導航:首頁 > 電器電路 > 電路圖放大器

電路圖放大器

發布時間:2022-05-09 13:34:22

電路如下圖所示,運算放大器

這是運算放大制器的開環放大電路,因此放大倍數可認為為「∞」。因此,輸入端的小信號輸入也會造成運放輸出飽和,即輸出達到最大值,也就是運算放大器的電源電壓值。

由於 ui=2V從反相輸入端輸入,所以運放的輸出應為-12V;由於穩壓二極體的導通,所以uo輸出被鉗位在0.6V。

❷ 直流放大器有哪兩種

低頻電壓放大器
低頻電壓放大器是指工作頻率在 20 赫~ 20 千赫之間、輸出要求有一定電壓值而不要求很強的電流的放大器。

( 1 )共發射極放大電路

圖 1 ( a )是共發射極放大電路。 C1 是輸入電容, C2 是輸出電容,三極體 VT 就是起放大作用的器件, RB 是基極偏置電阻
,RC 是集電極負載電阻。 1 、 3 端是輸入, 2 、 3 端是輸出。 3 端是公共點,通常是接地的,也稱「地」端。靜態時的直流通路見圖 1
( b ),動態時交流通路見圖 1 ( c
)。電路的特點是電壓放大倍數從十幾到一百多,輸出電壓的相位和輸入電壓是相反的,性能不夠穩定,可用於一般場合。

( 2 )分壓式偏置共發射極放大電路

圖 2 比圖 1 多用 3 個元件。基極電壓是由 RB1 和 RB2 分壓取得的,所以稱為分壓偏置。發射極中增加電阻 RE 和電容 CE
, CE 稱交流旁路電容,對交流是短路的; RE
則有直流負反饋作用。所謂反饋是指把輸出的變化通過某種方式送到輸入端,作為輸入的一部分。如果送回部分和原來的輸入部分是相減的,就是負反饋。圖中基極真正的輸入電壓是
RB2 上電壓和 RE 上電壓的差值,所以是負反饋。由於採取了上面兩個措施,使電路工作穩定性能提高,是應用最廣的放大電路。

( 3 )射極輸出器

圖 3 ( a )是一個射極輸出器。它的輸出電壓是從射極輸出的。圖 3 ( b )是它的交流通路圖,可以看到它是共集電極放大電路。

這個圖中,晶體管真正的輸入是
V i 和 V o 的差值,所以這是一個交流負反饋很深的電路。由於很深的負反饋,這個電路的特點是:電壓放大倍數小於 1 而接近 1
,輸出電壓和輸入電壓同相,輸入阻抗高輸出阻抗低,失真小,頻帶寬,工作穩定。它經常被用作放大器的輸入級、輸出級或作阻抗匹配之用。

( 4 )低頻放大器的耦合

一個放大器通常有好幾級,級與級之間的聯系就稱為耦合。放大器的級間耦合方式有三種: ①RC 耦合,見圖 4 ( a
)。優點是簡單、成本低。但性能不是最佳。 ② 變壓器耦合,見圖 4 ( b )。優點是阻抗匹配好、輸出功率和效率高,但變壓器製作比較麻煩。 ③
直接耦合,見圖 4 ( c )。優點是頻帶寬,可作直流放大器使用,但前後級工作有牽制,穩定性差,設計製作較麻煩。

功率放大器

能把輸入信號放大並向負載提供足夠大的功率的放大器叫功率放大器。例如收音機的末級放大器就是功率放大器。

( 1 )甲類單管功率放大器

圖 5 是單管功率放大器, C1 是輸入電容, T 是輸出變壓器。它的集電極負載電阻 Ri′ 是將負載電阻 R L 通過變壓器匝數比折算過來的:

RC′= ( N1 N2 ) 2 RL=N 2 RL

負載電阻是低阻抗的揚聲器,用變壓器可以起阻抗變換作用,使負載得到較大的功率。

這個電路不管有沒有輸入信號,晶體管始終處於導通狀態,靜態電流比較大,困此集電極損耗較大,效率不高,大約只有 35 %。這種工作狀態被稱為甲類工作狀態。這種電路一般用在功率不太大的場合,它的輸入方式可以是變壓器耦合也可以是 RC 耦合。

( 2 )乙類推挽功率放大器

圖 6
是常用的乙類推挽功率放大電路。它由兩個特性相同的晶體管組成對稱電路,在沒有輸入信號時,每個管子都處於截止狀態,靜態電流幾乎是零,只有在有信號輸入時管子才導通,這種狀態稱為乙類工作狀態。當輸入信號是正弦波時,正半周時
VT1 導通 VT2 截止,負半周時 VT2 導通 VT1
截止。兩個管子交替出現的電流在輸出變壓器中合成,使負載上得到純正的正弦波。這種兩管交替工作的形式叫做推挽電路。

乙類推挽放大器的輸出功率較大,失真也小,效率也較高,一般可達 60 %。

( 3 ) OTL 功率放大器

目前廣泛應用的無變壓器乙類推挽放大器,簡稱 OTL 電路,是一種性能很好的功率放大器。為了

易於說明,先介紹一個有輸入變壓器沒有輸出變壓器的 OTL 電路,如圖 7 。

這個電路使用兩個特性相同的晶體管,兩組偏置電阻和發射極電阻的阻值也相同。在靜態時,
VT1 、 VT2 流過的電流很小,電容 C 上充有對地為 1 2 E c 的直流電壓。在有輸入信號時,正半周時 VT1 導通, VT2
截止,集電極電流 i c1 方向如圖所示,負載 RL 上得到放大了的正半周輸出信號。負半周時 VT1 截止, VT2 導通,集電極電流 i c2
的方向如圖所示, RL 上得到放大了的負半周輸出信號。這個電路的關鍵元件是電容器 C ,它上面的電壓就相當於 VT2 的供電電壓。

以這個電路為基礎,還有用三極體倒相的不用輸入變壓器的真正 OTL 電路,用 PNP 管和 NPN 管組成的互補對稱式 OTL 電路,以及最新的橋接推挽功率放大器,簡稱 BTL 電路等等。

直流放大器

能夠放大直流信號或變化很緩慢的信號的電路稱為直流放大電路或直流放大器。測量和控制方面常用到這種放大器。

( 1 )雙管直耦放大器

直流放大器不能用 RC 耦合或變壓器耦合,只能用直接耦合方式。圖 8
是一個兩級直耦放大器。直耦方式會帶來前後級工作點的相互牽制,電路中在 VT2 的發射極加電阻 R E
以提高後級發射極電位來解決前後級的牽制。直流放大器的另一個更重要的問題是零點漂移。所謂零點漂移是指放大器在沒有輸入信號時,由於工作點不穩定引起靜態電位緩慢地變化,這種變化被逐級放大,使輸出端產生虛假信號。放大器級數越多,零點漂移越嚴重。所以這種雙管直耦放大器只能用於要求不高的場合。

( 2 )差分放大器

解決零點漂移的辦法是採用差分放大器,圖 9 是應用較廣的射極耦合差分放大器。它使用雙電源,其中 VT1 和 VT2
的特性相同,兩組電阻數值也相同, R E 有負反饋作用。實際上這是一個橋形電路,兩個 R C 和兩個管子是四個橋臂,輸出電壓 V 0
從電橋的對角線上取出。沒有輸入信號時,因為 RC1=RC2 和兩管特性相同,所以電橋是平衡的,輸出是零。由於是接成橋形,零點漂移也很小。

差分放大器有良好的穩定性,因此得到廣泛的應用。

集成運算放大器

集成運算放大器是一種把多級直流放大器做在一個集成片上,只要在外部接少量元件就能完成各種功能的器件。因為它早期是用在模擬計算機中做加法器、乘法器用的,所以叫做運算放大器。它有十多個引腳,一般都用有
3 個端子的三角形符號表示,如圖 10 。它有兩個輸入端、 1 個輸出端,上面那個輸入端叫做反相輸入端,用「 —
」作標記;下面的叫同相輸入端,用「+」作標記。

集成運算放大器可以完成加、減、乘、除、微分、積分等多種模擬運算,也可以接成交流或直流放大器應用。在作放大器應用時有:

( 1 )帶調零的同相輸出放大電路

圖 11 是帶調零端的同相輸出運放電路。引腳 1 、 11 、 12 是調零端,調整 RP 可使輸出端( 8 )在靜態時輸出電壓為零。 9
、 6 兩腳分別接正、負電源。輸入信號接到同相輸入端( 5 ),因此輸出信號和輸入信號同相。放大器負反饋經反饋電阻 R2 接到反相輸入端( 4
)。同相輸入接法的電壓放大倍數總是大於 1 的。

( 2 )反相輸出運放電路

也可以使輸入信號從反相輸入端接入,如圖 12 。如對電路要求不高,可以不用調零,這時可以把 3 個調零端短路。

輸入信號從耦合電容 C1 經 R1 接入反相輸入端,而同相輸入端通過電阻 R3 接地。反相輸入接法的電壓放大倍數可以大於 1 、等於 1 或小於 1 。

( 3 )同相輸出高輸入阻抗運放電路

圖 13 中沒有接入 R1 ,相當於 R1 阻值無窮大,這時電路的電壓放大倍數等於 1 ,輸入阻抗可達幾百千歐。

放大電路讀圖要點和舉例

放大電路是電子電路中變化較多和較復雜的電路。在拿到一張放大電路圖時,首先要把它逐級分解開,然後一級一級分析弄懂它的原理,最後再全面綜合。讀圖時要注意:

在逐級分析時要區分開主要元器件和輔助元器件。放大器中使用的輔助元器件很多,如偏置電路中的溫度補償元件,穩壓穩流元器件,防止自激振盪的防振元件、去耦元件,保護電路中的保護元件等。

在分析中最主要和困難的是反饋的分析,要能找出反饋通路,判斷反饋的極性和類型,特別是多級放大器,往往以後級將負反饋加到前級,因此更要細致分析。 ③
一般低頻放大器常用 RC 耦合方式;高頻放大器則常常是和 LC
調諧電路有關的,或是用單調諧或是用雙調諧電路,而且電路里使用的電容器容量一般也比較小。 ④
注意晶體管和電源的極性,放大器中常常使用雙電源,這是放大電路的特殊性。

例 1 助聽器電路

圖 14
是一個助聽器電路,實際上是一個 4 級低頻放大器。 VT1 、 VT2 之間和 VT3 、 VT4 之間採用直接耦合方式, VT2 和 VT3
之間則用 RC 耦合。為了改善音質, VT1 和 VT3 的本級有並聯電壓負反饋( R2 和 R7
)。由於使用高阻抗的耳機,所以可以把耳機直接接在 VT4 的集電極迴路內。 R6 、 C2 是去耦電路, C6 是電源濾波電容。

例 2 收音機低放電路

圖 15 是普及型收音機的低放電路。電路共 3 級,第 1 級( VT1 )前置電壓放大,第 2 級( VT2 )是推動級,第 3 級(
VT3 、 VT4 )是推挽功放。 VT1 和 VT2 之間採用直接耦合, VT2 和 VT3 、 VT4 之間用輸入變壓器( T1
)耦合並完成倒相,最後用輸出變壓器( T2 )輸出,使用低阻揚聲器。此外, VT1 本級有並聯電壓負反饋( R1 ), T2 次級經 R3
送回到 VT2 有串聯電壓負反饋。電路中 C2 的作用是增強高音區的負反饋,減弱高音以增強低音。 R4 、 C4 為去耦電路, C3
為電源的濾波電容。整個電路簡單明了。

一個振盪器必須包括三部分:放大器、正反饋電路和選頻網路。放大器能對振盪器輸入端所加的輸入信號予以放大使輸出信號保持恆定的數值。正反饋電路保證向振盪器輸入端提供的反饋信號是相位相同的,只有這樣才能使振盪維持下去。選頻網路則只允許某個特定頻率
f 0 能通過,使振盪器產生單一頻率的輸出。

振盪器能不能振盪起來並維持穩定的輸出是由以下兩個條件決定的;一個是反饋電壓
u f 和輸入電壓 U i 要相等,這是振幅平衡條件。二是 u f 和 u i
必須相位相同,這是相位平衡條件,也就是說必須保證是正反饋。一般情況下,振幅平衡條件往往容易做到,所以在判斷一個振盪電路能否振盪,主要是看它的相位平衡條件是否成立。

振盪器按振盪頻率的高低可分成超低頻( 20 赫以下)、低頻( 20 赫~ 200 千赫)、高頻( 200 千赫~ 30 兆赫)和超高頻( 10 兆赫~ 350 兆赫)等幾種。按振盪波形可分成正弦波振盪和非正弦波振盪兩類。

正弦波振盪器按照選頻網路所用的元件可以分成 LC 振盪器、 RC 振盪器和石英晶體振盪器三種。石英晶體振盪器有很高的頻率穩定度,只在要求很高的場合使用。在一般家用電器中,大量使用著各種 L C 振盪器和 RG 振盪器。

LC 振盪器

LC 振盪器的選頻網路是 LC 諧振電路。它們的振盪頻率都比較高,常見電路有 3 種。

( 1 )變壓器反饋 LC 振盪電路


1 ( a )是變壓器反饋 LC 振盪電路。晶體管 VT 是共發射極放大器。變壓器 T 的初級是起選頻作用的 LC 諧振電路,變壓器 T
的次級向放大器輸入提供正反饋信號。接通電源時, LC 迴路中出現微弱的瞬變電流,但是只有頻率和迴路諧振頻率 f 0
相同的電流才能在迴路兩端產生較高的電壓,這個電壓通過變壓器初次級 L1 、 L2 的耦合又送回到晶體管 V 的基極。從圖 1 ( b
)看到,只要接法沒有錯誤,這個反饋信號電壓是和輸入信號電壓相位相同的,也就是說,它是正反饋。因此電路的振盪迅速加強並最後穩定下來。

變壓器反饋 LC 振盪電路的特點是:頻率范圍寬、容易起振,但頻率穩定度不高。它的振盪頻率是: f 0 =1 / 2π LC 。常用於產生幾十千赫到幾十兆赫的正弦波信號。

( 2 )電感三點式振盪電路


2 ( a )是另一種常用的電感三點式振盪電路。圖中電感 L1 、 L2 和電容 C 組成起選頻作用的諧振電路。從 L2
上取出反饋電壓加到晶體管 VT 的基極。從圖 2 ( b
)看到,晶體管的輸入電壓和反饋電壓是同相的,滿足相位平衡條件的,因此電路能起振。由於晶體管的 3 個極是分別接在電感的 3
個點上的,因此被稱為電感三點式振盪電路。

電感三點式振盪電路的特點是:頻率范圍寬、容易起振,但輸出含有較多高次調波,波形較差。它的振盪頻率是: f 0 =1/2π LC ,其中 L=L1 + L2 + 2M 。常用於產生幾十兆赫以下的正弦波信號。

( 3 )電容三點式振盪電路

還有一種常用的振盪電路是電容三點式振盪電路,見圖
3 ( a )。圖中電感 L 和電容 C1 、 C2 組成起選頻作用的諧振電路,從電容 C2 上取出反饋電壓加到晶體管 VT 的基極。從圖 3
( b )看到,晶體管的輸入電壓和反饋電壓同相,滿足相位平衡條件,因此電路能起振。由於電路中晶體管的 3 個極分別接在電容 C1 、 C2 的
3 個點上,因此被稱為電容三點式振盪電路。

電容三點式振盪電路的特點是:頻率穩定度較高,輸出波形好,頻率可以高達 100 兆赫以上,但頻率調節范圍較小,因此適合於作固定頻率的振盪器。它的振盪頻率是: f 0 =1/2π LC ,其中 C= C 1 C 2 C 1 +C 2 。

上面 3 種振盪電路中的放大器都是用的共發射極電路。共發射極接法的振盪器增益較高,容易起振。也可以把振盪電路中的放大器接成共基極電路形式。共基極接法的振盪器振盪頻率比較高,而且頻率穩定性好。

❸ 簡單的功放電路圖

功率放大器(英文名稱:power amplifier),簡稱「功放」,是指在給定失真率條件下,內能產生最大功容率輸出以驅動某一負載(例如揚聲器)的放大器。功率放大器在整個音響系統中起到了「組織、協調」的樞紐作用,在某種程度上主宰著整個系統能否提供良好的音質輸出。

工作原理

利用三極體的電流控製作用或場效應管的電壓控製作用將電源的功率轉換為按照輸入信號變化的電流。因為聲音是不同振幅和不同頻率的波,即交流信號電流,三極體的集電極電流永遠是基極電流的β倍,β是三極體的交流放大倍數,應用這一點,若將小信號注入基極,則集電極流過的電流會等於基極電流的β倍,然後將這個信號用隔直電容隔離出來,就得到了電流(或電壓)是原先的β倍的大信號,這現象成為三極體的放大作用。經過不斷的電流放大,就完成了功率放大。

❹ 放大電路的工作原理是什麼

放大電路是利用具有放大特性的電子元件,如晶體三極體,三極體加上工作電壓後,輸入端的微小電流變化可以引起輸出端較大電流的變化,輸出端的變化要比輸入端的變化大幾倍到幾百倍,這就是放大電路的基本原理。

❺ 請教LM258作為放大器的簡單電路原理圖

LM258是一種應用及其廣泛的雙運算放大器,它具有價格低,電壓范圍廣等優專勢,下面是 LM258的典型應用電路屬原理圖:

(5)電路圖放大器擴展閱讀:

放大器

輸入級一般是由BJT、JFET或MOSFET組成的差動放大電路,利用它的對稱特性可以提高整個電路的共模抑制比和其他方面的性能,它的兩個輸人端構成整個電路的反相輸入端和同相輸入端。電壓放大級的主要作用是提高電壓增益,它可由一級或多級放大電路組成。

輸出級一般由電壓跟隨器或互補電壓跟隨器構成,以降低輸出電阻,提高帶負載能力。偏置電路是為各級提供合適的工作電流。此外還有一些輔助環節。如電平移動電路,過載保護電路以及高頻補償電路等。

❻ 光纖放大器的電路原理圖

光纖放大器的性能與光偏振方向無關,

器件與光纖的耦合損耗很小,內

因而得到廣泛應用。

光纖容放大器實際上是把工作物質製作成光纖形狀的固體激光器,所以也稱為光纖激光

器。

20世紀80年代末期,波長為1.55μm的摻鉺(Er)光纖放大器(EDFA:ErbiumDopedFiberAmplifier)研製成功並投入實用,把光纖通信技術水平推向一個新高度,成為光纖通信發展史上一個重要的里程碑。


如下圖:

❼ 電路圖上怎麼分析放大器的串聯,並聯,電壓,電流的負反饋方法

就運算放大器電路而言:
反饋信號與輸入信號都加在同一個輸入端(同相或反相端專)的,是並聯反饋,而分屬別加在不同輸入端(一個在同相端,一個在反相端)的,是串聯反饋;
反饋信號取自放大器輸出端所接的負載上的電壓,就是電壓反饋;
反饋信號取自放大器輸出端所接的負載上的電流,就是電流反饋;

❽ 同相放大電路圖和反相放大電路圖的區別

區別是輸入端方向不一樣。同相放大電路的輸入信號是從同相輸入端輸入 ,反相放大電路的輸入信號加在反相輸入端。

❾ 在電路圖中如何分別放大器和穩壓器

電路圖中:放大器常用三角形表示,穩壓器常用矩形表示;放大器功能腳有Vin端常有+、-而穩壓器Vin端沒有;放大器除了標有Vin、Vout還有GND、Vcc(有雙電源的還有Vee),穩壓器除了標有Vin、Vout只有GND沒有其它;再後還能從型號上區分,如LM78××、LM79××等都是穩壓器,LM324、LM339等就是放大器。

❿ 功放電路圖 詳細講解

OTL電路為單端推挽式無輸出變壓器功率放大電路。通常採用電源供電,從兩組串聯的輸出中點通過電容耦合輸出信號。 OTL(Output transformerless )電路是一種沒有輸出變壓器的功率放大電路。過去大功率的功率放大器多採用變壓器耦合方式,以解決阻抗變換問題,使電路得到最佳負載值。 但是,這種電路有體積大、笨重、頻率特性不好等缺點,目前已較少使用。OTL電路不再用輸出變壓器,而採用輸出電容與負載連接的互補對稱功率放大電路,使電路輕便、適於電路的集成化,只要輸出電容的容量足夠大,電路的頻率特性也能保證,是目前常見的一種功率放大電路。 它的特點是:採用互補對稱電路(NPN、PNP參數一致,互補對稱,均為射隨組態,串聯,中間兩管子的射極作為輸出),有輸出電容,單電源供電,電路輕便可靠。 「兩組串聯的輸出中點」可理解為採用互補對稱電路(NPN、PNP參數一致,互補對稱,均為射隨組態,串聯,中間兩管子的射極作為輸出)。 OTL電路的優點是只需要一組電源供電。缺點是需要能把一組電源變成了兩組對稱正、負電源的大電容;低頻特性差。

功率放大器(英文名稱:power amplifier),簡稱「功放」,是指在給定失真率條件下,能產生最大功率輸出以驅動某一負載(例如揚聲器)的放大器。功率放大器在整個音響系統中起到了「組織、協調」的樞紐作用,在某種程度上主宰著整個系統能否提供良好的音質輸出。

閱讀全文

與電路圖放大器相關的資料

熱點內容
揚州哪裡有三星手機維修點 瀏覽:57
怎麼修復傢具上的痕跡 瀏覽:230
中級維修電工證怎麼補 瀏覽:511
簡單電路檢測題 瀏覽:666
數字電路第六版答案 瀏覽:189
上海一恆深圳維修點 瀏覽:491
dw保修嗎 瀏覽:287
安塞供電維修電話 瀏覽:573
玉柴南京售後服務站 瀏覽:353
專修海信電視維修點 瀏覽:14
汽車維修保險能報多少 瀏覽:281
貼皮傢具為什麼貴 瀏覽:229
東升房頂防水補漏多少錢 瀏覽:773
泉州美的空調售後維修中心 瀏覽:763
麥克維爾空調維修售後是什麼 瀏覽:667
美式傢具漆怎麼做 瀏覽:611
rimova中國售後維修 瀏覽:441
貴陽五交化家電批發市場搬哪裡去了 瀏覽:621
安慶五羊本田售後服務 瀏覽:527
蘋果翻新機電池怎麼顯示 瀏覽:971