導航:首頁 > 電器電路 > 威建電路

威建電路

發布時間:2022-05-05 20:39:14

⑴ 在中建五局、煙建、威建里選擇,哪個較好綜合一點

首先中建五局在中建屬於很一般的分公司,其次中建規模比較大,體制臃腫,在裡面工作升職方面比較困難,並且全國各地到處跑,而威建跟煙建比,遜色很多,綜合不如煙建好,但具體個人工資方面不知道哪個更占優勢。煙建基本上做得都是煙台的一些工程,除了煙建青島公司,煙建濟南公司,煙建上海公司這些是做他們地區的工程,如果選擇煙建的話最好的就是煙建十公司,如果你能夠進來,就趕快進來吧,裡面的待遇和福利非常不錯。(進十公司需要很硬的關系),希望我的回答能使你滿意,加油吧。

⑵ 威建集團一公司拖欠工資怎麼辦

用人單位剋扣或者拖欠勞動者工資的,勞動者可以向勞動保障監察大隊投訴該單位。
去勞動監察大隊投訴時攜帶:本人身份證、用人單位全稱、負責人姓名及聯系電話、能證明勞動者在用人單位上班的相關證據,由勞動保障監察大隊下達限期改正,逾期不改正的,勞動保障監察大隊可以下達行政處罰處理決定;逾期未執行的,申請法院強制執行。同時逾期不改正的,勞動者可以主張用人單位支付你拖欠工資數額50%-100%的賠償金(勞動保障監察條例第26條)
《勞動法》第五十條規定:工資應當以貨幣形式按月支付給勞動者本人,不得剋扣或者無故拖欠勞動者的工資。
《勞動合同法》第三十條 用人單位應當按照勞動合同約定和國家規定,向勞動者及時足額支付勞動報酬。
《工資支付暫行規定》第九條 勞動關系雙方依法解除或終止勞動合同時,用人單位應在解除或終止勞動合同時一次付清勞動者工資。

⑶ 次聲波發生器電路圖急需~~!!!

我來回答,次聲又稱亞聲,是頻率在20Hz以下的低頻率波.許多自然災害如地震、火山爆發、龍卷風等在發生前都會發出次聲波.次聲波對人體能夠造成危害,引起頭痛、嘔吐、呼吸困難等症狀.在20世紀30年代,美國一位物理學家做過實驗:他把一台次聲發生器帶進劇場,開演後悄悄地打開,然後坐在自己的包廂內觀察動靜,只見坐在次聲器四周的觀眾產生一種惶恐不安和迷惑不解的神情,並很快蔓延到整個劇場.次聲波的特點是來源廣、傳播遠、穿透力強科學家們利用它來預測台風、研究大氣結構等.在軍事上可以利用次聲來偵察大氣中的核爆炸、跟蹤導彈等等.
1890年, 一艘名叫「馬爾波羅號」帆船在從紐西蘭駛往英國的途中,突然神秘地失蹤了. 20年後,人們在火地島海岸邊發現了它.奇怪的是:船上的開都原封未動.完好如初.船長航海日記的字跡仍然依稀可辨;就連那些死已多年的船員,也都「各在其位」,保持著當年在崗時的「姿勢」;
1948年初,一艘荷蘭貨船在通過馬六甲海峽時,一場風暴過後,全船海員莫明其妙地死光;在匈牙利鮑拉得利山洞入口, 3名旅遊者齊刷刷地突然倒地,停止了呼吸......
上述慘案,引起了科學家們的普遍關注,其中不少人還對船員的遇難原因進行了長期的研究.就以本文開頭的那樁慘案來說,船員們是怎麼死的?是死於天火或是雷擊的嗎?不是,因為船上沒有絲毫燃燒的痕跡;是死於海盜的刀下的嗎?不!遇難者遺骸上看到死前打鬥的跡象;是死於飢餓乾渴的嗎?也不是!船上當時貯存著足夠的食物和淡水.至於前面提到的第二樁和第三樁慘案,是自殺還是他殺?死因何在?兇手是誰?檢驗的結果是:在所有遇難者身上,都沒有找到任何傷痕,也不存在中毒跡象.顯然,謀殺或者自殺之說已不成立.那麼,是以及病一類心腦血管疾病的突然發作致死的嗎?法醫的解剖報告表明,死者生前個個都很健壯!
經過反復調查,終於弄清了製造上述慘案的「兇手」,是一種為人們所不很了解的次聲的聲波.次聲波是一種每秒鍾振動數很少,人耳聽不到的聲波.次聲的聲波頻率很低,一般均在20兆赫以下,波長卻很長,傳播距離也很遠.它比一般的聲波、光波和無線電波都要傳得遠.例如,頻率低於1赫的次聲波,可以傳到幾千以至上萬公里以外的地方.1960年,南美洲的智利發生大地震,地震時產生的次聲波傳遍了全世界的每一個角落!1961年,蘇聯在北極圈內進行了一次核爆炸,產生的次聲波竟繞地球轉了5圈之後才消失!
次聲波具有極強的穿透力,不僅可以穿透大氣、海水、土壤,而且還能穿透堅固的鋼筋水泥構成的建築物,甚至連坦克、軍艦、潛艇和飛機都不在話下.次聲穿透人體時,不僅能使人產生頭暈、煩燥、耳鳴、惡心、心悸、視物模糊,吞咽困難、胃痛、肝功能失調、四肢麻木,而且還可能破壞大腦神經系統,造成大腦組織的重大損傷.次聲波對心臟影響最為嚴重,最終可導致死亡.
為什麼次聲波能致人於死呢?
原來,人體內臟固有的振動頻率和次聲頻率相近似(0.01~20赫),倘若外來的次聲頻率與體內臟的振動頻率相似或相同,就會引起人體內臟的「共振」,從而使人產生上面提到的頭暈、煩躁、耳鳴、惡心等等一系列症狀.特別是當人的腹腔、胸腔等固有的振動頻率與外來次聲頻率一致時,更易引起人體內臟的共振,使人體內臟受損而喪命.前面開頭提到的發生在馬六甲海峽的那樁慘案,就是因為這艘貨船在駛近該海峽時,恰遇上海上起了風暴.風暴與海浪摩擦,產生了次聲波.次聲波使人的心臟及其它內臟劇烈抖動、狂跳,以致血管破裂,最後促使死亡.
次聲雖然無形,但它卻時刻在產生並威脅著人類的安全.在自然界,例如太陽磁暴、海峽咆哮、雷鳴電閃、氣壓突變;在工廠,機械的撞擊、摩擦;軍事上的原子彈、氫彈爆炸試驗等等,都可以產生次聲波.
由於次聲波具有極強的穿透力,因此,國際海難救助組織就在一些遠離大陸的島上建立起「次聲定位站」,監測著海潮的洋面.一旦船隻或飛機失事附海,可以迅速測定方位,進行救助.
近年來,一些國家利用次聲能夠「殺人」這一特性,致力次聲武器——次聲炸彈的研製盡管眼下尚處於研製階段,但科學家們預言;只要次聲炸彈一聲爆炸,瞬息之間,在方圓十幾公里的地面上,所有的人都將被殺死,且無一能倖免.次聲武器能夠穿透15厘米的混凝土和坦克鋼板.人即使躲到防空洞或鑽進坦克的「肚子」里,也還是一樣地難逃殘廢的厄運.次聲炸彈和中子彈一樣,只殺傷生物而無損於建築物.但兩者相比,次聲彈的殺傷力遠比中子彈強得多. 7583希望對你有幫助!

⑷ 清華大學自動化系考研專業課《電路原理》應該用誰編的書

清華大學自動化電氣考研專業課827電路原理復慣用書:

考過已經上岸的過來人推薦,說點「權威官方」的吧(自認為,但事實如此)。

主要教材:《電路原理》第二版為電路原理教材,江輯光等著

《電路原理學習指導與習題集》第二版為電路習題集,出題人編寫的,簡稱「習題集」

《電路原理試題選編》第三版選自部分1989~2013年清華大學電路原理真題

輔導資料:《清華自動化、電氣工程報考指南》(常見問題+復習規劃+真題點評)

《電路原理(第二版)課後習題詳細分析筆記》

《電路原理學習指導與習題集(第二版)習題詳細分析筆記》

《清華大學827電路原理(1996-2019)全真試題大全解》

及部分電子版資料。

教材和輔導資料可自行淘寶,我覺得挺不錯,挺靠譜的。

復習建議:簡單說一下吧,各個學校出題風格確實不一樣,建議以清華的書籍為重心。要認真復習教材內容,完成課後習題及習題集習題,完成復習之後,再做真題你會發現很多真題都是源於此。建議至少要刷兩遍,第一遍認真做,第二遍可以快速過,第二遍重在總結技巧套路。真題也應刷兩遍,第一遍最好按照考試場景練習,第二遍總結技巧討論等等。由於清華專業課難度較大,建議花與數學同等時間。最後多多總結!

⑸ 跪求(集成電路晶元封裝技術的發展前景)

先進的晶元尺寸封裝(CSP)技術及其發展前景
2007/4/20/19:53 來源:微電子封裝技術

汽車電子裝置和其他消費類電子產品的飛速發展,微電子封裝技術面臨著電子產品「高性價比、高可靠性、多功能、小型化及低成本」發展趨勢帶來的挑戰和機遇。QFP(四邊引腳扁平封裝)、TQFP(塑料四邊引腳扁平封裝)作為表面安裝技術(SMT)的主流封裝形式一直受到業界的青睞,但當它們在0.3mm引腳間距極限下進行封裝、貼裝、焊接更多的I/O引腳的VLSI時遇到了難以克服的困難,尤其是在批量生產的情況下,成品率將大幅下降。因此以面陣列、球形凸點為I/O的BGA(球柵陣列)應運而生,以它為基礎繼而又發展為晶元尺寸封裝(ChipScalePackage,簡稱CSP)技術。採用新型的CSP技術可以確保VLSI在高性能、高可靠性的前提下實現晶元的最小尺寸封裝(接近裸晶元的尺寸),而相對成本卻更低,因此符合電子產品小型化的發展潮流,是極具市場競爭力的高密度封裝形式。

CSP技術的出現為以裸晶元安裝為基礎的先進封裝技術的發展,如多晶元組件(MCM)、晶元直接安裝(DCA),注入了新的活力,拓寬了高性能、高密度封裝的研發思路。在MCM技術面臨裸晶元難以儲運、測試、老化篩選等問題時,CSP技術使這種高密度封裝設計柳暗花明。

2CSP技術的特點及分類

2.1CSP之特點

根據J-STD-012標準的定義,CSP是指封裝尺寸不超過裸晶元1.2倍的一種先進的封裝形式[1]。CSP實際上是在原有晶元封裝技術尤其是BGA小型化過程中形成的,有人稱之為μBGA(微型球柵陣列,現在僅將它劃為CSP的一種形式),因此它自然地具有BGA封裝技術的許多優點。

(1)封裝尺寸小,可滿足高密封裝CSP是目前體積最小的VLSI封裝之一,引腳數(I/O數)相同的CSP封裝與QFP、BGA尺寸比較情況見表1[2]。

由表1可見,封裝引腳數越多的CSP尺寸遠比傳統封裝形式小,易於實現高密度封裝,在IC規模不斷擴大的情況下,競爭優勢十分明顯,因而已經引起了IC製造業界的關注。

一般地,CSP封裝面積不到0.5mm節距QFP的1/10,只有BGA的1/3~1/10[3]。在各種相同尺寸的晶元封裝中,CSP可容納的引腳數最多,適宜進行多引腳數封裝,甚至可以應用在I/O數超過2000的高性能晶元上。例如,引腳節距為0.5mm,封裝尺寸為40×40的QFP,引腳數最多為304根,若要增加引腳數,只能減小引腳節距,但在傳統工藝條件下,QFP難以突破0.3mm的技術極限;與CSP相提並論的是BGA封裝,它的引腳數可達600~1000根,但值得重視的是,在引腳數相同的情況下,CSP的組裝遠比BGA容易。

(2)電學性能優良CSP的內部布線長度(僅為0.8~1.0mm)比QFP或BGA的布線長度短得多[4],寄生引線電容(<0.001mΩ)、引線電阻(<0.001nH)及引線電感(<0.001pF)均很小,從而使信號傳輸延遲大為縮短。CSP的存取時間比QFP或BGA短1/5~1/6左右,同時CSP的抗噪能力強,開關雜訊只有DIP(雙列直插式封裝)的1/2。這些主要電學性能指標已經接近裸晶元的水平,在時鍾頻率已超過雙G的高速通信領域,LSI晶元的CSP將是十分理想的選擇。

(3)測試、篩選、老化容易MCM技術是當今最高效、最先進的高密度封裝之一,其技術核心是採用裸晶元安裝,優點是無內部晶元封裝延遲及大幅度提高了組件封裝密度,因此未來市場令人樂觀。但它的裸晶元測試、篩選、老化問題至今尚未解決,合格裸晶元的獲得比較困難,導致成品率相當低,製造成本很高[4];而CSP則可進行全面老化、篩選、測試,並且操作、修整方便,能獲得真正的KGD晶元,在目前情況下用CSP替代裸晶元安裝勢在必行。

(4)散熱性能優良CSP封裝通過焊球與PCB連接,由於接觸面積大,所以晶元在運行時所產生的熱量可以很容易地傳導到PCB上並散發出去;而傳統的TSOP(薄型小外形封裝)方式中,晶元是通過引腳焊在PCB上的,焊點和pcb板的接觸面積小,使晶元向PCB板散熱就相對困難。測試結果表明,通過傳導方式的散熱量可佔到80%以上。

同時,CSP晶元正面向下安裝,可以從背面散熱,且散熱效果良好,10mm×10mmCSP的熱阻為35℃/W,而TSOP、QFP的熱阻則可達40℃/W。若通過散熱片強製冷卻,CSP的熱阻可降低到4.2,而QFP的則為11.8[3]。

(5)封裝內無需填料大多數CSP封裝中凸點和熱塑性粘合劑的彈性很好,不會因晶片與基底熱膨脹系數不同而造成應力,因此也就不必在底部填料(underfill),省去了填料時間和填料費用[5],這在傳統的SMT封裝中是不可能的。

(6)製造工藝、設備的兼容性好CSP與現有的SMT工藝和基礎設備的兼容性好,而且它的引腳間距完全符合當前使用的SMT標准(0.5~1mm),無需對PCB進行專門設計,而且組裝容易,因此完全可以利用現有的半導體工藝設備、組裝技術組織生產。

2.2CSP的基本結構及分類

CSP的結構主要有4部分:IC晶元,互連層,焊球(或凸點、焊柱),保護層。互連層是通過載帶自動焊接(TAB)、引線鍵合(WB)、倒裝晶元(FC)等方法來實現晶元與焊球(或凸點、焊柱)之間內部連接的,是CSP封裝的關鍵組成部分。CSP的典型結構如圖1所示[6]。

目前全球有50多家IC廠商生產各種結構的CSP產品。根據目前各廠商的開發情況,可將CSP封裝分為下列5種主要類別[7、3]:

(1)柔性基板封裝(FlexCircuitInterposer)由美國Tessera公司開發的這類CSP封裝的基本結構如圖2所示。主要由IC晶元、載帶(柔性體)、粘接層、凸點(銅/鎳)等構成。載帶是用聚醯亞胺和銅箔組成。它的主要特點是結構簡單,可靠性高,安裝方便,可利用原有的TAB(TapeAutomatedBonding)設備焊接。

(2)剛性基板封裝(RigidSubstrateInterposer)由日本Toshiba公司開發的這類CSP封裝,實際上就是一種陶瓷基板薄型封裝,其基本結構見圖3。它主要由晶元、氧化鋁(Al2O3)基板、銅(Au)凸點和樹脂構成。通過倒裝焊、樹脂填充和列印3個步驟完成。它的封裝效率(晶元與基板面積之比)可達到75%,是相同尺寸的TQFP的2.5倍。

(3)引線框架式CSP封裝(CustomLeadFrame)由日本Fujitsu公司開發的此類CSP封裝基本結構如圖4所示。它分為Tape-LOC和MF-LOC

兩種形式,將晶元安裝在引線框架上,引線框架作為外引腳,因此不需要製作焊料凸點,可實現晶元與外部的互連。它通常分為Tape-LOC和MF-LOC兩種形式。

(4)圓片級CSP封裝(Wafer-LevelPackage)由ChipScale公司開發的此類封裝見圖5。它是在圓片前道工序完成後,直接對圓片利用半導體工藝進行後續組件封裝,利用劃片槽構造周邊互連,再切割分離成單個器件。WLP主要包括兩項關鍵技術即再分布技術和凸焊點製作技術。它有以下特點:①相當於裸片大小的小型組件(在最後工序切割分片);②以圓片為單位的加工成本(圓片成本率同步成本);③加工精度高(由於圓片的平坦性、精度的穩定性)。

(5)微小模塑型CSP(MinuteMold)由日本三菱電機公司開發的CSP結構如圖6所示。它主要由IC晶元、模塑的樹脂和凸點等構成。晶元上的焊區通過在晶元上的金屬布線與凸點實現互連,整個晶元澆鑄在樹脂上,只留下外部觸點。這種結構可實現很高的引腳數,有利於提高晶元的電學性能、減少封裝尺寸、提高可靠性,完全可以滿足儲存器、高頻器件和邏輯器件的高I/O數需求。同時由於它無引線框架和焊絲等,體積特別小,提高了封裝效率。

除以上列舉的5類封裝結構外,還有許多符合CSP定義的封裝結構形式如μBGA、焊區陣列CSP、疊層型CSP(一種多晶元三維封裝)等。

3CSP封裝技術展望

3.1有待進一步研究解決的問題

盡管CSP具有眾多的優點,但作為一種新型的封裝技術,難免還存在著一些不完善之處。

(1)標准化每個公司都有自己的發展戰略,任何新技術都會存在標准化不夠的問題。尤其當各種不同形式的CSP融入成熟產品中時,標准化是一個極大的障礙[8]。例如對於不同尺寸的晶元,目前有多種CSP形式在開發,因此組裝廠商要有不同的管座和載體等各種基礎材料來支撐,由於器件品種多,對材料的要求也多種多樣,導致技術上的靈活性很差。另外沒有統一的可靠性數據也是一個突出的問題。CSP要獲得市場准入,生產廠商必須提供可靠性數據,以盡快制訂相應的標准。CSP迫切需要標准化,設計人員都希望封裝有統一的規格,而不必進行個體設計。為了實現這一目標,器件必須規范外型尺寸、電特性參數和引腳面積等,只有採用全球通行的封裝標准,它的效果才最理想[9]。

(2)可靠性可靠性測試已經成為微電子產品設計和製造一個重要環節。CSP常常應用在VLSI晶元的制備中,返修成本比低端的QFP要高,CSP的系統可靠性要比採用傳統的SMT封裝更敏感,因此可靠性問題至關重要。雖然汽車及工業電子產品對封裝要求不高,但要能適應惡劣的環境,例如在高溫、高濕下工作,可靠性就是一個主要問題。另外,隨著新材料、新工藝的應用,傳統的可靠性定義、標准及質量保證體系已不能完全適用於CSP開發與製造,需要有新的、系統的方法來確保CSP的質量和可靠性,例如採用可靠性設計、過程式控制制、專用環境加速試驗、可信度分析預測等。

可以說,可靠性問題的有效解決將是CSP成功的關鍵所在[10,11]。
(3)成本價格始終是影響產品(尤其是低端產品)市場競爭力的最敏感因素之一。盡管從長遠來看,更小更薄、高性價比的CSP封裝成本比其他封裝每年下降幅度要大,但在短期內攻克成本這個障礙仍是一個較大的挑戰[10]。

目前CSP是價格比較高,其高密度光板的可用性、測試隱藏的焊接點所存在的困難(必須藉助於X射線機)、對返修技術的生疏、生產批量大小以及涉及局部修改的問題,都影響了產品系統級的價格比常規的BGA器件或TSOP/TSSOP/SSOP器件成本要高。但是隨著技術的發展、設備的改進,價格將會不斷下降。目前許多製造商正在積極採取措施降低CSP價格以滿足日益增長的市場需求。

隨著便攜產品小型化、OEM(初始設備製造)廠商組裝能力的提高及矽片工藝成本的不斷下降,圓片級CSP封裝又是在晶圓片上進行的,因而在成本方面具有較強的競爭力,是最具價格優勢的CSP封裝形式,並將最終成為性能價格比最高的封裝。

此外,還存在著如何與CSP配套的一系列問題,如細節距、多引腳的PWB微孔板技術與設備開發、CSP在板上的通用安裝技術[12]等,也是目前CSP廠商迫切需要解決的難題。

3.2CSP的未來發展趨勢

(1)技術走向終端產品的尺寸會影響攜帶型產品的市場同時也驅動著CSP的市場。要為用戶提供性能最高和尺寸最小的產品,CSP是最佳的封裝形式。順應電子產品小型化發展的的潮流,IC製造商正致力於開發0.3mm甚至更小的、尤其是具有盡可能多I/O數的CSP產品。據美國半導體工業協會預測,目前CSP最小節距相當於2010年時的BGA水平(0.50mm),而2010年的CSP最小節距相當於目前的倒裝晶元(0.25mm)水平。

由於現有封裝形式的優點各有千秋,實現各種封裝的優勢互補及資源有效整合是目前可以採用的快速、低成本的提高IC產品性能的一條途徑。例如在同一塊PWB上根據需要同時納入SMT、DCA,BGA,CSP封裝形式(如EPOC技術)。目前這種混合技術正在受到重視,國外一些結構正就此開展深入研究。

對高性價比的追求是圓片級CSP被廣泛運用的驅動力。近年來WLP封裝因其寄生參數小、性能高且尺寸更小(己接近晶元本身尺寸)、成本不斷下降的優勢,越來越受到業界的重視。WLP從晶圓片開始到做出器件,整個工藝流程一起完成,並可利用現有的標准SMT設備,生產計劃和生產的組織可以做到最優化;硅加工工藝和封裝測試可以在矽片生產線上進行而不必把晶圓送到別的地方去進行封裝測試;測試可以在切割CSP封裝產品之前一次完成,因而節省了測試的開支。總之,WLP成為未來CSP的主流已是大勢所驅[13~15]。

(2)應用領域CSP封裝擁有眾多TSOP和BGA封裝所無法比擬的優點,它代表了微小型封裝技術發展的方向。一方面,CSP將繼續鞏固在存儲器(如快閃記憶體、SRAM和高速DRAM)中應用並成為高性能內存封裝的主流;另一方面會逐步開拓新的應用領域,尤其在網路、數字信號處理器(DSP)、混合信號和RF領域、專用集成電路(ASIC)、微控制器、電子顯示屏等方面將會大有作為,例如受數字化技術驅動,便攜產品廠商正在擴大CSP在DSP中的應用,美國TI公司生產的CSP封裝DSP產品目前已達到90%以上。

此外,CSP在無源器件的應用也正在受到重視,研究表明,CSP的電阻、電容網路由於減少了焊接連接數,封裝尺寸大大減小,且可靠性明顯得到改善。
(3)市場預測CSP技術剛形成時產量很小,1998年才進入批量生產,但近兩年的發展勢頭則今非昔比,2002年的銷售收入已達10.95億美元,佔到IC市場的5%左右。國外權威機構「ElectronicTrendPublications」預測,全球CSP的市場需求量年內將達到64.81億枚,2004年為88.71億枚,2005年將突破百億枚大關,達103.73億枚,2006年更可望增加到126.71億枚。尤其在存儲器方面應用更快,預計年增長幅度將高達54.9%。

⑹ 塔吊回轉制動電路怎麼接

啟動時,按下啟動按鈕SB2 ,SB2 的一組常開觸點(-5)閉合,接通交流接觸器KM1 和斷電延時繼電器KT 線圈迴路電源,KM1 和KT 線圈得電吸合且KM1 常開觸點(3-5)閉合自鎖,KM1 三相主觸點閉合,電動機得電啟動運轉。

在KT 線圈得電吸合後,KT 失電延時斷開的常開觸點(1-9)立即閉合,為制動時延時切除KM2 線圈迴路電源做准備。注意,在按下啟動按鈕的同時,SB2 的另外一組常閉觸點(9-11)斷開。(SB2、KT都是一個整體圖,這是電路圖)

(6)威建電路擴展閱讀

塔吊共有兩套相同的回轉機械傳動系統,對稱布置,按順序由電機、液力耦合器、盤式制動器、行星齒輪減速機、回轉小齒輪、回轉大齒圈等部件組成。回轉大齒圈支座上連接一節與齒圈同心的回轉塔身,回轉塔身上連接吊臂,吊臂長度通常在50米以上。

吊物吊掛在起升鋼繩上沿吊臂運行。依照生產廠家「失電失制動」的設計原理,回轉機構的盤式制動器的作用主要用於大臂回轉到預定位置或塔吊加節、降節時固定塔臂不轉。

回轉機構的盤式制動器通常是完全松開的,也就是說在非工作(斷電)時,因為盤式制動器松開,與制動盤同軸線的行星齒輪減速機輸入軸、處於末端的回轉小齒輪軸無受力。

當大風推動塔臂時,由於回轉小齒輪不能緊緊剎在回轉大齒圈上,所以與回轉大齒圈有相對連接的吊臂將一直順風轉動下去。目的是使塔吊能隨風轉動,當大臂與風向平行時塔吊的迎風面積最小,從而可以減小風壓對塔吊的影響,避免強風導致塔吊傾覆。

生產廠家這一原理是建立在塔吊空載的情況下,當然是一種理想狀態。但是,工地上突發情況很多,如當大中型設備塔吊、打樁機同時作業時,電壓波動是常事,因電壓不穩跳閘現象頻頻發生。

突然的斷電會容易導致塔吊吊鉤上的吊物來不及卸下,此時塔吊隨著慣性塔臂的順風轉動,吊物隨意偏轉,與建築物、外架、作業工人隨時發生撞擊,特別是施工現場群塔密集時,吊物偏轉與別的塔吊起升鋼繩纏繞,牽拉,對兩台塔吊的安全構成巨大威脅,不及時處理後果很嚴重。

且傳統方式下塔吊回轉電磁製動的剎車制動方式只能急停或塔吊靜止時定位,不能實現緩慢減速停車,易造成塔吊大臂晃動或發生回轉變速箱損壞等重大事故,存在嚴重的安全隱患。


⑺ 求電路圖繪圖軟體

絕對適合你!
1繪圖助手(繪制各種簡單的電路圖/流程圖) V1.0 簡體中文綠色特別版

www.05sun.com/downinfo/5773.html

2. PADS2007專業電路設計與繪圖軟體

www.05sun.com/downinfo/6412.html

3. 繪圖助手 V1.0[繪制各種簡單的電路圖/流程圖]簡體中文綠色特別版

www.downxia.com/downinfo/3439.html

4. 繪圖助手 V1.0┊主要是用來繪制各種簡單的電路圖/流程圖┊簡體中文綠色特別版

www.greendown.cn/soft/7630.html

5. 繪圖助手(繪制各種簡單的電路圖/流程圖)V1.0 綠色特別版

www.52z.com/soft/12265.html

⑻ 怎麼在最短的時間內學會模擬電路

模擬電子電路沒有看到平時學習困難的考試很簡單,我想你走這條路,學習,當然,不花幾個月的時間,不是一兩天,甚至幾個小時,如果他們的考試資本超過60分,該程序是如下:
這時候你再看看書肯定來不及了,並不需要一定要找到近幾年,紙,這是你的考試必要的工具,以找到或可以吸取這個教訓,很少的了解,所以他說:在哈薩克的大問題,通道對應的章節(第一專業大問題,基本上是一個大問題的相應章節是獨立的,完整的章節不會來考試),然後依靠你各個擊破分析試題,你會發現每年考試的幾個公式,基本解決也是一個模式讓您徹底了解每章23認真考試就OK了,這時候不為什麼不這樣做,你是什麼就行了。
(1)本章的放大電路的直流通路交流通路交流等效電路共基極,共發射極,共集電極放大器計數的電壓增益,輸入,輸出電阻的花最好找人告訴這些多焦點的焦點你要更快一些。大的問題得到了近兩個小時,這章。
(2)第二個重要的困難是反饋放大電路章,考試的知識點也是固定的,基本的測試方法,以確定正,負反饋,負反饋放大電路的放大倍數公式的四個配置變焦性能的放大電路反饋系數。花1-2個小時就搞定了。
(3)在前面的半導體器件,二極體,三極體,場效應管這些事情的基礎,這部分的章節看,也花了很多的時間,因為後面基本使用。
(4)的電壓比較器的特性,閾值電壓的分析,各種基本的算術電路,矩形波和三角波的電路,圖中,直流穩壓電源,一個差分放大電路,式頻率響應的這些很快1小時的搞定
(5)最後,在半小時的考試,以填補在茫然的眼神,基本上所有的測試集在試卷上。
我希望你通過

⑼ 誰知道威海哪個小區是威建集團開發的,謝謝

威建集團開發的小區可多了,有威建新村 文化名居 藍灣怡庭 韓國風情街 悅海灣 北海新城。

⑽ 青建 煙建 威建哪個公司較好

首先從資質比較:中建跟煙建都屬於特技資質,威建是一級資質。
其次從穩定性比較:1、中建八局在中建屬於還不錯的公司,規模比較大,但體制比較臃腫,在裡面工作升職方面比較困難(除非能夠把裡面的關系疏通好),並且全國各地到處跑,工資可能稍微高點,但工作地點不固定,這方面跟威建跟煙建比,要遜色很多,2、威建跟煙建基本上都是做當地的工程,工作地點還算穩定(除了一些在別的地區的分公司),以後成家後起碼能有時間照顧家。
最後薪資待遇:普遍比較的話應該是中建的工資要高,畢竟人家是大的國企。但是不要忽略了雖然煙建跟威建總體實力不如中建,但旗下最好的分公司可能比中建八局青島分公司和第四分公司好,威建不是很了解,所以也不做評價(咱不能睜著眼說瞎話)拿煙建來講(比較了解),煙建十分公司是最好的(進十公司需要很硬的關系),待遇方面不方便透露,但是你能夠進來的話就什麼都不用想趕快進來吧,裡面基本上做的是煙台市政道路橋梁等工程,並且基本都是上億的項目,能學到很多東西,努力工作的話五六年買房買車不成問題。補充一下,煙建裡面的升職空間,公司定的是基本上工作3-5年可以做到技術負責人,6-8年可以做到項目經理,當然不排除比較變態的能夠兩年技術負責,四五年項目經理。希望我的回答能夠讓你滿意(能夠給你一個好的參考)。也祝你能夠找到一個好的工作。

閱讀全文

與威建電路相關的資料

熱點內容
揚州哪裡有三星手機維修點 瀏覽:57
怎麼修復傢具上的痕跡 瀏覽:230
中級維修電工證怎麼補 瀏覽:511
簡單電路檢測題 瀏覽:666
數字電路第六版答案 瀏覽:189
上海一恆深圳維修點 瀏覽:491
dw保修嗎 瀏覽:287
安塞供電維修電話 瀏覽:573
玉柴南京售後服務站 瀏覽:353
專修海信電視維修點 瀏覽:14
汽車維修保險能報多少 瀏覽:281
貼皮傢具為什麼貴 瀏覽:229
東升房頂防水補漏多少錢 瀏覽:773
泉州美的空調售後維修中心 瀏覽:763
麥克維爾空調維修售後是什麼 瀏覽:667
美式傢具漆怎麼做 瀏覽:611
rimova中國售後維修 瀏覽:441
貴陽五交化家電批發市場搬哪裡去了 瀏覽:621
安慶五羊本田售後服務 瀏覽:527
蘋果翻新機電池怎麼顯示 瀏覽:971