後JZXC-480型交直流軌道電路在非電化區段的車站上迅速大量推廣,取代了所有其他制式的交直流軌道電路,從而使中國的交直流軌道電路的制式得到統一。
2、駝峰軌道電路、閥式軌道電路、25Hz長軌道電路
JW-2型駝峰軌道電路,應變速度較慢,調整困難,不甚適合駝峰軌道電路的技術要求。1969年研製成功了駝峰軌道電路用的JZXC-2.3型交直流軌道電路。
中國早在1960年,有些鐵路局為了節省電纜,在牽出線、接近區段,就安裝了一種閥式軌道電路,到70年代中期,因平交道口事故有所增加,有些鐵路局又開始使用閥式軌道電路設計道口信號。北京鐵路局科研所和天津鐵路運輸學校合作,於1982年研製成使用閥式軌道電路的道口信號,同年通過部級鑒定。
為了解決在繼電半自動閉塞區間自動檢查列車是否完整到達,鐵道科學研究院參照蘇聯和日本25Hz軌道電路的工作經驗,開展了25Hz長軌道電路的研究,1978年,在原齊齊哈爾鐵路局昂昂溪電務段的協助下,試制出一套樣機。1979年,在成都北站與天回鎮站間電化區段安裝試用。1983年通過了鐵道部鑒定。與此同時,原齊齊哈爾鐵路局仿效日本電路在本局非電化區段也進行了25Hz長軌道電路的試驗,並於1980年10月,通過鐵路局鑒定。
3、相敏軌道電路
1924年滿鐵在大連-金州間和沈陽-蘇家屯間修建的自動閉塞,軌道電路採用二元三位式相敏制,這是中國最早使用的軌道電路,器材用的是美國產品。至1942年,長大線全線建成自動閉塞,器材是日本仿美製品。二元三位式軌道電路工作穩定,直至1984年在長大線的沈陽-四平段仍然殘留有這種軌道電路制式的自動閉塞。軌道繼電器接點有三個位置,所以以它為基礎修建的自動閉塞無需架空線,就可實現三顯示自動閉塞。
中國從1925年開始在長大線主要車站上修建了電氣集中聯鎖。在這些車站的到發線上,採用50Hz交流二元二位式軌道電路。1937年後,在京奉鐵路個別車站上也安裝有50Hz交流二元二位式軌道電路。
在50年代,從蘇聯引進了50Hz二元二位式軌道電路。1954年由鐵道科學研究所、電務設計事務所及天津鐵路管理局組成的試驗小組,在京山線具有迷流干擾的古冶地區和道床電阻很低的北塘鹽鹼地段,進行了不同類型軌道電路的特性比較及電氣參數測試和採集,以便為這種地區的軌道電路設計提供依據。
為配合修建交流電氣化鐵路,考慮到站內沒有合適的軌道電路制式,從78年開始研製雙軌條25Hz相敏軌道電路,它實質上也是二元二位式軌道電路,不同點是信號頻率為25Hz。
25Hz相敏軌道電路是由通信信號公司研製的,80年首先在聯平關站站內安裝試點,同年同月,又在石家莊樞紐安裝並投入試用。經過兩年的試用和改進,於82年通過鐵道部鑒定。
軌道變壓器
1.3交流計數電碼、移頻、高頻軌道電路及計軸設備
1、交流計數電碼軌道電路
中國為了解決與自動閉塞相配套的機車信號和得到較好的軌道電路傳輸特性,於58年從蘇聯引進了交流電碼軌道電路,59年開始在北京-南倉間修建的50Hz交流計數電碼自動閉塞工程中使用,器材是由蘇聯進口的。63年中國按照蘇聯改進的R-36型解碼器的原理製成了63型解碼器,在長大線沈陽-鞍山、京廣線廣武-南陽寨間的自動閉塞工程中安裝並投入運用。軌道電路器材是沈陽信號工廠生產的。
1960年在寶雞-鳳州段建成中國第一條單相工頻交流電氣化鐵路。信號設備安裝了單線調度集中,其中的軌道電路為了防止牽引電流干擾,採用了75Hz交流計數電碼軌道電路。
2、移頻軌道電路
1966年鐵道部科技委在北京召開了自動閉塞選型會議,會議提出研製一種能夠適應地上和地下、電化與非電化區段通用的自動閉塞制式,確定了以移頻作為主攻方向,於67年在成峨段青龍場-彭山間11Km裝設了第一個試驗區段,75年通過鐵道部技術鑒定,決定非電化移頻自動閉塞作為一種自動閉塞制式推廣使用。
中國電化移頻軌道電路的研製工作幾乎是與非電化移頻軌道電路的研製工作同時進行的。67年試製成交流電化移頻自動閉塞和機車信號樣機各一套。
3、計軸設備
中國早在1966年就開始探索用計軸方式來檢查分界點間線路空閑狀態,1978年開始研製與半自動閉塞相配套的計軸設備,同年研製出一套樣機在現場進行了初步試驗。在研製非電化區段用計軸設備的基礎上,從81年開始研製電化區段用的計軸設備,1983年經鐵道部通號公司和西安鐵路局組織了技術鑒定,決定進一步擴大試用。
4、ZPW-2000A無絕緣軌道電路
ZPW-2000A型軌道電路是中國引進法國的UM71軌道電路的基礎上改進後的一種軌道電路制式。這種軌道電路是利用並聯在鋼軌兩端的LC諧振槽路和一小段鋼軌電感利用相鄰區段發送不同頻率,構成的電氣絕緣節。它不但可以檢測列車,而且可由鋼軌線路向超速防護系統發送速度級別信息。
9. 如何根據萬用指針表的表針擺動形式來判斷軌道電路的發碼型式,例如在一個范圍內擺動是發的紅黃碼
將表打到電阻檔(R×1k),任意接二極體兩腳,如果這時表的讀數較小(約5-10k),那麼接黑表筆的一端為二極體的正極,如果讀數較大(表針幾乎不動),接紅表筆的一端為正極。