A. 運放電路解析
若按照理想運放的虛短,虛斷原則,3、4腳之間電壓為零,此時R起不到調節作用,但實際的運放並非如此,3、4腳之間會有一定偏壓,而由於運放的輸入阻抗很高,可以認為電流只從R流過,此時通過調節R便可以達到調節電流的目的,注意到你的R3為2.2M,即使一個很小的電流流過也會產生很高的壓降。但你運放的參考電壓接的是電源,所以輸出電壓應該是以VCC為參考的。
B. 運放電路分析
工作原理:D1、D2為限幅管先不作考慮,假如電路有雜訊「+」信號時經R1、R2分壓後給運放3+端,而版2「-」端由於電容權C的存在,電壓不能馬上上升,所以3、2輸入差模放大,6端輸出不斷增大,當到達限定幅度時(沒有限幅就達電源電壓),電容電壓上升到2、3相等,輸出為0,輸出6的電壓被R1、R2拉低,而電容放電不會馬上降低電壓,所以,2、3端出現反向壓差,輸出6向"-"方向變化,過程與上面相似,只是方向相反。如此循環,振盪就產生了。
C. 運放整流電路,怎麼實現整流的
D. 運放電路分析
我將會用大約十篇文章把運放的最基本的知識介紹清楚,這是第一篇。
運放這個詞既熟悉又陌生,既簡單有不簡單,說它熟悉,是因為它的應用非常廣泛,經常聽說它,說它陌生,是因為運放內部的電路結構非常復雜,很難搞清楚。說它簡單,因為在設計運放電路時,可以避免晶體管電路的復雜參數計算,說它不簡單,因為很多時候運放並不理想,若按理想運放來設計電路,會導致結果錯誤。
1、什麼是運放
運放是運算放大器的簡稱。可以實現各種模擬電量的數學運算。但它不是用來做計算器上的加減乘除運算,而是在模擬信號處理過程中,可能需要將信號進行放大、加減乘除、積分、微分等操作。
①、運放的電路符號是:
pin 2、3為信號輸入、pin 4、7為電源輸入、pin 6為信號輸出。
②、輸入輸出關系:Uo = A * (Up-Un)
A為運放的放大倍數,這個數值非常非常大,近似為無窮大,Up與Un幾乎相等。Uo,Up,Un為正常的數值。這個表達式初看太奇怪了,但是它確實那麼的有用,大大簡化了電路的設計,後面會慢慢解釋。
③、最重要的性質:「虛短」和「虛斷」
虛短:因為上面表達式中Up與Un幾乎相等,所以pin 2、3近似短路,但不是真的短路,所以叫虛短。
虛斷:pin 2、3的輸入阻抗非常大,至少在1Mohm。所以可以認為Pin2、3上的輸入電流為零,所以叫虛斷。
2、反相比例運放電路
只要記住Uo = A * (Up-Un)和「虛短」、「虛斷」,理想運放的電路都能看懂。這里先不要糾結為什麼會是這樣,有機會後面會介紹。這里先介紹一個最簡單的運放電路:反相比例放大電路。
①、根據虛斷原理,運放輸入端的兩個管腳輸入電流為零,所以不管R4阻值是多少,都有Up=0;
②、根據虛短原理,Un=Up,所以Un也等於零。
③、根據基爾霍夫定理就可以求出:Uo=-Rf/R1 * Ui
④、理論上,R2和RL的阻值不會影響放大倍數,但是實際的運放需要設計R2=R1 || Rf,因為這樣一來,運放的同相端和反相端往外看的阻抗才一樣大。
⑤、從模擬結果可以看出反向比例放大器的輸出與輸入波形ui是精確的5倍的關系。
3、總結
理想運放如此簡單,我們根本不需要了解運放裡面的東西,不需要像三極體那樣考慮它到底工作在哪個區,不需要考慮密勒效應,輸入輸出阻抗等等,只需要用電阻分壓的方法就能得到想要的精確的放大倍數。用起來簡單,性能又好,這是運放廣泛應用的重要原因。
反相比例運放是我們認識運放的第一個例子。也是最簡單,最基礎的應用,後面會慢慢介紹其他的電路,以及實際運放的應用。
E. 運放電路求解,謝謝
這個電路是單電源轉雙電源電路,圖中你說的那兩個電容就是電源濾波電容。這個運放是接成電壓跟隨器使用的,R40是反饋電阻,運放接成跟隨器使用時,該電阻可以短路不用。這個電路可以將單電源變成雙電源(這個雙電源是以運放的7腳為地)。若直接用電阻分壓,帶負載能力很差。
F. 利用運放怎樣實現由方波變成正弦波
方波是無法轉換成正弦波的,正弦波可以轉化成方波。方波積分是三角波,三角波微分是方波。三角波再多次積分就可以得到正弦波,或者經過二極體網路轉化。弦波通過施密特觸發器或比較器可轉換為方波。
方波通常會與電子和訊號處理時出現。理想方波只有「高」和「低」這兩個值。電流或電壓的波形為矩形的信號即為矩形波信號,高電平在一個波形周期內佔有的時間比值稱為占空比;
也可理解為電路釋放能量的有效釋放時間與總釋放時間的比值。占空比為50%的矩形波稱之為方波,方波有低電平為零與為負之分。必要時,可加以說明「低電平為零」、「低電平為負」。
(6)運放輪流電路擴展閱讀:
方波的相關介紹:
用加法合成增加和諧的數目來製造方波,在現實世界,方波只有有限的帶寬,因此會出現嚴重的吉布斯現象並常常表現出像吉布斯現象一樣的振鈴效應, 或者是像σ近似一樣的波動效應。
在現實世界,數碼電子的帶寬有限,方波只能以有限的帶寬來表達,意味著我們只能取一個近此方波的波型。要得出這個合理的波型,最少要有基波和第三次諧波。當然,諧波的數量越多,波型就越像一個方波。
占空比是方波值「1」佔一個周期的時間比例。真實方波的占空比是50%──即高值和低值占的時間一樣。方波的平均值是由占空比決定的,因此通過改變ON和OFF周期然後求平均數,有可能代表兩個限制電平間的任意值。這是脈寬調制的基礎。
信號具有良好的方波信號是指當在需要的時候,具有所必需達到的電壓電平數值。差的方波信號不是由某一單一因素導致的,而是板級設計中多種因素共同引起的。主要的方波信號問題包括反射、振盪、地彈、串擾等。
G. 運放電路的工作原理
運放電路的工作原理是把被控制的非電量(如溫度、轉速、壓力、流量、照度等)用感測器轉換為電信號,再與給定量比較,得到一個微弱的偏差信號。因為這個微弱的偏差信號的幅度和功率均不足以推動顯示或者執行機構,所以需要把這個偏差信號放大到需要的程度,再去推動執行機構或送到儀表中去顯示。
在感測器類型和(或)其使用環境帶來許多特別要求時,例如超低功耗、低雜訊、零漂移、軌到軌輸入及輸出、可靠的熱穩定性和對數以千計讀數和(或)在惡劣工作條件下提供一致性能的可再現性,運算放大器的選擇就會變得特別困難。
在基於感測器的復雜應用中,設計者需要進行多方面考慮,以便獲得規格與性能最佳組合的精密運算放大器,同時還需要考慮成本。具體而言,斬波穩定型運算放大器(零漂移放大器)非常適用於要求超低失調電壓以及零漂移的應用。斬波運算放大器通過持續運行在晶元上實現的校準機制來達到高DC精度。
(7)運放輪流電路擴展閱讀
在沒有特殊要求的場合,盡量選用通用型集成運放,這樣既可降低成本,又容易保證貨源。當一個系統中使用多個運放時,盡可能選用多運放集成電路,例如LM324、LF347等都是將四個運放封裝在一起的集成電路。
評價集成運放性能的優劣,應看其綜合性能。一般用優值系數K來衡量集成運放的優良程度,其定義為:式中,SR為轉換率,單位為V/ms,其值越大,表明運放的交流特性越好;Iib為運放的輸入偏置電流,單位是nA;VOS為輸入失調電壓,單位是mV。Iib和VOS值越小,表明運放的直流特性越好。
所以,對於放大音頻、視頻等交流信號的電路,選SR(轉換速率)大的運放比較合適;對於處理微弱的直流信號的電路,選用精度比較的高的運放比較合適(既失調電流、失調電壓及溫飄均比較小)。
實際選擇集成運放時,除優值系數要考慮之外,還應考慮其他因素。例如信號源的性質,是電壓源還是電流源;負載的性質,集成運放輸出電壓和電流的是否滿足要求;環境條件,集成運放允許工作范圍、工作電壓范圍、功耗與體積等因素是否滿足要求。
H. 運放跟隨電路
這個並非簡單的跟隨器,它包含了微分電路、積分電路。
R1與C組成微分電路,當輸入信號突變時運放輸出高脈沖信號,可以用於檢出輸入信號突變情況。
R2是運放的負載電阻,但並非是輸出的負載電阻。
R3與470uF電容組成積分電容,它以可以消除運放輸出的高脈沖信號。
如果不考慮突變過程,就是一個跟隨器電路。
下圖是當輸入信號突變時的輸出波形:
紅色是輸入信號,白色是運放輸出信號,藍色是最終輸出信號。
I. 運放電路的問題
作為這種應用,電阻不宜太大也不宜太小。
電阻太小:功耗大,要求信號源的驅動能力要強。
如你所示的反向比例放大,運放正輸入端接地,負輸入端虛地。
電路的輸入電阻為R1,
輸入電流i=Vi/R1,在R1太小,且前級信號源的內阻較大的話,對信號衰減就比較大。
電阻太大:
線路板的漏電流,會帶來影響,線路板表面的絕緣是有限的,尤其是當電路板商有灰塵或潮濕;
另一方面,高阻值的電阻製作時精度和穩定性都不太好控制,一般生產電阻的廠家,批量生產的電阻,其阻值范圍為10歐姆至10兆歐姆,尤其是精密電阻
在設計實際應用電路時,電阻一般在1k至1M之間根據情況選取。
特殊的或高精密應用時,應當特殊考慮。
而在用來測試運放本身的特性參數時,則電阻盡量取小,以消除線路板的影響,提高測試精度。
J. 運放電路的原理
【運放電路的原理】運放如圖有兩個輸入端a(反相輸入端),b(同相輸入端)和一個輸出端o。也分別被稱為倒向輸入端非倒向輸入端和輸出端。當電壓U-加在a端和公共端(公共端是電壓為零的點,它相當於電路中的參考結點。)之間,且其實際方向從a 端高於公共端時,輸出電壓U實際方向則自公共端指向o端,即兩者的方向正好相反。當輸入電壓U+加在b端和公共端之間,U與U+兩者的實際方向相對公共端恰好相同。為了區別起見,a端和b 端分別用"-"和"+"號標出,但不要將它們誤認為電壓參考方向的正負極性。電壓的正負極性應另外標出或用箭頭表示。反轉放大器和非反轉放大器如下圖:
一般可將運放簡單地視為:具有一個信號輸出埠(Out)和同相、反相兩個高阻抗輸入端的高增益直接耦合電壓放大單元,因此可採用運放製作同相、反相及差分放大器。
運放的供電方式分雙電源供電與單電源供電兩種。對於雙電源供電運放,其輸出可在零電壓兩側變化,在差動輸入電壓為零時輸出也可置零。採用單電源供電的運放,輸出在電源與地之間的某一范圍變化。
運放的輸入電位通常要求高於負電源某一數值,而低於正電源某一數值。經過特殊設計的運放可以允許輸入電位在從負電源到正電源的整個區間變化,甚至稍微高於正電源或稍微低於負電源也被允許。這種運放稱為軌到軌(rail-to-rail)輸入運算放大器。
運算放大器的輸出信號與兩個輸入端的信號電壓差成正比,在音頻段有:輸出電壓=A0(E1-E2),其中,A0 是運放的低頻開環增益(如 100dB,即 100000 倍),E1 是同相端的輸入信號電壓,E2 是反相端的輸入信號電壓。
【運放】是運算放大器的簡稱。在實際電路中,通常結合反饋網路共同組成某種功能模塊。由於早期應用於模擬計算機中,用以實現數學運算,故得名「運算放大器」,此名稱一直延續至今。運放是一個從功能的角度命名的電路單元,可以由分立的器件實現,也可以實現在半導體晶元當中。