導航:首頁 > 電器電路 > 多數門電路

多數門電路

發布時間:2022-05-24 03:49:26

㈠ 門電路工作原理

第五節 CMOS邏輯門電路
http://www.fjtu.com.cn/fjnu/courseware/0321/course/_source/web/lesson/char2/j6.htm 看看把

CMOS邏輯門電路是在TTL電路問世之後 ,所開發出的第二種廣泛應用的數字集成器件,從發展趨勢來看,由於製造工藝的改進,CMOS電路的性能有可能超越TTL而成為佔主導地位的邏輯器件 。CMOS電路的工作速度可與TTL相比較,而它的功耗和抗干擾能力則遠優於TTL。此外,幾乎所有的超大規模存儲器件 ,以及PLD器件都採用CMOS藝製造,且費用較低。
早期生產的CMOS門電路為4000系列 ,隨後發展為4000B系列。當前與TTL兼容的CMO器件如74HCT系列等可與TTL器件交換使用。下面首先討論CMOS反相器,然後介紹其他CMO邏輯門電路。

MOS管結構圖

MOS管主要參數:

1.開啟電壓VT
·開啟電壓(又稱閾值電壓):使得源極S和漏極D之間開始形成導電溝道所需的柵極電壓;
·標準的N溝道MOS管,VT約為3~6V;
·通過工藝上的改進,可以使MOS管的VT值降到2~3V。

2. 直流輸入電阻RGS
·即在柵源極之間加的電壓與柵極電流之比
·這一特性有時以流過柵極的柵流表示
·MOS管的RGS可以很容易地超過1010Ω。

3. 漏源擊穿電壓BVDS
·在VGS=0(增強型)的條件下 ,在增加漏源電壓過程中使ID開始劇增時的VDS稱為漏源擊穿電壓BVDS
·ID劇增的原因有下列兩個方面:
(1)漏極附近耗盡層的雪崩擊穿
(2)漏源極間的穿通擊穿
·有些MOS管中,其溝道長度較短,不斷增加VDS會使漏區的耗盡層一直擴展到源區,使溝道長度為零,即產生漏源間的穿通,穿通後
,源區中的多數載流子,將直接受耗盡層電場的吸引,到達漏區,產生大的ID

4. 柵源擊穿電壓BVGS
·在增加柵源電壓過程中,使柵極電流IG由零開始劇增時的VGS,稱為柵源擊穿電壓BVGS。

5. 低頻跨導gm
·在VDS為某一固定數值的條件下 ,漏極電流的微變數和引起這個變化的柵源電壓微變數之比稱為跨導
·gm反映了柵源電壓對漏極電流的控制能力
·是表徵MOS管放大能力的一個重要參數
·一般在十分之幾至幾mA/V的范圍內

6. 導通電阻RON
·導通電阻RON說明了VDS對ID的影響 ,是漏極特性某一點切線的斜率的倒數
·在飽和區,ID幾乎不隨VDS改變,RON的數值很大 ,一般在幾十千歐到幾百千歐之間
·由於在數字電路中 ,MOS管導通時經常工作在VDS=0的狀態下,所以這時的導通電阻RON可用原點的RON來近似
·對一般的MOS管而言,RON的數值在幾百歐以內

7. 極間電容
·三個電極之間都存在著極間電容:柵源電容CGS 、柵漏電容CGD和漏源電容CDS
·CGS和CGD約為1~3pF
·CDS約在0.1~1pF之間

8. 低頻雜訊系數NF
·雜訊是由管子內部載流子運動的不規則性所引起的
·由於它的存在,就使一個放大器即便在沒有信號輸人時,在輸 出端也出現不規則的電壓或電流變化
·雜訊性能的大小通常用雜訊系數NF來表示,它的單位為分貝(dB)
·這個數值越小,代表管子所產生的雜訊越小
·低頻雜訊系數是在低頻范圍內測出的雜訊系數
·場效應管的雜訊系數約為幾個分貝,它比雙極性三極體的要小

一、CMOS反相器

由本書模擬部分已知,MOSFET有P溝道和N溝道兩種,每種中又有耗盡型和增強型兩類。由N溝道和P溝道兩種MOSFET組成的電路稱為互補MOS或CMOS電路。
下圖表示CMOS反相器電路,由兩只增強型MOSFET組成,其中一個為N溝道結構,另一個為P溝道結構。為了電路能正常工作,要求電源電壓VDD大於兩個管子的開啟電壓的絕對值之和,即
VDD>(VTN+|VTP|) 。

1.工作原理

首先考慮兩種極限情況:當vI處於邏輯0時 ,相應的電壓近似為0V;而當vI處於邏輯1時,相應的電壓近似為VDD。假設在兩種情況下N溝道管 TN為工作管P溝道管TP為負載管。但是,由於電路是互補對稱的,這種假設可以是任意的,相反的情況亦將導致相同的結果。
下圖分析了當vI=VDD時的工作情況。在TN的輸出特性iD—vDS(vGSN=VDD)(注意vDSN=vO)上 ,疊加一條負載線,它是負載管TP在 vSGP=0V時的輸出特性iD-vSD。由於vSGP<VT(VTN=|VTP|=VT),負載曲線幾乎是一條與橫軸重合的水平線。兩條曲線的交點即工作點。顯然,這時的輸出電壓vOL≈0V(典型值<10mV ,而通過兩管的電流接近於零。這就是說,電路的功耗很小(微瓦量級)

下圖分析了另一種極限情況,此時對應於vI=0V。此時工作管TN在vGSN=0的情況下運用,其輸出特性iD-vDS幾乎與橫軸重合 ,負載曲線是負載管TP在vsGP=VDD時的輸出特性iD-vDS。由圖可知,工作點決定了VO=VOH≈VDD;通過兩器件的電流接近零值 。可見上述兩種極限情況下的功耗都很低。

由此可知,基本CMOS反相器近似於一理想的邏輯單元,其輸出電壓接近於零或+VDD,而功耗幾乎為零。

2.傳輸特性

下圖為CMOS反相器的傳輸特性圖。圖中VDD=10V,VTN=|VTP|=VT=
2V。由於 VDD>(VTN+|VTP|),因此,當VDD-|VTP|>vI>VTN 時,TN和TP兩管同時導通。考慮到電路是互補對稱的,一器件可將另一器件視為它的漏極負載。還應注意到,器件在放大區(飽和區)呈現恆流特性,兩器件之一可當作高阻值的負載。因此,在過渡區域,傳輸特性變化比較急劇。兩管在VI=VDD/2處轉換狀態。

3.工作速度

CMOS反相器在電容負載情況下,它的開通時間與關閉時間是相等的,這是因為電路具有互補對稱的性質。下圖表示當vI=0V時 ,TN截止,TP導通,由VDD通過TP向負載電容CL充電的情況。由於CMOS反相器中,兩管的gm值均設計得較大,其導通電阻較小,充電迴路的時間常數較小。類似地,亦可分析電容CL的放電過程。CMOS反相器的平均傳輸延遲時間約為10ns。

二、CMOS門電路

1.與非門電路

下圖是2輸入端CMOS與非門電路,其中包括兩個串聯的N溝道增強型MOS管和兩個並聯的P溝道增強型MOS管。每個輸入端連到一個N溝道和一個P溝道MOS管的柵極。當輸入端A、B中只要有一個為低電平時,就會使與它相連的NMOS管截止,與它相連的PMOS管導通,輸出為高電平;僅當A、B全為高電平時,才會使兩個串聯的NMOS管都導通,使兩個並聯的PMOS管都截止,輸出為低電平。

因此,這種電路具有與非的邏輯功能,即
n個輸入端的與非門必須有n個NMOS管串聯和n個PMOS管並聯。

2.或非門電路

下圖是2輸入端CMOS或非門電路。其中包括兩個並聯的N溝道增強型MOS管和兩個串聯的P溝道增強型MOS管。

當輸入端A、B中只要有一個為高電平時,就會使與它相連的NMOS管導通,與它相連的PMOS管截止,輸出為低電平;僅當A、B全為低電平時,兩個並聯NMOS管都截止,兩個串聯的PMOS管都導通,輸出為高電平。
因此,這種電路具有或非的邏輯功能,其邏輯表達式為

顯然,n個輸入端的或非門必須有n個NMOS管並聯和n個PMOS管並聯。
比較CMOS與非門和或非門可知,與非門的工作管是彼此串聯的,其輸出電壓隨管子個數的增加而增加;或非門則相反,工作管彼此並聯,對輸出電壓不致有明顯的影響。因而或非門用得較多。

3.異或門電路

上圖為CMOS異或門電路。它由一級或非門和一級與或非門組成。或非門的輸出。而與或非門的輸出L即為輸入A、B的異或

如在異或門的後面增加一級反相器就構成異或非門,由於具有的功能,因而稱為同或門。異成門和同或門的邏輯符號如下圖所示。

三、BiCMOS門電路

雙極型CMOS或BiCMOS的特點在於,利用了雙極型器件的速度快和MOSFET的功耗低兩方面的優勢,因而這種邏輯門電路受到用戶的重視


1.BiCMOS反相器

上圖表示基本的BiCMOS反相器電路,為了清楚起見,MOSFET用符號M表示BJT用T表示。T1和T2構成推拉式輸出級。而Mp、MN、M1、M2所組成的輸入級與基本的CMOS反相器很相似。輸入信號vI同時作用於MP和MN的柵極。當vI為高電壓時MN導通而MP截止;而當vI為低電壓時,情況則相反,Mp導通,MN截止。當輸出端接有同類BiCMOS門電路時,輸出級能提供足夠大的電流為電容性負載充電。同理,已充電的電容負載也能迅速地通過T2放電。
上述電路中T1和T2的基區存儲電荷亦可通過M1和M2釋放,以加快
電路的開關速度。當vI為高電壓時M1導通,T1基區的存儲電荷迅速消散。這種作用與TTL門電路的輸入級中T1類似。同理 ,當vI為低電壓時,電源電壓VDD通過MP以激勵M2使M2導通,顯然T2基區的存儲電荷通過M2而消散。可見,門電路的開關速度可得到改善。

2.BiCMOS門電路

根據前述的CMOS門電路的結構和工作原理,同樣可以用BiCMOS技術實現或非門和與非門。如果要實現或非邏輯關系,輸入信號用來驅動並聯的N溝道MOSFET,而P溝道MOSFET則彼此串聯。正如下圖所示的
2輸入端或非門。

當A和B均為低電平時,則兩個MOSFET MPA和MPB均導通,T1導通而MNA和MNB均截止,輸出L為高電平。與此同時,M1通過MPA和MpB被VDD所激勵,從而為T2的基區存儲電荷提供一條釋放通路。
另一方面,當兩輸入端A和B中之一為高電平時 ,則MpA和MpB的通路被斷開,並且MNA或MNB導通,將使輸出端為低電平。同時,M1A或M1B為T1的基極存儲電荷提供一條釋放道路。因此 ,只要有一個輸入端接高電平,輸出即為低電平。

四、CMOS傳輸門

MOSFET的輸出特性在原點附近呈線性對稱關系,因而它們常用作模擬開關。模擬開關廣泛地用於取樣——保持電路、斬波電路、模數和數模轉換電路等。下面著重介紹CMOS傳輸門。

所謂傳輸門(TG)就是一種傳輸模擬信號的模擬開關。CMOS傳輸門由一個P溝道和一個N溝道增強型MOSFET並聯而成,如上圖所示。TP和TN是結構對稱的器件,它們的漏極和源極是可互換的。設它們的開啟電壓|VT|=2V且輸入模擬信號的變化范圍為-5V到+5V 。為使襯底與漏源極之間的PN結任何時刻都不致正偏 ,故TP的襯底接+5V電壓,而TN的襯底接-5V電壓 。兩管的柵極由互補的信號電壓(+5V和-5V)來控制,分別用C和表示。
傳輸門的工作情況如下:當C端接低電壓-5V時TN的柵壓即為-5V,vI取-5V到+5V范圍內的任意值時,TN均不導通。同時,TP的柵壓為+5V
,TP亦不導通。可見,當C端接低電壓時,開關是斷開的。
為使開關接通,可將C端接高電壓+5V。此時TN的柵壓為+5V ,vI在-5V到+3V的范圍內,TN導通。同時TP的棚壓為-5V ,vI在-3V到+5V的范圍內TP將導通。
由上分析可知,當vI<-3V時,僅有TN導通,而當vI>+3V時,僅有TP導通當vI在-3V到+3V的范圍內,TN和TP兩管均導通。進一步分析
還可看到,一管導通的程度愈深,另一管的導通程度則相應地減小。換句話說,當一管的導通電阻減小,則另一管的導通電阻就增加。由於兩管系並聯運行,可近似地認為開關的導通電阻近似為一常數。這是CMOS傳輸出門的優點。
在正常工作時,模擬開關的導通電阻值約為數百歐,當它與輸入阻抗為兆歐級的運放串接時,可以忽略不計。
CMOS傳輸門除了作為傳輸模擬信號的開關之外,也可作為各種邏輯電路的基本單元電路。

㈡ 計算機中有多少門電路

門電路一般有:與門、或門、非門、與非門、或非門等。各種門電路有著不同的功能,即針對不同的輸入數值給出輸出數值

㈢ 門電路有幾種電路

「門」是復這樣的一種電路:它制規定各個輸入信號之間滿足某種邏輯關系時,才有信號輸出,通常有下列三種門電路:與門、或門、非門(反相器)。從邏輯關系看,門電路的輸入端或輸出端只有兩種狀態,無信號以「0」表示,有信號以「1」表示。也可以這樣規定:低電平為「0」,高電平為「1」,稱為正邏輯。反之,如果規定高電平為「0」,低電平為「1」稱為負邏輯,然而,高與低是相對的,所以在實際電路中要選說明採用什麼邏輯,才有實際意義,例如,負與門對「1」來說,具有「與」的關系,但對「0」來說,卻有「或」的關系,即負與門也就是正或門;同理,負或門對「1」來說,具有「或」的關系,但對「0」來說具有「與」的關系,即負或門也就是正與門。

建議你看一下數字邏輯電路或者數字電子技術方面的書籍

㈣ 門電路詳細解說與用途

第五節 CMOS邏輯門電路
http://www.fjtu.com.cn/fjnu/courseware/0321/course/_source/web/lesson/char2/j6.htm 看看把

CMOS邏輯門電路是在TTL電路問世之後 ,所開發出的第二種廣泛應用的數字集成器件,從發展趨勢來看,由於製造工藝的改進,CMOS電路的性能有可能超越TTL而成為佔主導地位的邏輯器件 。CMOS電路的工作速度可與TTL相比較,而它的功耗和抗干擾能力則遠優於TTL。此外,幾乎所有的超大規模存儲器件 ,以及PLD器件都採用CMOS藝製造,且費用較低。
早期生產的CMOS門電路為4000系列 ,隨後發展為4000B系列。當前與TTL兼容的CMO器件如74HCT系列等可與TTL器件交換使用。下面首先討論CMOS反相器,然後介紹其他CMO邏輯門電路。

MOS管結構圖

MOS管主要參數:

1.開啟電壓VT
·開啟電壓(又稱閾值電壓):使得源極S和漏極D之間開始形成導電溝道所需的柵極電壓;
·標準的N溝道MOS管,VT約為3~6V;
·通過工藝上的改進,可以使MOS管的VT值降到2~3V。

2. 直流輸入電阻RGS
·即在柵源極之間加的電壓與柵極電流之比
·這一特性有時以流過柵極的柵流表示
·MOS管的RGS可以很容易地超過1010Ω。

3. 漏源擊穿電壓BVDS
·在VGS=0(增強型)的條件下 ,在增加漏源電壓過程中使ID開始劇增時的VDS稱為漏源擊穿電壓BVDS
·ID劇增的原因有下列兩個方面:
(1)漏極附近耗盡層的雪崩擊穿
(2)漏源極間的穿通擊穿
·有些MOS管中,其溝道長度較短,不斷增加VDS會使漏區的耗盡層一直擴展到源區,使溝道長度為零,即產生漏源間的穿通,穿通後
,源區中的多數載流子,將直接受耗盡層電場的吸引,到達漏區,產生大的ID

4. 柵源擊穿電壓BVGS
·在增加柵源電壓過程中,使柵極電流IG由零開始劇增時的VGS,稱為柵源擊穿電壓BVGS。

5. 低頻跨導gm
·在VDS為某一固定數值的條件下 ,漏極電流的微變數和引起這個變化的柵源電壓微變數之比稱為跨導
·gm反映了柵源電壓對漏極電流的控制能力
·是表徵MOS管放大能力的一個重要參數
·一般在十分之幾至幾mA/V的范圍內

6. 導通電阻RON
·導通電阻RON說明了VDS對ID的影響 ,是漏極特性某一點切線的斜率的倒數
·在飽和區,ID幾乎不隨VDS改變,RON的數值很大 ,一般在幾十千歐到幾百千歐之間
·由於在數字電路中 ,MOS管導通時經常工作在VDS=0的狀態下,所以這時的導通電阻RON可用原點的RON來近似
·對一般的MOS管而言,RON的數值在幾百歐以內

7. 極間電容
·三個電極之間都存在著極間電容:柵源電容CGS 、柵漏電容CGD和漏源電容CDS
·CGS和CGD約為1~3pF
·CDS約在0.1~1pF之間

8. 低頻雜訊系數NF
·雜訊是由管子內部載流子運動的不規則性所引起的
·由於它的存在,就使一個放大器即便在沒有信號輸人時,在輸 出端也出現不規則的電壓或電流變化
·雜訊性能的大小通常用雜訊系數NF來表示,它的單位為分貝(dB)
·這個數值越小,代表管子所產生的雜訊越小
·低頻雜訊系數是在低頻范圍內測出的雜訊系數
·場效應管的雜訊系數約為幾個分貝,它比雙極性三極體的要小

一、CMOS反相器

由本書模擬部分已知,MOSFET有P溝道和N溝道兩種,每種中又有耗盡型和增強型兩類。由N溝道和P溝道兩種MOSFET組成的電路稱為互補MOS或CMOS電路。
下圖表示CMOS反相器電路,由兩只增強型MOSFET組成,其中一個為N溝道結構,另一個為P溝道結構。為了電路能正常工作,要求電源電壓VDD大於兩個管子的開啟電壓的絕對值之和,即
VDD>(VTN+|VTP|) 。

1.工作原理

首先考慮兩種極限情況:當vI處於邏輯0時 ,相應的電壓近似為0V;而當vI處於邏輯1時,相應的電壓近似為VDD。假設在兩種情況下N溝道管 TN為工作管P溝道管TP為負載管。但是,由於電路是互補對稱的,這種假設可以是任意的,相反的情況亦將導致相同的結果。
下圖分析了當vI=VDD時的工作情況。在TN的輸出特性iD—vDS(vGSN=VDD)(注意vDSN=vO)上 ,疊加一條負載線,它是負載管TP在 vSGP=0V時的輸出特性iD-vSD。由於vSGP<VT(VTN=|VTP|=VT),負載曲線幾乎是一條與橫軸重合的水平線。兩條曲線的交點即工作點。顯然,這時的輸出電壓vOL≈0V(典型值<10mV ,而通過兩管的電流接近於零。這就是說,電路的功耗很小(微瓦量級)

下圖分析了另一種極限情況,此時對應於vI=0V。此時工作管TN在vGSN=0的情況下運用,其輸出特性iD-vDS幾乎與橫軸重合 ,負載曲線是負載管TP在vsGP=VDD時的輸出特性iD-vDS。由圖可知,工作點決定了VO=VOH≈VDD;通過兩器件的電流接近零值 。可見上述兩種極限情況下的功耗都很低。

由此可知,基本CMOS反相器近似於一理想的邏輯單元,其輸出電壓接近於零或+VDD,而功耗幾乎為零。

2.傳輸特性

下圖為CMOS反相器的傳輸特性圖。圖中VDD=10V,VTN=|VTP|=VT=
2V。由於 VDD>(VTN+|VTP|),因此,當VDD-|VTP|>vI>VTN 時,TN和TP兩管同時導通。考慮到電路是互補對稱的,一器件可將另一器件視為它的漏極負載。還應注意到,器件在放大區(飽和區)呈現恆流特性,兩器件之一可當作高阻值的負載。因此,在過渡區域,傳輸特性變化比較急劇。兩管在VI=VDD/2處轉換狀態。

3.工作速度

CMOS反相器在電容負載情況下,它的開通時間與關閉時間是相等的,這是因為電路具有互補對稱的性質。下圖表示當vI=0V時 ,TN截止,TP導通,由VDD通過TP向負載電容CL充電的情況。由於CMOS反相器中,兩管的gm值均設計得較大,其導通電阻較小,充電迴路的時間常數較小。類似地,亦可分析電容CL的放電過程。CMOS反相器的平均傳輸延遲時間約為10ns。

二、CMOS門電路

1.與非門電路

下圖是2輸入端CMOS與非門電路,其中包括兩個串聯的N溝道增強型MOS管和兩個並聯的P溝道增強型MOS管。每個輸入端連到一個N溝道和一個P溝道MOS管的柵極。當輸入端A、B中只要有一個為低電平時,就會使與它相連的NMOS管截止,與它相連的PMOS管導通,輸出為高電平;僅當A、B全為高電平時,才會使兩個串聯的NMOS管都導通,使兩個並聯的PMOS管都截止,輸出為低電平。

因此,這種電路具有與非的邏輯功能,即
n個輸入端的與非門必須有n個NMOS管串聯和n個PMOS管並聯。

2.或非門電路

下圖是2輸入端CMOS或非門電路。其中包括兩個並聯的N溝道增強型MOS管和兩個串聯的P溝道增強型MOS管。

當輸入端A、B中只要有一個為高電平時,就會使與它相連的NMOS管導通,與它相連的PMOS管截止,輸出為低電平;僅當A、B全為低電平時,兩個並聯NMOS管都截止,兩個串聯的PMOS管都導通,輸出為高電平。
因此,這種電路具有或非的邏輯功能,其邏輯表達式為

顯然,n個輸入端的或非門必須有n個NMOS管並聯和n個PMOS管並聯。
比較CMOS與非門和或非門可知,與非門的工作管是彼此串聯的,其輸出電壓隨管子個數的增加而增加;或非門則相反,工作管彼此並聯,對輸出電壓不致有明顯的影響。因而或非門用得較多。

3.異或門電路

上圖為CMOS異或門電路。它由一級或非門和一級與或非門組成。或非門的輸出。而與或非門的輸出L即為輸入A、B的異或

如在異或門的後面增加一級反相器就構成異或非門,由於具有的功能,因而稱為同或門。異成門和同或門的邏輯符號如下圖所示。

三、BiCMOS門電路

雙極型CMOS或BiCMOS的特點在於,利用了雙極型器件的速度快和MOSFET的功耗低兩方面的優勢,因而這種邏輯門電路受到用戶的重視


1.BiCMOS反相器

上圖表示基本的BiCMOS反相器電路,為了清楚起見,MOSFET用符號M表示BJT用T表示。T1和T2構成推拉式輸出級。而Mp、MN、M1、M2所組成的輸入級與基本的CMOS反相器很相似。輸入信號vI同時作用於MP和MN的柵極。當vI為高電壓時MN導通而MP截止;而當vI為低電壓時,情況則相反,Mp導通,MN截止。當輸出端接有同類BiCMOS門電路時,輸出級能提供足夠大的電流為電容性負載充電。同理,已充電的電容負載也能迅速地通過T2放電。
上述電路中T1和T2的基區存儲電荷亦可通過M1和M2釋放,以加快
電路的開關速度。當vI為高電壓時M1導通,T1基區的存儲電荷迅速消散。這種作用與TTL門電路的輸入級中T1類似。同理 ,當vI為低電壓時,電源電壓VDD通過MP以激勵M2使M2導通,顯然T2基區的存儲電荷通過M2而消散。可見,門電路的開關速度可得到改善。

2.BiCMOS門電路

根據前述的CMOS門電路的結構和工作原理,同樣可以用BiCMOS技術實現或非門和與非門。如果要實現或非邏輯關系,輸入信號用來驅動並聯的N溝道MOSFET,而P溝道MOSFET則彼此串聯。正如下圖所示的
2輸入端或非門。

當A和B均為低電平時,則兩個MOSFET MPA和MPB均導通,T1導通而MNA和MNB均截止,輸出L為高電平。與此同時,M1通過MPA和MpB被VDD所激勵,從而為T2的基區存儲電荷提供一條釋放通路。
另一方面,當兩輸入端A和B中之一為高電平時 ,則MpA和MpB的通路被斷開,並且MNA或MNB導通,將使輸出端為低電平。同時,M1A或M1B為T1的基極存儲電荷提供一條釋放道路。因此 ,只要有一個輸入端接高電平,輸出即為低電平。

四、CMOS傳輸門

MOSFET的輸出特性在原點附近呈線性對稱關系,因而它們常用作模擬開關。模擬開關廣泛地用於取樣——保持電路、斬波電路、模數和數模轉換電路等。下面著重介紹CMOS傳輸門。

所謂傳輸門(TG)就是一種傳輸模擬信號的模擬開關。CMOS傳輸門由一個P溝道和一個N溝道增強型MOSFET並聯而成,如上圖所示。TP和TN是結構對稱的器件,它們的漏極和源極是可互換的。設它們的開啟電壓|VT|=2V且輸入模擬信號的變化范圍為-5V到+5V 。為使襯底與漏源極之間的PN結任何時刻都不致正偏 ,故TP的襯底接+5V電壓,而TN的襯底接-5V電壓 。兩管的柵極由互補的信號電壓(+5V和-5V)來控制,分別用C和表示。
傳輸門的工作情況如下:當C端接低電壓-5V時TN的柵壓即為-5V,vI取-5V到+5V范圍內的任意值時,TN均不導通。同時,TP的柵壓為+5V
,TP亦不導通。可見,當C端接低電壓時,開關是斷開的。
為使開關接通,可將C端接高電壓+5V。此時TN的柵壓為+5V ,vI在-5V到+3V的范圍內,TN導通。同時TP的棚壓為-5V ,vI在-3V到+5V的范圍內TP將導通。
由上分析可知,當vI<-3V時,僅有TN導通,而當vI>+3V時,僅有TP導通當vI在-3V到+3V的范圍內,TN和TP兩管均導通。進一步分析
還可看到,一管導通的程度愈深,另一管的導通程度則相應地減小。換句話說,當一管的導通電阻減小,則另一管的導通電阻就增加。由於兩管系並聯運行,可近似地認為開關的導通電阻近似為一常數。這是CMOS傳輸出門的優點。
在正常工作時,模擬開關的導通電阻值約為數百歐,當它與輸入阻抗為兆歐級的運放串接時,可以忽略不計。
CMOS傳輸門除了作為傳輸模擬信號的開關之外,也可作為各種邏輯電路的基本單元電路。

㈤ cpu是由許多個門電路組成的,但是為什麼CPU的頻率大於一個門電路的傳輸延遲時間所對應的頻率求答案

在今天的半導體製造業中,計算機中央處理器無疑是受關注程度最高的領域,而這個領域中眾所周知的兩大巨頭,其所遵循的處理器架構均為x86,而另外一家號稱信息產業的藍色巨人的IBM,也擁有強大的處理器設計與製造能力,它們最先發明了應變硅技術,並在90納米的處理器製造工藝上走在最前列。在今天的文章中,我們將一步一步的為您講述中央處理器從一堆沙子到一個功能強大的集成電路晶元的全過程。製造CPU的基本原料如果問及CPU的原料是什麼,大家都會輕而易舉的給出答案—是硅。這是不假,但硅又來自哪裡呢?其實就是那些最不起眼的沙子。難以想像吧,價格昂貴,結構復雜,功能強大,充滿著神秘感的CPU竟然來自那根本一文不值的沙子。當然這中間必然要經歷一個復雜的製造過程才行。不過不是隨便抓一把沙子就可以做原料的,一定要精挑細選,從中提取出最最純凈的硅原料才行。試想一下,如果用那最最廉價而又儲量充足的原料做成CPU,那麼成品的質量會怎樣,你還能用上像現在這樣高性能的處理器嗎?除去硅之外,製造CPU還需要一種重要的材料就是金屬。目前為止,鋁已經成為製作處理器內部配件的主要金屬材料,而銅則逐漸被淘汰,這是有一些原因的,在目前的CPU工作電壓下,鋁的電遷移特性要明顯好於銅。所謂電遷移問題,就是指當大量電子流過一段導體時,導體物質原子受電子撞擊而離開原有位置,留下空位,空位過多則會導致導體連線斷開,而離開原位的原子停留在其它位置,會造成其它地方的短路從而影響晶元的邏輯功能,進而導致晶元無法使用。這就是許多Northwood Pentium 4換上SNDS(北木暴畢綜合症)的原因,當發燒友們第一次給Northwood Pentium 4超頻就急於求成,大幅提高晶元電壓時,嚴重的電遷移問題導致了CPU的癱瘓。這就是intel首次嘗試銅互連技術的經歷,它顯然需要一些改進。不過另一方面講,應用銅互連技術可以減小晶元面積,同時由於銅導體的電阻更低,其上電流通過的速度也更快。除了這兩樣主要的材料之外,在晶元的設計過程中還需要一些種類的化學原料,它們起著不同的作用,這里不再贅述。CPU製造的准備階段在必備原材料的採集工作完畢之後,這些原材料中的一部分需要進行一些預處理工作。而作為最主要的原料,硅的處理工作至關重要。首先,硅原料要進行化學提純,這一步驟使其達到可供半導體工業使用的原料級別。而為了使這些硅原料能夠滿足集成電路製造的加工需要,還必須將其整形,這一步是通過溶化硅原料,然後將液態硅注入大型高溫石英容器而完成的。而後,將原料進行高溫溶化。中學化學課上我們學到過,許多固體內部原子是晶體結構,硅也是如此。為了達到高性能處理器的要求,整塊硅原料必須高度純凈,及單晶硅。然後從高溫容器中採用旋轉拉伸的方式將硅原料取出,此時一個圓柱體的硅錠就產生了。從目前所使用的工藝來看,硅錠圓形橫截面的直徑為200毫米。不過現在intel和其它一些公司已經開始使用300毫米直徑的硅錠了。在保留硅錠的各種特性不變的情況下增加橫截面的面積是具有相當的難度的,不過只要企業肯投入大批資金來研究,還是可以實現的。intel為研製和生產300毫米硅錠而建立的工廠耗費了大約35億美元,新技術的成功使得intel可以製造復雜程度更高,功能更強大的集成電路晶元。而200毫米硅錠的工廠也耗費了15億美元。下面就從硅錠的切片開始介紹CPU的製造過程。單晶硅錠在製成硅錠並確保其是一個絕對的圓柱體之後,下一個步驟就是將這個圓柱體硅錠切片,切片越薄,用料越省,自然可以生產的處理器晶元就更多。切片還要鏡面精加工的處理來確保表面絕對光滑,之後檢查是否有扭曲或其它問題。這一步的質量檢驗尤為重要,它直接決定了成品CPU的質量。新的切片中要摻入一些物質而使之成為真正的半導體材料,而後在其上刻劃代表著各種邏輯功能的晶體管電路。摻入的物質原子進入硅原子之間的空隙,彼此之間發生原子力的作用,從而使得硅原料具有半導體的特性。今天的半導體製造多選擇CMOS工藝(互補型金屬氧化物半導體)。其中互補一詞表示半導體中N型MOS管和P型MOS管之間的交互作用。而N和P在電子工藝中分別代表負極和正極。多數情況下,切片被摻入化學物質而形成P型襯底,在其上刻劃的邏輯電路要遵循nMOS電路的特性來設計,這種類型的晶體管空間利用率更高也更加節能。同時在多數情況下,必須盡量限制pMOS型晶體管的出現,因為在製造過程的後期,需要將N型材料植入P型襯底當中,而這一過程會導致pMOS管的形成。在摻入化學物質的工作完成之後,標準的切片就完成了。然後將每一個切片放入高溫爐中加熱,通過控制加溫時間而使得切片表面生成一層二氧化硅膜。通過密切監測溫度,空氣成分和加溫時間,該二氧化硅層的厚度是可以控制的。在intel的90納米製造工藝中,門氧化物的寬度小到了驚人的 5個原子厚度。這一層門電路也是晶體管門電路的一部分,晶體管門電路的作用是控制其間電子的流動,通過對門電壓的控制,電子的流動被嚴格控制,而不論輸入輸出埠電壓的大小。准備工作的最後一道工序是在二氧化硅層上覆蓋一個感光層。這一層物質用於同一層中的其它控制應用。這層物質在乾燥時具有很好的感光效果,而且在光刻蝕過程結束之後,能夠通過化學方法將其溶解並除去。光刻蝕這是目前的CPU製造過程當中工藝非常復雜的一個步驟,為什麼這么說呢?光刻蝕過程就是使用一定波長的光在感光層中刻出相應的刻痕,由此改變該處材料的化學特性。這項技術對於所用光的波長要求極為嚴格,需要使用短波長的紫外線和大麴率的透鏡。刻蝕過程還會受到晶圓上的污點的影響。每一步刻蝕都是一個復雜而精細的過程。設計每一步過程的所需要的數據量都可以用10GB的單位來計量,而且製造每塊處理器所需要的刻蝕步驟都超過20步(每一步進行一層刻蝕)。而且每一層刻蝕的圖紙如果放大許多倍的話,可以和整個紐約市外加郊區范圍的地圖相比,甚至還要復雜,試想一下,把整個紐約地圖縮小到實際面積大小隻有 100個平方毫米的晶元上,那麼這個晶元的結構有多麼復雜,可想而知了吧。當這些刻蝕工作全部完成之後,晶圓被翻轉過來。短波長光線透過石英模板上鏤空的刻痕照射到晶圓的感光層上,然後撤掉光線和模板。通過化學方法除去暴露在外邊的感光層物質,而二氧化硅馬上在陋空位置的下方生成。摻雜在殘留的感光層物質被去除之後,剩下的就是充滿的溝壑的二氧化硅層以及暴露出來的在該層下方的硅層。這一步之後,另一個二氧化硅層製作完成。然後,加入另一個帶有感光層的多晶硅層。多晶硅是門電路的另一種類型。由於此處使用到了金屬原料(因此稱作金屬氧化物半導體),多晶硅允許在晶體管隊列埠電壓起作用之前建立門電路。感光層同時還要被短波長光線透過掩模刻蝕。再經過一部刻蝕,所需的全部門電路就已經基本成型了。然後,要對暴露在外的硅層通過化學方式進行離子轟擊,此處的目的是生成N溝道或P溝道。這個摻雜過程創建了全部的晶體管及彼此間的電路連接,沒個晶體管都有輸入端和輸出端,兩端之間被稱作埠。重復這一過程從這一步起,你將持續添加層級,加入一個二氧化硅層,然後光刻一次。重復這些步驟,然後就出現了一個多層立體架構,這就是你目前使用的處理器的萌芽狀態了。在每層之間採用金屬塗膜的技術進行層間的導電連接。今天的P4處理器採用了7層金屬連接,而 Athlon64使用了9層,所使用的層數取決於最初的版圖設計,並不直接代表著最終產品的性能差異。測試,測試,測試...接下來的幾個星期就需要對晶圓進行一關接一關的測試,包括檢測晶圓的電學特性,看是否有邏輯錯誤,如果有,是在哪一層出現的等等。而後,晶圓上每一個出現問題的晶元單元將被單獨測試來確定該晶元有否特殊加工需要。而後,整片的晶圓被切割成一個個獨立的處理器晶元單元。在最初測試中,那些檢測不合格的單元將被遺棄。這些被切割下來的晶元單元將被採用某種方式進行封裝,這樣它就可以順利的插入某種介面規格的主板了。大多數intel和AMD的處理器都會被覆蓋一個散熱層。在處理器成品完成之後,還要進行全方位的晶元功能檢測。這一部會產生不同等級的產品,一些晶元的運行頻率相對較高,於是打上高頻率產品的名稱和編號,而那些運行頻率相對較低的晶元則加以改造,打上其它的低頻率型號。這就是不同市場定位的處理器。而還有一些處理器可能在晶元功能上有一些不足之處。在CPU的包裝過程完成之後,許多產品還要再進行一次測試來確保先前的製作過程無一疏漏,且產品完全遵照規格所述,沒有偏差

㈥ 常用的基本門電路是哪幾個 其功能是

常用的門電路在邏輯功能上有與門、或門、非門、與非門、或非門、與或非門、異或門等幾種。

1、與門:實現邏輯「乘」運算的電路,有兩個以上輸入端,一個輸出端(一般電路都只有一個輸出端,ECL電路則有二個輸出端)。只有當所有輸入端都是高電平(邏輯「1」)時,該電路輸出才是高電平(邏輯「1」),否則輸出為低電平(邏輯「0」)。

2、或門

實現邏輯加的電路,又稱邏輯和電路,簡稱或門。此電路有兩個以上輸入端,一個輸出端。只要有一個或幾個輸入端是 「1」,或門的輸出即為 「1」。而只有所有輸入端為 「0」時,輸出才為 「0」。

3、非門

實現邏輯代數非的功能,即輸出始終和輸入保持相反。

4、與非門

若當輸入均為高電平1,則輸出為低電平0;若輸入中至少有一個為低電平0,則輸出為高電平1。與非門可以看作是與門和非門的疊加。

5、或非門

具有多端輸入和單端輸出的門電路。當任一輸入端(或多端)為高電平(邏輯「1」)時,輸出就是低電平(邏輯「0」);只有當所有輸入端都是低電平(邏輯「0」)時,輸出才是高電平(邏輯「1」)。

(6)多數門電路擴展閱讀

門電路輸出端的電路結構有三種型式:有源負載推拉式(或互補式)輸出、集電極(或漏極)開路輸出和三態輸出。

推拉式輸出的門電路一般用於完成邏輯運算。集電極開路的門電路(OC門)在實現一定邏輯功能的同時,還能實現電平變換或驅動較高電壓、較大電流的負載:可以把兩個門的輸出端直接並聯,實現邏輯與的功能(稱「線與」聯接)。三態輸出門廣泛應用於和系統匯流排的聯接以及實現信號雙向傳輸等方面。

㈦ 什麼是門電路最基本的門電路有哪些

基本邏輯運算和復合邏輯運算的單元電路稱為門電路。最基本的門電路有與門、或門和非門三種電路。

㈧ 基本門電路原理

實現基本和常用邏輯運算的電子電路,叫邏輯門電路。 在數字電路中,所謂"門"就是只能實現基本邏輯關系的電路。

邏輯門可以用電阻、電容、二極體、三極體等分立原件構成,成為分立元件門。也可以將門電路的所有器件及連接導線製作在同一塊半導體基片上,構成集成邏輯門電路

用以實現基本邏輯運算和復合邏輯運算的單元電路稱為門電路。常用的門電路在邏輯功能上有與門、或門、非門、與非門、或非門、異或門,現分別把各個門電路介紹如下

一:與門

與門又稱"與電路"、邏輯"與"電路。是執行"與"運算的基本邏輯門電路。有多個輸入端,一個輸出端。當所有的輸入同時為高電平(邏輯1)時,輸出才為高電平,否則輸出為低電平(邏輯0)

基本邏輯門電路
基本邏輯門電路
二:或門:

或門又稱或電路、邏輯或電路。如果幾個條件中,只要有一個條件得到滿足,某事件就會發生,這種關系叫做"或"邏輯關系。具有"或"邏輯關系的電路叫做或門。或門有多個輸入端,一個輸出端,只要輸入中有一個為高電平時(邏輯"1"),輸出就為高電平(邏輯"1");只有當所有的輸入全為低電平(邏輯"0")時,輸出才為低電平(邏輯"0")。

基本邏輯門電路
基本邏輯門電路
三:非門

非門實現邏輯代數非的功能,即輸出始終和輸入保持相反。當輸入端為高電平(邏輯"1")時,輸出端為低電平(邏輯"0");反之,當輸入端為低電平(邏輯"0")時,輸出端則為高電平(邏輯"1")。

基本邏輯門電路
基本邏輯門電路
四:與非門

與非門是與門和非門的結合,先進行與運算,再進行非運算。與非運算輸入要求有兩個,如果輸入都用0和1表示的話,那麼與運算的結果就是這兩個數的乘積。如1和1(兩端都有信號),則輸出為0;1和0,則輸出為1;0和0,則輸出為1。與非門的結果就是對兩個輸入信號先進行與運算,再對與運算結果進行非運算的結果。簡單說,與非與非,就是先與後非。

基本邏輯門電路
基本邏輯門電路
五:或非門

或非門是數字邏輯電路中的基本元件,實現邏輯或非功能。有多個輸入端,1個輸出端,多輸入或非門可由2輸入或非門和反相器構成。只有當兩個輸入A和B為低電平(邏輯0)時輸出為高電平(邏輯1)。也可以理解為任意輸入為高電平(邏輯1),輸出為低電平(邏輯0)。

基本邏輯門電路
基本邏輯門電路
六:異或門

異或門是數字邏輯中實現邏輯異或的邏輯門。有多個輸入端、1個輸出端,多輸入異或門可由2輸入異或門構成。若兩個輸入的電平相異,則輸出為高電平1;若兩個輸入的電平相同,則輸出為低電平0。亦即,如果兩個輸入不同,則異或門輸出高電平1。

雖然異或不是開關代數的基本運算之一,但是在實際運用中相當普遍地使用分立的異或門。大多數開關技術不能直接實現異或功能,而是使用多個門設計。

㈨ 什麼是「門電路」﹖

門電路(Logic Gates)

門電路的輸入
用以實現基本邏輯運算和復合邏輯運算的單元電路稱為門電路。常用的門電路在邏輯功能上有與門、或門、非門、與非門、或非門、與或非門、異或門等幾種。
「門」是這樣的一種電路:它規定各個輸入信號之間滿足某種邏輯關系時,才有信號輸出,通常有下列三種門電路:與門、或門、非門(反相器)。從邏輯關系看,門電路的輸入端或輸出端只有兩種狀態,無信號以「0」表示,有信號以「1」表示。也可以這樣規定:低電平為「0」,高電平為「1」,稱為正邏輯。反之,如果規定高電平為「0」,低電平為「1」稱為負邏輯,然而,高與低是相對的,所以在實際電路中要先說明採用什麼邏輯,才有實際意義,例如,負與門對「1」來說,具有「與」的關系,但對「0」來說,卻有「或」的關系,即負與門也就是正或門;同理,負或門對「1」來說,具有「或」的關系,但對「0」來說具有「與」的關系,即負或門也就是正與門。
基本的邏輯電路
凡是對脈沖通路上的脈沖起著開關作用的電子線路就叫做門電路,是基本的邏輯電路。門電路可以有一個或多個輸入端,但只有一個輸出端。門電路的各輸入端所加的脈沖信號只有滿足一定的條件時,「門」才打開,即才有脈沖信號輸出。從邏輯學上講,輸入端滿足一定的條件是「原因」,有信號輸出是「結果」,門電路的作用是實現某種因果關系──邏輯關系。所以門電路是一種邏輯電路。基本的邏輯關系有三種:與邏輯、或邏輯、非邏輯。與此相對應,基本的門電路有與門、或門、非門。

㈩ 門電路有幾種電路.工作原理是什麼

不說門電路的邏抄輯功能,門電路有三種電路:
1、常規門電路,輸出依輸入出0或1。
2、OC門電路,原理為:集電極開路,使用時要外接上拉電阻,可用於線與。
3、三態門電路,原理為:設有選中控制端端,沒被選中的話輸出高阻態,相當於未接入線路,用於匯流排數據傳送。

閱讀全文

與多數門電路相關的資料

熱點內容
立聖傢具 瀏覽:73
松下售後安裝電話 瀏覽:16
國家電網編制是什麼意思 瀏覽:777
木質辦公傢具有哪些 瀏覽:206
邯鄲別克4s店售後維修電話 瀏覽:88
家電質量投訴電話是多少 瀏覽:688
讀書郎平板維修點 瀏覽:496
昆明華為4s售後維修點 瀏覽:478
興義空調維修電話 瀏覽:945
怎麼自己動手維修電動車充電器 瀏覽:769
現澆頂怎麼做防水 瀏覽:834
棉花被怎麼翻新處理 瀏覽:343
網路機頂盒維修教程視頻 瀏覽:648
電路圖及原理 瀏覽:59
數字集成電路設計流程 瀏覽:826
維修換排氣筒多少時間 瀏覽:803
hp售後維修中心 瀏覽:309
傢具不露木紋是什麼原因 瀏覽:536
豪特熱水器售後 瀏覽:210
什麼叫土豪的傢具 瀏覽:365