A. 電路的原理
如果你是學電氣專業的話,電路原理是最基礎最重要的一門課。學不好它,後面的模電、電機、電力系統分析、高壓簡直沒辦法學。
對於這門課,你要想真正的領悟和掌握,奧秘就在於不能停止思考。而且我覺得這是最重要的一點。我以江輯光的《電路原理》為例(這本書編的相當不錯)解釋為何不能停止思考。
電路幾乎是第一本開始培養你工程師思維的書,它不同於數學物理,很多可以理論推導。而電路更多的是你的思考和不斷累積的經驗。
在江的書中,前面用了四章講解了電阻電路的基本知識,包括參考方向問題、替代定理,支路法、節點電壓、迴路電流、戴維南、特勒根、互易定理。這些基本內容都要掌握到爛熟於心才能在之後的章節里靈活的用。怎樣才能爛熟於心?我時刻提醒自己要不停思考。這套教材的課後習題就是最好的激發你大腦思考能力的寶庫。可以說裡面的每一道題都極具針對性,題目並不難。
一個合格的工程師應該把更多的時間留給思考如何最合理地解決問題,而不是花大把時間計算,電路的計算量是非常大的,一個節點電壓方程組有可能是四元方程,顯然這些東西留給計算器算就好了。為了學好電路你應該買一個卡西歐991,節省那些不必要浪費的時間留下來思考問題本身。
前四章的基礎一定要打得極為扎實,不是停留在只是會用就行了,那樣學不好電路。你要認真研究到每個定理是怎麼來的,最好自己可以隨手證明,你要知道戴維寧是有疊加推出來的,而疊加定理又是在電阻電路是線性時不變得來的,互易定理是由特勒根得來的。這一切知識都是靠細水長流一點點積累出來的,剛開始看到他們你會覺得迷糊,但你要相信這是一個過程,漸漸地你會覺得電路很美妙甚至會愛上它。當你發現用一頁紙才能解出來的答案,你只用五六行就可以將其解決,那時候你就會感覺電路好像是從身體中流淌出來一般。這就是一直要追求的境界。
後面就是非線性,這一章很多學校要求都不高,而且考起來也不難,最為興趣的話研究起來很有意思。
接著後面是一階二階動態電路,這里如果你高數的微分方程學得不錯的話,高中電路知識都極本可以解了。這一部分的本質就是求解微分方程。
說白了,你根據電路列出微分方程是需要用到電路知識的,剩下來怎麼解就看你的數學功底了。但是電路老師們為了給我們減輕壓力有把一階電路單獨拿出來做了一個專題,並將一切關於它上面的各支路電流或者電壓用一個簡單的結論進行了總結,即三要素法。
學了三要素一階電路連方程也不用列了。只要知道電路初始狀態、末狀態和時間常數就可以得到結果。如果你願意思考,其實二階電路也可以類比它的,在二階電路中你只要求出時間常數,初值和末值,同樣也可以求通解。
在這部分的最後,介紹了一種美妙的積分——卷積。很多人會被他的名字唬住,提起來就很高科技的樣子。其實它的確很高科技,但只要你掌握它的精髓,能夠很好的用它,對你的電路思維有極大的提升,關於卷積在知乎和網路上都有很多很好的解釋和生動的例子,我也是從他們那裡汲取經驗的。我在這里只能提醒你,不要因為老師不做重點就忽略卷積,否則這將無異於丟了一把銳利的寶劍。記得我在學習杜阿美爾積分(卷積的一種)的時候,感覺如獲至寶,雖然書上對它的描述只有一句話。但為了那一句我的心情竟久久無法平靜,因為實在太好用了。
接下來是正弦電路,這里主要是要理解電路從時域域的轉化,這里是電路的第一次升華,偉大的人類用自己的智慧把交流量頭上打個點,然後一切又歸於平靜了,接下來還是前四章的知識。我想他用的就是以不變應萬變的道理吧,所有量都以一個頻率在變,其效果就更想對靜止差不多了吧,但是他們對電容和電感產生了新的影響,因為他們的電流電壓之間有微分和積分的關系。在新的思路下你可以將電感變成jwl,將電容變成1/jwc,接下來你又改思考為什麼可以這樣變。
這是在極坐標下的電流電壓關系可以推導出來的。你要再追根溯源說,為什麼可以用復數來代替正弦?那是因為歐拉公式將正弦轉化成了復數表達。你還問歐拉公式又是什麼?它是邁克勞林(泰勒)公式得到的。你必須不斷地思考,不斷地提問才能明白這一起是怎麼回事。
不過這都是基礎,在正弦穩態這里精髓在於畫向量圖,能正確地畫出向量圖你才能說真正理解了它。向量圖不是亂畫的,不是你隨便找個支路放水平之後就可以得到正確的圖,有時候走錯了路得不到正確答案不說,反而可能陷入思維漩渦。做向量圖一般要以電阻支路或者含有電阻的支路為水平向量,接下來根據它的電流電壓來一步步推。而且很多難題都是把很多信息隱藏在圖裡面,不畫得一幅好圖你是解不出來的。這也需要自己揣摩。
跟著張飛老師一起學習
1(功率因素校正)如何設計
2如何快速去理解一個陌生的組件的data sheet
3詳細講解NCP1654 PFC控制晶元內部的電路設計
4D觸發組、RS觸發組、與門、或門的詳細講解
5NCP晶元內部各種保護(OUP、BO、UVLO、OPL、UVP、OCP)電路和實現方式的詳細講解
6如何用數字電路,通過邏輯控制,實現軟起功能,關於軟起作用的深度講解
7V/I轉換、I/V轉換、V/F轉換、F/V轉換的講解
8三極體如何工作在放大區,如何精準控制電流
9如何設計鏡像電流源,如何讓電流間接控制,如何用N管和P管做鏡像恆流源
10PFC電阻采樣電流如何做到全周期采樣,既不管在MOSFET ON和OFF之間,都能實現電流采樣。為什麼要采樣負極電源?
後面是互感,我相信很多人被同名端折磨的死去活來。其實,電感是描述,線圈建立磁場能力的量,電感大了,產生磁場越大。所以同名端的意思就是:從同名端流入的電流,磁場相加,表現在方程上為電感相加。只要牢記這一點,列含有互感的方程式就不會錯了。你不要胡思亂想,有時候你會被電流方向弄糊塗,別管它,圖上畫的是參考方向,就算你假設的方向與實際方向反了,對真確結果依然沒有絲毫影響。這里其實是考察你對參考方向的理解。
然後是諧振,這是很有趣也很有用的一節,無論是電氣,通信,模電還是高壓都離不開它。這是在一種美妙的狀態下,電廠能量和立場能量達到完美的交替。通過諧振可以實現濾波、升壓等具有實際意義的電路。但就電路內容來說這里並不難,總結一下就是,阻抗虛部為零則串聯諧振,導納虛部為零為並聯諧振。在求解諧振頻率時有時候用導納求解會比較方便,這在於多做題開闊思路。
接下來是三相電路。要我來說,三相電路是最簡單的部分。很多人覺得它難(當然一開始我也覺得它讓人頭暈),完全是因為我們總是害怕恐懼本身。其實你看它有三個地但一點也不難。這要你頭腦清晰別被他的表面嚇住了。三相電路跟普通電路沒有任何區別。做到五個六個電源也不會害怕,因為你知道,一個所有元件都告知的電路,用節點電壓或迴路電流肯定是可以求的出來的。為什麼到了三相你就被嚇得魂不守舍了。你是不明白線電壓和相電流的關系,還是一相斷線對中線電流的影響?你管那些幹嘛?什麼相啊線呀都只是個代號而已。你把它看成一個普通電路解,它就是一個普通電路而已。很多同學總是喜歡在線和相的關繫上糾結。其實一句話就可以概括的:線量都是向量的根3倍。其實這些都不用記,需要的時候畫個圖就來了。最重要的是你要明白三相只不過是個有三個電源的普通電路而已。你只要會節點電壓法,不學三相的知識都可以解答的很好。當你以一個正常電路看它的時候,三相就已經學得差不多了。三相唯一的難點在計算,只要你是個細心的人,平時多找幾個題算算,以後三相想錯都難。
後面是拉普拉斯變換。這里是電路思維的又一次飛躍。人們發現高階電路真的不好求解,而且如果電源改變的話除了卷積,找不到更好的辦法。所以為了方便的使用卷積,前輩們把拉氏變換引入電路。如果說前面正弦穩態時域到頻域是由泰勒公式一步步推來的。那這里就是高數的最後一章——傅立葉變換推倒的。關於傅立葉知乎也有許多精彩的講解,自己找吧。傅立葉變換有兩種形式,一種是時域形態,一種是頻域形態。而拉普拉斯變換就是將由頻域形態的傅立葉變換,推廣到復頻域形態。其基本變換公式也是由傅立葉變換公式推廣得到的。這一章的學習,你要從變換公式入手,自己把基本的幾個變換推導出來。還要理解終值定理和初值定理,這兩個定理是檢驗結果正確與否的有力證據。學電路只知道思路是一回事,能做對是另外一回事。只有在學習中不斷培養自己開闊的視野和強大的計算能力才可以學好這門課,學電路是要靠硬功夫的,你看著老師解題的時候感覺信手拈來,自己卻百思不得其解。那是功夫沒下到位。我考研時看了電路大概一百天,新書都翻爛了,自己的舊書都快散架了,各種習題不計重復的做了至少1500道以上。當我做電路的時候,我會覺得時間停止了,根本感受不到自習室里還有別人。那種你在冥思苦想後終於解決一個問題所帶來的足以讓你笑出聲來的快樂,是陪伴著我的最好的葯。每天走在月光下,我都會想,如果當不了科學家,那就干點別的吧。
所以說啊,要學好電路,還是要發自內心的愛上它。
1晶元內部是如何做到低功耗的
2NCP1654內部是如何用數字電路實現電壓和電流相位跟蹤的
3電壓源對電容充電與電流源對電容充電的區別和波形有何不同
4單周期控制電壓公式的詳細推論
5如何進行有效的公式推導,推導公式的原則和方法?如何在公式推導中引入檢流電阻?
6當我們公式推導結束後,如何將公式轉化為電路。如何自己搭建電路,實現公式推導的結果?這也是本部視頻講解的核心。
7如何用分立組件搭建OCC單周期控制的PFC
8基於NCP1654搭建PFC電路
9詳細講解PFC PCB板調試完整過程。包括:用示波器測試波形、分析波形、優化波形,最終把PFC功率板調試出來
B. 電路原理!
電路原理是電子信息類專業的必修課,是以分析電路中的電磁現象,研究版電路的基本規權律及電路的分析方法為主要內容,而且電路分析是在電路給定參數已知的條件下,通過求解電路中的電壓、電流而了解電網路具有的特性。無論是強電專業還是弱電專業,大量的問題都涉及電路理論知識,電路理論為研究和解決這些問題提供了重要的理論和方法。 "電路分析"是與電力及電信等專業有關的一門基礎學科。它的任務是在給定電路模型的情況下計算電路中各部分的電流i和(或)電壓v。電路模型包括電路的拓撲結構,無源元件電阻R,儲能元件電容C及電感L的大小,激勵源(電流源或電壓源)的大小及變化形式,如直流,單一頻率的正弦波,周期性交流等。電路分析分為穩態分析和暫態分析兩大部分。電路模型的狀態始終不變(在-∞
C. 電路原理
基本包括::簡單電阻電路,線性電阻電路的分析方法和電路定理,非線性電阻電路版,一階電路,二階電權路,階躍響應,沖激響應,卷積積分,相量法,阻抗與導納,頻率響應,濾波器,諧振,有互感的電路,變壓器和三相電路等。
D. 電路工作原理
電路板的工作原理是利用板基絕緣材料隔離開表面銅箔導電層,使得電流沿著預先設計好的路線在各種元器件中流動完成諸如做功、放大、衰減、調制、解調、編碼等功能。
電路板主要由焊盤、過孔、安裝孔、導線、元器件、接插件、填充、電氣邊界等組成。常見的板層結構包括單層板(Single Layer PCB)、雙層板(Double Layer PCB)和多層板(Multi Layer PCB)三種。各組成部分的主要功能如下:
焊盤:用於焊接元器件引腳的金屬孔。
過孔:有金屬過孔和非金屬過孔,其中金屬過孔用於連接各層之間元器件引腳。
安裝孔:用於固定電路板。
導線:用於連接元器件引腳的電氣網路銅膜。
接插件:用於電路板之間連接的元器件。
填充:用於地線網路的敷銅,可以有效的減小阻抗。
電氣邊界:用於確定電路板的尺寸,所有電路板上的元器件都不能超過該邊界。
E. 怎麼能看懂電路圖,明白電路工作原理
無論閱讀電路圖或者根據電路故障查找,首要的是看懂電路圖,而所謂看懂;是版指弄清電路由那權部分組成,它們之間的聯系和總的功能,因為電路中各個單元電路的工作原理及功能是分析電路的基礎也是改進電路性能的依據。
讀圖的思路及步驟
電路的主要任務是對輸入信號進行處理及執行動作,因此讀圖時應將電路分為三部分來分析,具體步驟可歸納為1:了解用途,找出通路。2,化整為零,分析功能。3,統觀整體
說明:
第一, 了解用途,通過元器件的功能來了解電路的運行。
第二,找出通路,俗話「順藤摸瓜 」假想電路得以通電,在沿著線路,找出分支,這樣通路就可以大致找出。
第三, 化整為零,將主電路,控制電路,及PCB程序,將電路分為若幹部分,這樣好處在於(便於閱讀,查找故障)
第四, 分析功能,將分好的若干電路,一個一個把他們的功能分析出來
第五, 統觀整體,把你的分析結果全部聯系起來,這樣就可以把整體的電路都弄清楚了
希望我的回答對你有幫助
F. 電路的基本原理
電路:由金屬導線和電氣、電子部件組成的導電迴路,稱為電路。在電路輸入端加上電源使輸入端產生電勢差,電路即可工作。有些直觀上可以看到一些現象,如電壓表或電流表偏轉、燈泡發光等;有些可能需要測量儀器知道是否在正常工作。按照流過的電流性質,一般分為兩種。直流電通過的電路稱為「直流電路」,交流電通過的電路稱為「交流電路」。
電路的作用是進行電能與其它形式的能量之間的相互轉換。因此,用一些物理量來表示電路的狀態及各部分之間能量轉換的相互關系。
電路圖電流在實用上有兩個含義:第一,電流表示一種物理現象,即電荷有規則的運動就形成電流。第二,本來,電流的大小用電流強度來表示,而電流強度是指在單位時間內通過導體截面積的電荷量,其單位是安培(庫/秒),簡稱安,用大寫字母A表示。但電流強度平時人們多簡稱電流。所以電流又代表一個物理量,這是電流的第二個含義。
電流的真實方向和正方向是兩個不同的概念,不能混淆。
習慣上總是把正電荷運動的方向,作為電流的方向,這就是電流的實際方向或真實方向,它是客觀存在,不能任意選擇,在簡單電路中,電流的實際方向能通過電源或電壓的極性很容易地確定下來。
但是,在復雜直流電路中,某一段電路里的電流真實方向很難預先確定,在交流電路中,電流的大小和方向都是隨時間變化的。這時,為了分析和計算電路的需要,引入了電流參考方向的概念,參考方向又叫假定正方向,簡稱正方向。
所謂正方向,就是在一段電路里,在電流兩種可能的真實方向中,任意選擇一個作為參考方向(即假定正方向)。當實際的電流方向與假定的正方向相同時,電流是正值;當實際的電流方向與假定正方向相反時,電流就是負值。
換一個角度看,對於同一電路,可以因選取的正方向不同而有不同的表示,它可能是正值或者是負值。要特別指出的是,電路中電流的正方向一經確定,在整個分析與計算的過程中必須以此為准,不允許再更改。
從數值上看,AB兩點之間的電壓是電場力把單位正電荷從A點移動到B點時所做的功;而電場中某點的電位等於電場力將單位正電荷自該點移動到參考點所做的功。比較電壓和電位的概念可以看出,電場中某點的電位就是該點到參考點之間的電壓,電位是電壓的一個特殊形式。對於電位來說,參考點是至關重要的。在同一電路中,當選定不同的參考點,同一點的電位數值是不同的。
原則上說,參考點可以任意選定。在電工領域,通常選電路里的接地點為參考點,在電子電路里,常取機殼為參考點。
在實際應用時,僅知道兩點間的電壓往往不夠,還要求知道這兩點中哪一點電位高,哪一點電位低。例如,對於半導體二極體來說,還有其陽極電位高於陰極電位時才導通;對於直流電動機來說,繞組兩端的電位高低不同,電動機的轉動方向可能是不同的。由於實際使用的需要,要求我們引入電壓的極性,即方向問題。
電路中因其他形式的能量轉換為電能所引起的電位差,叫做電動勢。用字母E表示,單位是伏特。在電路中,電動勢常用符號δ表示。
在物理學中,用電功率表示消耗電能的快慢.電功率用P表示,它的單位是瓦特,簡稱瓦,符號是W.電流在單位時間內做的功叫做電功率 以燈泡為例,電功率越大,燈泡越亮。燈泡的亮暗由實際電功率決定,不用所通過的電流、電壓、電能、電阻決定!
在電路中:如果指定流過元件的電流參考方向是從標以電壓的正極性的一端指向負極性的一端,即兩者的參
(Ohm's Law):在同一電路中,導體中的電流跟導體兩端的電壓成正比,跟導體的電阻阻值成反比,基本公式是I=U/R(電流=電壓/電阻)
諾頓定理:任何由電壓源與電阻構成的兩端網路, 總可以等效為一個理想電流源與一個電阻的並聯網路。
戴維寧定理:任何由電壓源與電阻構成的兩端網路, 總可以等效為一個理想電壓源與一個電阻的串聯網路。
分析包含非線性器件的電路,則需要一些更復雜的定律。實際電路設計中,電路分析更多的通過計算機分析模擬來完成。
它是線性元件的一個重要定理。在線性電阻中,某處電壓或電流都是電路中各個獨立電源單獨作用時,在該處分別產生的電壓或電流的疊加。
對於一個具有n個結點和b條支路的電路,假設各條支路電流和支路電壓取關聯參考方向,並令(i1,i2,···,ib)、(u1,u2,···,ub)分別為b條支路的電流和電壓,則對於任何時間t,有i1*u1+i2*u2+···+ib*ub=0。
在對偶電路中,某些元素之間的關系(或方程)可以通過對偶元素的互換而相互轉換。對偶的內容包括:電路的拓撲結構、電路變數、電路元件、一些電路的公式(或方程)甚至定理。
所有的電路在工作時,每一個元件或線路都會有能量的工作運用,即電能運用,而所有電路里的電能工作運用即稱為電路功率。
電路或電路元件的功率定義為:【功率=電壓*電流(P=I*V)】。
自然界里能量不會消滅,固有一定律【能量不滅定律】。
電路總功率=電路功率+各電路元件功率。例如:【電源(I*V)=電路(I*V)+ 各元件(I*V)】
在電路中的能量有時會變為熱能或輻射能…等其他能量到空氣中,這就是電路或電路元件會發熱的原因,不會全部形成電能於電路中,根據【總能量=電能+熱能+輻射能+其他能量】。
本文引自網路。
不懂歡迎追問,
G. 電路的工作原理是什麼
這是典型的互補多諧振盪器電路,
1接通電源瞬間電容上的電壓為零G1r基極被箝為低電位,G1截止。2,R1對電容充電,當電位高於G1導通電位時G1開始導通,隨後開始正反饋過程,G1導通-G2導通-G2射極電位上升,G1G2飽和。3,C向G1 放電,電位逐步下降。基極電流減少,G1退出飽合,隨後又是正反饋過程。G1 電流減少- G2電流減少-身射極電位下降-通過C使G1 基極電流進一步減少至G1G2截止。
H. 電路的基本原理是什麼
電路是由用電設備(稱為負載)、元器件、供電設備(稱為電源)通過導線連接而構成的提供給電荷流動的通路。電路是電場的種特殊形式,當電場被束縛在電荷流動的路徑周圍很小的范圍時,即形成電蹤。
為電路工作提供能量的電源,完成放大,濾波、移相等功能的元器件;用電設備(負載),連接電源、元器件和用電設備的導線;控制電源接入的開關等
客觀上電路提供電荷流動的通路,電荷攜帶著電能在電路中流動,從電源帶走電能,而在用電元器件中又釋放電能,因此電路的工作伴隨著能量的運動
電路主要有下列作用
能量傳輸將電源的電能傳輸給用電設備(負載)
能量轉換將傳輸到負載的電能根據需要轉換成其它形式的能量,如光、聲、熱、機械能等
I. 怎麼從電路板上知道電路原理
從電路板知道電路原理,板上有元器件,你要能看清元器件的名,你先把元器件的原理圖畫出來.一般來說,細線是信號線或數據線,粗線是電源線或有大電流功率的線.整片出現的多個大片,一般這些大片都有線連成一體,這些大片可接中性點,或地,能起導線抗干擾作用.細線是各元器件之間的連線,你有了元器件原理圖,用眼看,用表量元件之間電阻,把各元件連線畫出來,原理圖就出來了.一般來說,單面板或雙面板原理圖相對來說好畫,多層板畫出原理圖挺難.一條銅箔是一條線,雙面板的過孔金屬化了,也是連線.用表量,電阻基本為零時,都在一條線上,有電阻,就不在一條線上.
J. 電路工作原理100字
電路:由金屬導線和電氣、電子部件組成的導電迴路,稱為電路。在電路輸入端加上電源使輸入端產生
電勢差
,電路即可工作。有些直觀上可以看到一些現象,如
電壓表
或
電流表
偏轉、燈泡發光等;有些可能需要
測量儀器
知道是否在正常工作。按照流過的電流性質,一般分為兩種。直流電通過的電路稱為「
直流電路
」,交流電通過的電路稱為「
交流電路
」。在直流電路中,電流從電源正極通過導線和
電子元器件
流到負極,這就構成了一個電路.
在電壓的作用下,就會形成電流,電流的方向規定為
正電荷
移動方向.所以都會說電流從正極流到負極.
實際在電路中是帶有
負電荷
的電子從電源的負極流到正極.
電路的工作原理是和電路中元器件有直接關系的.
電子元器件有,電阻,電容,電感,稱為
線性器件
,二極體,三極體,
可控硅
,等稱為非線性器件,集成電路等.
電路中直有一個電阻的情況下,對直流和交流電一樣的待遇,阻礙電流流過.
電容就
不一樣了
,通交隔直.交流可以通過,直流不可以通過.
電感與電容相反,通直隔交,直流可以通過,交流部可以通過.
二極體有正負之分,正向導通,反響截至.
三極體有三個腳,b.c.e.
有兩種,pnp和npn
be加一個小電壓,ce加一個大電壓.這樣be小電壓的變化.ce就會跟著變化.如果be電壓有10毫伏
電壓變化
,三極體放大倍數為100.那麼ce就是1000毫伏的變化.
集成電路就是把成千上萬個電阻,二極體和三極體等集中在一起.
電子元件
按照不同的方式
連接在一起
,就構成了不同功能的電路.
整流電路
,
濾波電路
,
放大電路
等.
每一種電路的功能和原理也不一樣.
整流電路就是利用二極體,
單向導電性
,交流電通過二極體只有正或負一方通過.交流電就變成
脈動直流電
,在經過濾波整形就變成直流了,在經過穩壓就可以給其他電路作為電源了.
放大電路就是對微小的電信號進行放大,用三極體的放大特性,就像我們聽得音響,把小的聲音放大.
電路又分為
模擬電路
和
數字電路
.
了