導航:首頁 > 電器電路 > 牽引LC電路

牽引LC電路

發布時間:2022-06-15 20:56:38

A. 什麼是石英晶體振盪器

石英晶體振盪器

本詞條由「科普中國」網路科學詞條編寫與應用工作項目審核 。


石英晶體振盪器又名石英諧振器,簡稱晶振,是利用具有壓電效應的石英晶體片製成的。這種石英晶體薄片受到外加交變電場的作用時會產生機械振動,當交變電場的頻率與石英晶體的固有頻率相同時,振動便變得很強烈,這就是晶體諧振特性的反應。利用這種特性,就可以用石英諧振器取代LC(線圈和電容)諧振迴路、濾波器等。由於石英諧振器具有體積小、重量輕、可靠性高、頻率穩定度高等優點,被應用於家用電器和通信設備中。石英諧振器因具有極高的頻率穩定性,故主要用在要求頻率十分穩定的振盪電路中作諧振元件。



石英晶體振盪器的結構及原理

石英晶體振盪器是晶體振盪器的主要類型,下面介紹一下石英晶體振盪器的結構及原理。

石英晶體振盪器一般用金屬外殼封裝,也有用玻璃殼、陶瓷或塑料封裝的。石英晶體的壓電效應:若在石英晶體的兩個電極上加一電場,晶片就會產生機械變形。反之,若在晶片的兩側施加機械壓力,則在晶片相應的方向上將產生電場,這種物理現象稱為壓電效應。

注意,這種效應是可逆的。如果在晶片的兩極上加交變電壓,晶片就會產生機械振動,同時晶片的機械振動又會產生交變電場。

在一般情況下,晶片機械振動的振幅和交變電場的振幅非常微小,但當外加交變電壓的頻率為某一特定值時,振幅明顯加大,比其他頻率下的振幅大得多,這種現象稱為壓電諧振,它與LC迴路的諧振現象十分相似。它的諧振頻率與晶片的切割方式、幾何形狀、尺寸等有關。

石英晶體,有天然的也有人造的,是一種重要的壓電晶體材料。石英晶體本身並非振盪器,它只有藉助於有源激勵和無源電抗網路方可產生振盪。SPXO主要是由品質因數(Q)很高的晶體諧振器(即晶體振子)與反饋式振盪電路組成的。

石英晶體振子是振盪器中的重要元件,晶體的頻率(基頻或n次諧波頻率)及其溫度特性在很大程度上取決於其切割取向。石英晶體諧振器的基本結構、(金屬殼)封裝及其等效電路。

只要在晶體振子板極上施加交變電壓,就會使晶片產生機械變形振動,此現象即所謂逆壓電效應。當外加電壓頻率等於晶體諧振器的固有頻率時,就會發生壓電諧振,從而導致機械變形的振幅突然增大。


石英晶體振盪器的種類

1.按精度分類 石英晶體振盪器按精度(或頻率穩定度)可分為普通石英晶體振盪器,精密石英晶體振盪器、中精密石英晶體振盪器和高精密石英晶體振盪器。

2.按封裝結構及外形分類 石英晶體振盪器按封裝結構及外形可分為金屬外殼晶體振盪器、玻璃外殼晶體振盪器、膠木殼晶體振盪器和塑料外殼晶體振盪器。金屬外殼封裝的石英晶體振盪器又有錫焊、冷壓焊和電阻焊三種。

3.按引出電極數目分類 石英晶體振盪器按引出電極數目可分為雙電極(二端)型晶體振盪器、三電極(三端)型晶體振盪器和四電極(四端)型晶體振盪器。

4.按用途分類 石英晶體振盪器按用途可分為彩色電視機用晶體振盪器、影碟機用晶體振盪器、無線通信用晶體振盪器、電子鍾表用晶體振盪器等多種類型。

5.按基本諧振電路分類 石英晶體振盪器按基本諧振電路可分為並聯晶體振盪器和串聯晶體振盪器兩種類型。

石英晶體諧振器的命名方法

石英晶體振盪器的主要參數

石英晶體振盪器的主要參數有標稱頻率、負載電容、激勵電平、工作溫度范圍及溫度頻差等。

1.標稱頻率 標稱頻率是指石英晶體振盪器的振盪頻率,它與負載電容的容量值有關。

2.負載電容 負載電容是指與石英晶體振盪器各引腳相關聯的總有效電容(包括應用電路內部與外圍各電容)之和。負載電容常用的標准值有16PF、20PF、30PF、50PF、100PF。

3.激勵電平 激勵電平是指石英晶體振盪器工作時所消耗的有效功率。該值決定電路工作頻率的確良穩定程度。激勵電平常用的標准值有0.1 mW、0.5 mW、1 mW、2 mW、4 mW。

4.工作溫度范圍 工作溫度范圍是指石英晶體振盪器正常工作時所允許的最低溫度至最高溫度(環境溫度)。

5.溫度頻差 溫度頻差是指石英晶體振盪器在工作溫度范圍內的工作頻率相對於基準溫度下工作頻率的最大偏離值,它用來反映石英晶體振盪器的頻率溫度特性。

石英晶體振盪器的結構原理

石英晶體振盪器一般由外殼、晶片、支架、電極板、引線等組成。外殼材料有金屬、玻璃、膠木、塑料等,外形有圓柱形、管形、長方形、正方形等多種。

晶片是從一塊晶體上按一定的方位角切下的薄片,可以是圓形或正方形,矩形等。按切割晶片的方位不同,可將晶片分為AT、BT、CT、DT、X、Y等多種切型。不同切型的晶片其特性也不盡相同,尤其是頻率溫度特性相差較大。

晶片的兩個對應表面上塗敷銀層,由晶片支架固定並引出電極。晶片支架分為焊線式和夾緊式兩種。通常,中、低頻晶體振盪器採用焊線式晶片支架,而高頻晶體振盪器採用夾緊式晶片支架。

石英晶體振盪器的工作原理基於晶片的壓電效應(晶片兩面加上不同極性的電壓時,晶片的幾何尺寸將壓縮或伸張,此現象即為壓電效應)。當晶片兩面加上交變電壓時,晶片將隨著交變信號的變化而產生機械振動。當交變電壓的頻率與晶片的固有頻率(只與晶片幾何尺寸相關)相同時,機械振動最強,電路中的電流也最大,這即是晶體諧振特性。

B. LC諧振和無功補償的關系

無功補償,利用了LC諧振的原理。

【LC諧振】
L是電感,C是電容
在含有電容和電感的電路中,如果電容和電感並聯,可能出現在某個很小的時間段內:電容的電壓逐漸升高,而電流卻逐漸減少;與此同時電感的電流卻逐漸增加,電感的電壓卻逐漸降低。而在另一個很小的時間段內:電容的電壓逐漸降低,而電流卻逐漸增加;與此同時電感的電流卻逐漸減少,電感的電壓卻逐漸升高。電壓的增加可以達到一個正的最大值,電壓的降低也可達到一個負的最大值,同樣電流的方向在這個過程中也會發生正負方向的變化,此時我們稱為電路發生電的振盪。
電容和電感串聯,電容器放電,電感開始有有一個逆向的反沖電流,電感充電;當電感的電壓達到最大時,電容放電完畢,之後電感開始放電,電容開始充電,這樣的往復運作,稱為諧振。而在此過程中電感由於不斷的充放電,於是就產生了電磁波。
電路振盪現象可能逐漸消失,也可能持續不變地維持著。當震盪持續維持時,我們稱之為等幅振盪,也稱為諧振。
諧振時間電容或電感兩端電壓變化一個周期的時間稱為諧振周期,諧振周期的倒數稱為諧振頻率。所謂諧振頻率就是這樣定義的。它與電容C和電感L的參數有關,即:f=1/(2π√LC)(Hz)。
【無功補償】
無功功率補償Reactive power compensation,簡稱無功補償,在電力供電系統中起提高電網的功率因數的作用,降低供電變壓器及輸送線路的損耗,提高供電效率,改善供電環境。所以無功功率補償裝置在電力供電系統中處在一個不可缺少的非常重要的位置。合理的選擇補償裝置,可以做到最大限度的減少電網的損耗,使電網質量提高。反之,如選擇或使用不當,可能造成供電系統,電壓波動,諧波增大等諸多因素。

C. 無源晶振的兩個管腳分別接兩個電容,這兩個電容有什麼作用

  1. 無源晶振稱為石英晶體諧振器。它在工作電路中引腳上接的電容稱為負載電容CL,單位為pF,在接有負載電容時,晶振的諧振頻率稱為有載諧振頻率FL。

  2. 晶振諧振頻率Fr與有載諧振頻率的關系為:

    FL=Fr+CL*Ts

    其中:Ts為石英晶體諧振器的牽引量,單位為ppm/pF

  3. 負載電容與的晶振的關系:負載電容越大,晶振諧振電阻越小,電路越容易起振,超過一定值電路會失去振盪平衡而停振。反之,負載電容越小,晶振諧振電阻越大,電路越不容易起振。當然最理想的環境是不加負載電容,晶振直接工作在自身的諧振頻率上。但在實際電路中,設計這樣的電路相對不容易,PCB自身會有一定的雜散電容Cy存在,這個電容值很小,且不穩定。造成電路起振難並工作不穩定。設計時加一個負載電容,使晶振工作在FL=Fr+(CL+Cy)Ts狀態中,由於雜散電容很小,它變化對負載電容影響不大,因此電路工作更穩定。

  4. 當電路的工作頻率與所設計的頻率有一點小偏差時,根據上面的公式,微調一個負載電容,可以使電路的工作頻率達到設計值。

D. LC起步控制系統

LC是F1賽車電子發車控制系統Launch control的英文縮寫。
LC是F1賽車配置的一種電子輔助裝置,F1賽車發車起步時每分鍾轉速高達15000多轉,車手按下LC按鈕,LC系統就會自動平衡離合器和引擎轉速,從而反應到驅動輪,有防止驅動輪在動力接通的情況下打滑,以得到更平順的靜止起步效果以及最佳的發車線路。

F1從今年開始禁用的電子輔助裝置,其中就有不允許使用(LC- Launch control)發車控制系統和 (TC)牽引力控制系統。

E. 牽引變流器直流環節lc濾波器的原因和作用

在電力牽引交流傳動系統中,由於牽引網單相供電和單相PWM整流器的工作特性,牽引變流器直流環節的電壓會產生脈動。高速動車組為實現輕量化,其牽引變流器取消了LC諧振濾波電路,導致直流環節中脈動電壓無法被有效的吸收,影響牽引變流器的穩定運行。鑒於此,本文以無LC諧振濾波電路的牽引變流器為對象,研究脈動電壓對牽引變流器影響的抑制策略。首先,研究了脈動電壓產生的機理,並定量分析了脈動電壓對網側電流和牽引電機的影響。其次,為抑制網側低次諧波電流,電壓外環採用直流側電壓動態補償和後置數字濾波器的方法,研究了低通濾波器、陷波器和濾波器組合的參數設計及離散方法,濾除給定電流中的脈動分量。

F. 高一物理問題!

物理定理、定律、公式表
一、質點的運動(1)------直線運動
1)勻變速直線運動
1.平均速度V平=s/t(定義式) 2.有用推論Vt2-Vo2=2as
3.中間時刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中間位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo為正方向,a與Vo同向(加速)a>0;反向則a<0}
8.實驗用推論Δs=aT2 {Δs為連續相鄰相等時間(T)內位移之差}
9.主要物理量及單位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;時間(t)秒(s);位移(s):米(m);路程:米;速度單位換算:1m/s=3.6km/h。
2)自由落體運動
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(從Vo位置向下計算) 4.推論Vt2=2gh
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推論Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(拋出點算起)
5.往返時間t=2Vo/g (從拋出落回原位置的時間)
二、質點的運動(2)----曲線運動、萬有引力
1)平拋運動
1.水平方向速度:Vx=Vo 2.豎直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.豎直方向位移:y=gt2/2
5.運動時間t=(2y/g)1/2(通常又表示為(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向與水平夾角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向與水平夾角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;豎直方向加速度:ay=g
2)勻速圓周運動
1.線速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期與頻率:T=1/f 6.角速度與線速度的關系:V=ωr
7.角速度與轉速的關系ω=2πn(此處頻率與轉速意義相同)
8.主要物理量及單位:弧長(s):米(m);角度(Φ):弧度(rad);頻率(f):赫(Hz);周期(T):秒(s);轉速(n):r/s;半徑(r):米(m);線速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
3)萬有引力
1.開普勒第三定律:T2/R3=K(=4π2/GM){R:軌道半徑,T:周期,K:常量(與行星質量無關,取決於中心天體的質量)}
2.萬有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它們的連線上)
3.天體上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天體半徑(m),M:天體質量(kg)}
4.衛星繞行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天體質量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步衛星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半徑}
三、力(常見的力、力的合成與分解)
1)常見的力
1.重力G=mg (方向豎直向下,g=9.8m/s2≈10m/s2,作用點在重心,適用於地球表面附近)
2.胡克定律F=kx {方向沿恢復形變方向,k:勁度系數(N/m),x:形變數(m)}
3.滑動摩擦力F=μFN {與物體相對運動方向相反,μ:摩擦因數,FN:正壓力(N)}
4.靜摩擦力0≤f靜≤fm (與物體相對運動趨勢方向相反,fm為最大靜摩擦力)
5.萬有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它們的連線上)
6.靜電力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它們的連線上)
7.電場力F=Eq (E:場強N/C,q:電量C,正電荷受的電場力與場強方向相同)
8.安培力F=BILsinθ (θ為B與L的夾角,當L⊥B時:F=BIL,B//L時:F=0)
9.洛侖茲力f=qVBsinθ (θ為B與V的夾角,當V⊥B時:f=qVB,V//B時:f=0)
2)力的合成與分解
1.同一直線上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(餘弦定理) F1⊥F2時:F=(F12+F22)1/2
3.合力大小范圍:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β為合力與x軸之間的夾角tgβ=Fy/Fx)
四、動力學(運動和力)
1.牛頓第一運動定律(慣性定律):物體具有慣性,總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種狀態為止
2.牛頓第二運動定律:F合=ma或a=F合/ma{由合外力決定,與合外力方向一致}
3.牛頓第三運動定律:F=-F′{負號表示方向相反,F、F′各自作用在對方,平衡力與作用力反作用力區別,實際應用:反沖運動}
4.共點力的平衡F合=0,推廣 {正交分解法、三力匯交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛頓運動定律的適用條件:適用於解決低速運動問題,適用於宏觀物體,不適用於處理高速問題,不適用於微觀粒子
五、振動和波(機械振動與機械振動的傳播)
1.簡諧振動F=-kx {F:回復力,k:比例系數,x:位移,負號表示F的方向與x始終反向}
2.單擺周期T=2π(l/g)1/2 {l:擺長(m),g:當地重力加速度值,成立條件:擺角θ<100;l>>r}
3.受迫振動頻率特點:f=f驅動力
4.發生共振條件:f驅動力=f固,A=max,共振的防止和應用〔見第一冊P175〕
5.機械波、橫波、縱波
6.波速v=s/t=λf=λ/T{波傳播過程中,一個周期向前傳播一個波長;波速大小由介質本身所決定}
7.聲波的波速(在空氣中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(聲波是縱波)
8.波發生明顯衍射(波繞過障礙物或孔繼續傳播)條件:障礙物或孔的尺寸比波長小,或者相差不大
9.波的干涉條件:兩列波頻率相同(相差恆定、振幅相近、振動方向相同)
10.多普勒效應:由於波源與觀測者間的相互運動,導致波源發射頻率與接收頻率不同{相互接近,接收頻率增大,反之,減小}
六、沖量與動量(物體的受力與動量的變化)
1.動量:p=mv {p:動量(kg/s),m:質量(kg),v:速度(m/s),方向與速度方向相同}
3.沖量:I=Ft {I:沖量(N?s),F:恆力(N),t:力的作用時間(s),方向由F決定}
4.動量定理:I=Δp或Ft=mvt–mvo {Δp:動量變化Δp=mvt–mvo,是矢量式}
5.動量守恆定律:p前總=p後總或p=p』′也可以是m1v1+m2v2=m1v1′+m2v2′
6.彈性碰撞:Δp=0;ΔEk=0 {即系統的動量和動能均守恆}
7.非彈性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:損失的動能,EKm:損失的最大動能}
8.完全非彈性碰撞Δp=0;ΔEK=ΔEKm {碰後連在一起成一整體}
9.物體m1以v1初速度與靜止的物體m2發生彈性正碰:
v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)
10.由9得的推論-----等質量彈性正碰時二者交換速度(動能守恆、動量守恆)
11.子彈m水平速度vo射入靜止置於水平光滑地面的長木塊M,並嵌入其中一起運動時的機械能損失
E損=mvo2/2-(M+m)vt2/2=fs相對 {vt:共同速度,f:阻力,s相對子彈相對長木塊的位移}
七、功和能(功是能量轉化的量度)
1.功:W=Fscosα(定義式){W:功(J),F:恆力(N),s:位移(m),α:F、s間的夾角}
2.重力做功:Wab=mghab {m:物體的質量,g=9.8m/s2≈10m/s2,hab:a與b高度差(hab=ha-hb)}
3.電場力做功:Wab=qUab {q:電量(C),Uab:a與b之間電勢差(V)即Uab=φa-φb}
4.電功:W=UIt(普適式) {U:電壓(V),I:電流(A),t:通電時間(s)}
5.功率:P=W/t(定義式) {P:功率[瓦(W)],W:t時間內所做的功(J),t:做功所用時間(s)}
6.汽車牽引力的功率:P=Fv;P平=Fv平 {P:瞬時功率,P平:平均功率}
7.汽車以恆定功率啟動、以恆定加速度啟動、汽車最大行駛速度(vmax=P額/f)
8.電功率:P=UI(普適式) {U:電路電壓(V),I:電路電流(A)}
9.焦耳定律:Q=I2Rt {Q:電熱(J),I:電流強度(A),R:電阻值(Ω),t:通電時間(s)}
10.純電阻電路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.動能:Ek=mv2/2 {Ek:動能(J),m:物體質量(kg),v:物體瞬時速度(m/s)}
12.重力勢能:EP=mgh {EP :重力勢能(J),g:重力加速度,h:豎直高度(m)(從零勢能面起)}
13.電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)(從零勢能面起)}
14.動能定理(對物體做正功,物體的動能增加) W合=mvt2/2-mvo2/2或W合=ΔEK {W合:外力對物體做的總功,ΔEK:動能變化ΔEK=(mvt2/2-mvo2/2)}
15.機械能守恆定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功與重力勢能的變化(重力做功等於物體重力勢能增量的負值)WG=-ΔEP
八、分子動理論、能量守恆定律
1.阿伏加德羅常數NA=6.02×1023/mol;分子直徑數量級10-10米
2.油膜法測分子直徑d=V/s {V:單分子油膜的體積(m3),S:油膜表面積(m)2}
3.分子動理論內容:物質是由大量分子組成的;大量分子做無規則的熱運動;分子間存在相互作用力。
4.分子間的引力和斥力(1)r<r0,f引<f斥,F分子力表現為斥力
(2)r=r0,f引=f斥,F分子力=0,E分子勢能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表現為引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子勢能≈0
5.熱力學第一定律W+Q=ΔU{(做功和熱傳遞,這兩種改變物體內能的方式,在效果上是等效的),
W:外界對物體做的正功(J),Q:物體吸收的熱量(J),ΔU:增加的內能(J),涉及到第一類永動機不可造出}
6.熱力學第二定律
克氏表述:不可能使熱量由低溫物體傳遞到高溫物體,而不引起其它變化(熱傳導的方向性);
開氏表述:不可能從單一熱源吸收熱量並把它全部用來做功,而不引起其它變化(機械能與內能轉化的方向性){涉及到第二類永動機不可造出}
7.熱力學第三定律:熱力學零度不可達到{宇宙溫度下限:-273.15攝氏度(熱力學零度)}
九、氣體的性質
1.氣體的狀態參量:
溫度:宏觀上,物體的冷熱程度;微觀上,物體內部分子無規則運動的劇烈程度的標志,
熱力學溫度與攝氏溫度關系:T=t+273 {T:熱力學溫度(K),t:攝氏溫度(℃)}
體積V:氣體分子所能占據的空間,單位換算:1m3=103L=106mL
壓強p:單位面積上,大量氣體分子頻繁撞擊器壁而產生持續、均勻的壓力,標准大氣壓:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.氣體分子運動的特點:分子間空隙大;除了碰撞的瞬間外,相互作用力微弱;分子運動速率很大
3.理想氣體的狀態方程:p1V1/T1=p2V2/T2 {PV/T=恆量,T為熱力學溫度(K)}
十、電場
1.兩種電荷、電荷守恆定律、元電荷:(e=1.60×10-19C);帶電體電荷量等於元電荷的整數倍
2.庫侖定律:F=kQ1Q2/r2(在真空中){F:點電荷間的作用力(N),k:靜電力常量k=9.0×109N?m2/C2,Q1、Q2: 兩點電荷的電量(C),r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引}
3.電場強度:E=F/q(定義式、計算式){E:電場強度(N/C),是矢量(電場的疊加原理),q:檢驗電荷的電量(C)}
4.真空點(源)電荷形成的電場E=kQ/r2 {r:源電荷到該位置的距離(m),Q:源電荷的電量}
5.勻強電場的場強E=UAB/d {UAB:AB兩點間的電壓(V),d:AB兩點在場強方向的距離(m)}
6.電場力:F=qE {F:電場力(N),q:受到電場力的電荷的電量(C),E:電場強度(N/C)}
7.電勢與電勢差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.電場力做功:WAB=qUAB=Eqd{WAB:帶電體由A到B時電場力所做的功(J),q:帶電量(C),UAB:電場中A、B兩點間的電勢差(V)(電場力做功與路徑無關),E:勻強電場強度,d:兩點沿場強方向的距離(m)}
9.電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)}
10.電勢能的變化ΔEAB=EB-EA {帶電體在電場中從A位置到B位置時電勢能的差值}
11.電場力做功與電勢能變化ΔEAB=-WAB=-qUAB (電勢能的增量等於電場力做功的負值)
12.電容C=Q/U(定義式,計算式) {C:電容(F),Q:電量(C),U:電壓(兩極板電勢差)(V)}
13.平行板電容器的電容C=εS/4πkd(S:兩極板正對面積,d:兩極板間的垂直距離,ω:介電常數)
常見電容器〔見第二冊P111〕
14.帶電粒子在電場中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下)
類平 垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d)
拋運動 平行電場方向:初速度為零的勻加速直線運動d=at2/2,a=F/m=qE/m
十一、恆定電流
1.電流強度:I=q/t{I:電流強度(A),q:在時間t內通過導體橫載面的電量(C),t:時間(s)}
2.歐姆定律:I=U/R {I:導體電流強度(A),U:導體兩端電壓(V),R:導體阻值(Ω)}
3.電阻、電阻定律:R=ρL/S{ρ:電阻率(Ω?m),L:導體的長度(m),S:導體橫截面積(m2)}
4.閉合電路歐姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U內+U外
{I:電路中的總電流(A),E:電源電動勢(V),R:外電路電阻(Ω),r:電源內阻(Ω)}
5.電功與電功率:W=UIt,P=UI{W:電功(J),U:電壓(V),I:電流(A),t:時間(s),P:電功率(W)}
6.焦耳定律:Q=I2Rt{Q:電熱(J),I:通過導體的電流(A),R:導體的電阻值(Ω),t:通電時間(s)}
7.純電阻電路中:由於I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.電源總動率、電源輸出功率、電源效率:P總=IE,P出=IU,η=P出/P總{I:電路總電流(A),E:電源電動勢(V),U:路端電壓(V),η:電源效率}
9.電路的串/並聯 串聯電路(P、U與R成正比) 並聯電路(P、I與R成反比)
電阻關系(串同並反) R串=R1+R2+R3+ 1/R並=1/R1+1/R2+1/R3+
電流關系 I總=I1=I2=I3 I並=I1+I2+I3+
電壓關系 U總=U1+U2+U3+ U總=U1=U2=U3
功率分配 P總=P1+P2+P3+ P總=P1+P2+P3+
10.歐姆表測電阻
(1)電路組成 (2)測量原理
兩表筆短接後,調節Ro使電表指針滿偏,得
Ig=E/(r+Rg+Ro)
接入被測電阻Rx後通過電表的電流為
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由於Ix與Rx對應,因此可指示被測電阻大小
(3)使用方法:機械調零、選擇量程、歐姆調零、測量讀數{注意擋位(倍率)}、撥off擋。
(4)注意:測量電阻時,要與原電路斷開,選擇量程使指針在中央附近,每次換擋要重新短接歐姆調零。
11.伏安法測電阻
電流表內接法:
電壓表示數:U=UR+UA
電流表外接法:
電流表示數:I=IR+IV
Rx的測量值=U/I=(UA+UR)/IR=RA+Rx>R真
Rx的測量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真
選用電路條件Rx>>RA [或Rx>(RARV)1/2]
選用電路條件Rx<<RV [或Rx<(RARV)1/2]
12.滑動變阻器在電路中的限流接法與分壓接法
限流接法
電壓調節范圍小,電路簡單,功耗小
便於調節電壓的選擇條件Rp>Rx
電壓調節范圍大,電路復雜,功耗較大
便於調節電壓的選擇條件Rp<Rx
十二、磁場
1.磁感應強度是用來表示磁場的強弱和方向的物理量,是矢量,單位T),1T=1N/A?m
2.安培力F=BIL;(註:L⊥B) {B:磁感應強度(T),F:安培力(F),I:電流強度(A),L:導線長度(m)}
3.洛侖茲力f=qVB(注V⊥B);質譜儀 {f:洛侖茲力(N),q:帶電粒子電量(C),V:帶電粒子速度(m/s)}
4.在重力忽略不計(不考慮重力)的情況下,帶電粒子進入磁場的運動情況(掌握兩種):
(1)帶電粒子沿平行磁場方向進入磁場:不受洛侖茲力的作用,做勻速直線運動V=V0
(2)帶電粒子沿垂直磁場方向進入磁場:做勻速圓周運動,規律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV /qB;T=2πm/qB;(b)運動周期與圓周運動的半徑和線速度無關,洛侖茲力對帶電粒子不做功(任何情況下);?解題關鍵:畫軌跡、找圓心、定半徑、圓心角(=二倍弦切角)。
十三、電磁感應
1.[感應電動勢的大小計算公式]
1)E=nΔΦ/Δt(普適公式){法拉第電磁感應定律,E:感應電動勢(V),n:感應線圈匝數,ΔΦ/Δt:磁通量的變化率}
2)E=BLV垂(切割磁感線運動) {L:有效長度(m)}
3)Em=nBSω(交流發電機最大的感應電動勢) {Em:感應電動勢峰值}
4)E=BL2ω/2(導體一端固定以ω旋轉切割) {ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:勻強磁場的磁感應強度(T),S:正對面積(m2)}
3.感應電動勢的正負極可利用感應電流方向判定{電源內部的電流方向:由負極流向正極}
4.自感電動勢E自=nΔΦ/Δt=LΔI/Δt{L:自感系數(H)(線圈L有鐵芯比無鐵芯時要大),ΔI:變化電流,?t:所用時間,ΔI/Δt:自感電流變化率(變化的快慢)}
十四、交變電流(正弦式交變電流)
1.電壓瞬時值e=Emsinωt 電流瞬時值i=Imsinωt;(ω=2πf)
2.電動勢峰值Em=nBSω=2BLv 電流峰值(純電阻電路中)Im=Em/R總
3.正(余)弦式交變電流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想變壓器原副線圈中的電壓與電流及功率關系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在遠距離輸電中,採用高壓輸送電能可以減少電能在輸電線上的損失損′=(P/U)2R;(P損′:輸電線上損失的功率,P:輸送電能的總功率,U:輸送電壓,R:輸電線電阻);
6.公式1、2、3、4中物理量及單位:ω:角頻率(rad/s);t:時間(s);n:線圈匝數;B:磁感強度(T);
S:線圈的面積(m2);U輸出)電壓(V);I:電流強度(A);P:功率(W)。
十五、電磁振盪和電磁波
1.LC振盪電路T=2π(LC)1/2;f=1/T {f:頻率(Hz),T:周期(s),L:電感量(H),C:電容量(F)}
2.電磁波在真空中傳播的速度c=3.00×108m/s,λ=c/f {λ:電磁波的波長(m),f:電磁波頻率}
十六、光的反射和折射(幾何光學)
1.反射定律α=i {α;反射角,i:入射角}
2.絕對折射率(光從真空中到介質)n=c/v=sin /sin {光的色散,可見光中紅光折射率小,n:折射率,c:真空中的光速,v:介質中的光速, :入射角, :折射角}
3.全反射:1)光從介質中進入真空或空氣中時發生全反射的臨界角C:sinC=1/n
2)全反射的條件:光密介質射入光疏介質;入射角等於或大於臨界角
十七、光的本性(光既有粒子性,又有波動性,稱為光的波粒二象性)
1.兩種學說:微粒說(牛頓)、波動說(惠更斯)
2.雙縫干涉:中間為亮條紋;亮條紋位置: =nλ;暗條紋位置: =(2n+1)λ/2(n=0,1,2,3,、、、);條紋間距 { :路程差(光程差);λ:光的波長;λ/2:光的半波長;d兩條狹縫間的距離;l:擋板與屏間的距離}
3.光的顏色由光的頻率決定,光的頻率由光源決定,與介質無關,光的傳播速度與介質有關,光的顏色按頻率從低到高的排列順序是:紅、橙、黃、綠、藍、靛、紫(助記:紫光的頻率大,波長小)
4.薄膜干涉:增透膜的厚度是綠光在薄膜中波長的1/4,即增透膜厚度d=λ/4
5.光的衍射:光在沒有障礙物的均勻介質中是沿直線傳播的,在障礙物的尺寸比光的波長大得多的情況下,光的衍射現象不明顯可認為沿直線傳播,反之,就不能認為光沿直線傳播
6.光的偏振:光的偏振現象說明光是橫波
7.光的電磁說:光的本質是一種電磁波。電磁波譜(按波長從大到小排列):無線電波、紅外線、可見光、紫外線、倫琴射線、γ射線。紅外線、紫外、線倫琴射線的發現和特性、產生機理、實際應用
8.光子說,一個光子的能量E=hν {h:普朗克常量=6.63×10-34J.s,ν:光的頻率}
9.愛因斯坦光電效應方程:mVm2/2=hν-W {mVm2/2:光電子初動能,hν:光子能量,W:金屬的逸出功}
十八、原子和原子核
1.α粒子散射試驗結果a)大多數的α粒子不發生偏轉;(b)少數α粒子發生了較大角度的偏轉;?極少數α粒子出現大角度的偏轉(甚至反彈回來)
2.原子核的大小:10-15~10-14m,原子的半徑約10-10m(原子的核式結構)
3.光子的發射與吸收:原子發生定態躍遷時,要輻射(或吸收)一定頻率的光子:hν=E初-E末{能級躍遷}
4.原子核的組成:質子和中子(統稱為核子), {A=質量數=質子數+中子數,Z=電荷數=質子數=核外電子數=原子序數}
5.天然放射現象:α射線(α粒子是氦原子核)、β射線(高速運動的電子流)、γ射線(波長極短的電磁波)、α衰變與β衰變、半衰期(有半數以上的原子核發生了衰變所用的時間)。γ射線是伴隨α射線和β射線產生的
6.愛因斯坦的質能方程:E=mc2{E:能量(J),m:質量(Kg),c:光在真空中的速度}
7.核能的計算ΔE=Δmc2{當Δm的單位用kg時,ΔE的單位為J;當Δm用原子質量單位u時,算出的ΔE單位為uc2;1uc2=931.5MeV}。

G. 高中物理實用公式

物理定理、定律、公式表
一、質點的運動(1)------直線運動
1)勻變速直線運動
1.平均速度V平=s/t(定義式) 2.有用推論Vt2-Vo2=2as
3.中間時刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中間位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo為正方向,a與Vo同向(加速)a>0;反向則a<0}
8.實驗用推論Δs=aT2 {Δs為連續相鄰相等時間(T)內位移之差}
9.主要物理量及單位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;時間(t)秒(s);位移(s):米(m);路程:米;速度單位換算:1m/s=3.6km/h。
註:
(1)平均速度是矢量;
(2)物體速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是決定式;
(4)其它相關內容:質點、位移和路程、參考系、時間與時刻〔見第一冊P19〕/s--t圖、v--t圖/速度與速率、瞬時速度〔見第一冊P24〕。
2)自由落體運動
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(從Vo位置向下計算) 4.推論Vt2=2gh
注:
(1)自由落體運動是初速度為零的勻加速直線運動,遵循勻變速直線運動規律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近較小,在高山處比平地小,方向豎直向下)。
(3)豎直上拋運動
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推論Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(拋出點算起)
5.往返時間t=2Vo/g (從拋出落回原位置的時間)
注:
(1)全過程處理:是勻減速直線運動,以向上為正方向,加速度取負值;
(2)分段處理:向上為勻減速直線運動,向下為自由落體運動,具有對稱性;
(3)上升與下落過程具有對稱性,如在同點速度等值反向等。
二、質點的運動(2)----曲線運動、萬有引力
1)平拋運動
1.水平方向速度:Vx=Vo 2.豎直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.豎直方向位移:y=gt2/2
5.運動時間t=(2y/g)1/2(通常又表示為(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向與水平夾角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向與水平夾角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;豎直方向加速度:ay=g
註:
(1)平拋運動是勻變速曲線運動,加速度為g,通常可看作是水平方向的勻速直線運與豎直方向的自由落體運動的合成;
(2)運動時間由下落高度h(y)決定與水平拋出速度無關;
(3)θ與β的關系為tgβ=2tgα;
(4)在平拋運動中時間t是解題關鍵;(5)做曲線運動的物體必有加速度,當速度方向與所受合力(加速度)方向不在同一直線上時,物體做曲線運動。
2)勻速圓周運動
1.線速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期與頻率:T=1/f 6.角速度與線速度的關系:V=ωr
7.角速度與轉速的關系ω=2πn(此處頻率與轉速意義相同)
8.主要物理量及單位:弧長(s):米(m);角度(Φ):弧度(rad);頻率(f):赫(Hz);周期(T):秒(s);轉速(n):r/s;半徑(r):米(m);線速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
註:
(1)向心力可以由某個具體力提供,也可以由合力提供,還可以由分力提供,方向始終與速度方向垂直,指向圓心;
(2)做勻速圓周運動的物體,其向心力等於合力,並且向心力只改變速度的方向,不改變速度的大小,因此物體的動能保持不變,向心力不做功,但動量不斷改變。
3)萬有引力
1.開普勒第三定律:T2/R3=K(=4π2/GM){R:軌道半徑,T:周期,K:常量(與行星質量無關,取決於中心天體的質量)}
2.萬有引力定律:F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它們的連線上)
3.天體上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天體半徑(m),M:天體質量(kg)}
4.衛星繞行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天體質量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步衛星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半徑}
注:
(1)天體運動所需的向心力由萬有引力提供,F向=F萬;
(2)應用萬有引力定律可估算天體的質量密度等;
(3)地球同步衛星只能運行於赤道上空,運行周期和地球自轉周期相同;
(4)衛星軌道半徑變小時,勢能變小、動能變大、速度變大、周期變小(一同三反);
(5)地球衛星的最大環繞速度和最小發射速度均為7.9km/s。
三、力(常見的力、力的合成與分解)
1)常見的力
1.重力G=mg (方向豎直向下,g=9.8m/s2≈10m/s2,作用點在重心,適用於地球表面附近)
2.胡克定律F=kx {方向沿恢復形變方向,k:勁度系數(N/m),x:形變數(m)}
3.滑動摩擦力F=μFN {與物體相對運動方向相反,μ:摩擦因數,FN:正壓力(N)}
4.靜摩擦力0≤f靜≤fm (與物體相對運動趨勢方向相反,fm為最大靜摩擦力)
5.萬有引力F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它們的連線上)
6.靜電力F=kQ1Q2/r2 (k=9.0×109N•m2/C2,方向在它們的連線上)
7.電場力F=Eq (E:場強N/C,q:電量C,正電荷受的電場力與場強方向相同)
8.安培力F=BILsinθ (θ為B與L的夾角,當L⊥B時:F=BIL,B//L時:F=0)
9.洛侖茲力f=qVBsinθ (θ為B與V的夾角,當V⊥B時:f=qVB,V//B時:f=0)
注:
(1)勁度系數k由彈簧自身決定;
(2)摩擦因數μ與壓力大小及接觸面積大小無關,由接觸面材料特性與表面狀況等決定;
(3)fm略大於μFN,一般視為fm≈μFN;
(4)其它相關內容:靜摩擦力(大小、方向)〔見第一冊P8〕;
(5)物理量符號及單位B:磁感強度(T),L:有效長度(m),I:電流強度(A),V:帶電粒子速度(m/s),q:帶電粒子(帶電體)電量(C);
(6)安培力與洛侖茲力方向均用左手定則判定。
2)力的合成與分解
1.同一直線上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(餘弦定理) F1⊥F2時:F=(F12+F22)1/2
3.合力大小范圍:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β為合力與x軸之間的夾角tgβ=Fy/Fx)
註:
(1)力(矢量)的合成與分解遵循平行四邊形定則;
(2)合力與分力的關系是等效替代關系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作圖法求解,此時要選擇標度,嚴格作圖;
(4)F1與F2的值一定時,F1與F2的夾角(α角)越大,合力越小;
(5)同一直線上力的合成,可沿直線取正方向,用正負號表示力的方向,化簡為代數運算。
四、動力學(運動和力)
1.牛頓第一運動定律(慣性定律):物體具有慣性,總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種狀態為止
2.牛頓第二運動定律:F合=ma或a=F合/ma{由合外力決定,與合外力方向一致}
3.牛頓第三運動定律:F=-F´{負號表示方向相反,F、F´各自作用在對方,平衡力與作用力反作用力區別,實際應用:反沖運動}
4.共點力的平衡F合=0,推廣 {正交分解法、三力匯交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛頓運動定律的適用條件:適用於解決低速運動問題,適用於宏觀物體,不適用於處理高速問題,不適用於微觀粒子〔見第一冊P67〕
注:平衡狀態是指物體處於靜止或勻速直線狀態,或者是勻速轉動。
五、振動和波(機械振動與機械振動的傳播)
1.簡諧振動F=-kx {F:回復力,k:比例系數,x:位移,負號表示F的方向與x始終反向}
2.單擺周期T=2π(l/g)1/2 {l:擺長(m),g:當地重力加速度值,成立條件:擺角θ<100;l>>r}
3.受迫振動頻率特點:f=f驅動力
4.發生共振條件:f驅動力=f固,A=max,共振的防止和應用〔見第一冊P175〕
5.機械波、橫波、縱波〔見第二冊P2〕
6.波速v=s/t=λf=λ/T{波傳播過程中,一個周期向前傳播一個波長;波速大小由介質本身所決定}
7.聲波的波速(在空氣中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(聲波是縱波)
8.波發生明顯衍射(波繞過障礙物或孔繼續傳播)條件:障礙物或孔的尺寸比波長小,或者相差不大
9.波的干涉條件:兩列波頻率相同(相差恆定、振幅相近、振動方向相同)
10.多普勒效應:由於波源與觀測者間的相互運動,導致波源發射頻率與接收頻率不同{相互接近,接收頻率增大,反之,減小〔見第二冊P21〕}
註:
(1)物體的固有頻率與振幅、驅動力頻率無關,取決於振動系統本身;
(2)加強區是波峰與波峰或波谷與波谷相遇處,減弱區則是波峰與波谷相遇處;
(3)波只是傳播了振動,介質本身不隨波發生遷移,是傳遞能量的一種方式;
(4)干涉與衍射是波特有的;
(5)振動圖象與波動圖象;
(6)其它相關內容:超聲波及其應用〔見第二冊P22〕/振動中的能量轉化〔見第一冊P173〕。
六、沖量與動量(物體的受力與動量的變化)
1.動量:p=mv {p:動量(kg/s),m:質量(kg),v:速度(m/s),方向與速度方向相同}
3.沖量:I=Ft {I:沖量(N•s),F:恆力(N),t:力的作用時間(s),方向由F決定}
4.動量定理:I=Δp或Ft=mvt–mvo {Δp:動量變化Δp=mvt–mvo,是矢量式}
5.動量守恆定律:p前總=p後總或p=p』´也可以是m1v1+m2v2=m1v1´+m2v2´
6.彈性碰撞:Δp=0;ΔEk=0 {即系統的動量和動能均守恆}
7.非彈性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:損失的動能,EKm:損失的最大動能}
8.完全非彈性碰撞Δp=0;ΔEK=ΔEKm {碰後連在一起成一整體}
9.物體m1以v1初速度與靜止的物體m2發生彈性正碰:
v1´=(m1-m2)v1/(m1+m2) v2´=2m1v1/(m1+m2)
10.由9得的推論-----等質量彈性正碰時二者交換速度(動能守恆、動量守恆)
11.子彈m水平速度vo射入靜止置於水平光滑地面的長木塊M,並嵌入其中一起運動時的機械能損失
E損=mvo2/2-(M+m)vt2/2=fs相對 {vt:共同速度,f:阻力,s相對子彈相對長木塊的位移}
註:
(1)正碰又叫對心碰撞,速度方向在它們「中心」的連線上;
(2)以上表達式除動能外均為矢量運算,在一維情況下可取正方向化為代數運算;
(3)系統動量守恆的條件:合外力為零或系統不受外力,則系統動量守恆(碰撞問題、爆炸問題、反沖問題等);
(4)碰撞過程(時間極短,發生碰撞的物體構成的系統)視為動量守恆,原子核衰變時動量守恆;
(5)爆炸過程視為動量守恆,這時化學能轉化為動能,動能增加;(6)其它相關內容:反沖運動、火箭、航天技術的發展和宇宙航行〔見第一冊P128〕。
七、功和能(功是能量轉化的量度)
1.功:W=Fscosα(定義式){W:功(J),F:恆力(N),s:位移(m),α:F、s間的夾角}
2.重力做功:Wab=mghab {m:物體的質量,g=9.8m/s2≈10m/s2,hab:a與b高度差(hab=ha-hb)}
3.電場力做功:Wab=qUab {q:電量(C),Uab:a與b之間電勢差(V)即Uab=φa-φb}
4.電功:W=UIt(普適式) {U:電壓(V),I:電流(A),t:通電時間(s)}
5.功率:P=W/t(定義式) {P:功率[瓦(W)],W:t時間內所做的功(J),t:做功所用時間(s)}
6.汽車牽引力的功率:P=Fv;P平=Fv平 {P:瞬時功率,P平:平均功率}
7.汽車以恆定功率啟動、以恆定加速度啟動、汽車最大行駛速度(vmax=P額/f)
8.電功率:P=UI(普適式) {U:電路電壓(V),I:電路電流(A)}
9.焦耳定律:Q=I2Rt {Q:電熱(J),I:電流強度(A),R:電阻值(Ω),t:通電時間(s)}
10.純電阻電路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.動能:Ek=mv2/2 {Ek:動能(J),m:物體質量(kg),v:物體瞬時速度(m/s)}
12.重力勢能:EP=mgh {EP :重力勢能(J),g:重力加速度,h:豎直高度(m)(從零勢能面起)}
13.電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)(從零勢能面起)}
14.動能定理(對物體做正功,物體的動能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力對物體做的總功,ΔEK:動能變化ΔEK=(mvt2/2-mvo2/2)}
15.機械能守恆定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功與重力勢能的變化(重力做功等於物體重力勢能增量的負值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量轉化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做負功;α=90o不做功(力的方向與位移(速度)方向垂直時該力不做功);
(3)重力(彈力、電場力、分子力)做正功,則重力(彈性、電、分子)勢能減少
(4)重力做功和電場力做功均與路徑無關(見2、3兩式);(5)機械能守恆成立條件:除重力(彈力)外其它力不做功,只是動能和勢能之間的轉化;(6)能的其它單位換算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)彈簧彈性勢能E=kx2/2,與勁度系數和形變數有關。
八、分子動理論、能量守恆定律
1.阿伏加德羅常數NA=6.02×1023/mol;分子直徑數量級10-10米
2.油膜法測分子直徑d=V/s {V:單分子油膜的體積(m3),S:油膜表面積(m)2}
3.分子動理論內容:物質是由大量分子組成的;大量分子做無規則的熱運動;分子間存在相互作用力。
4.分子間的引力和斥力(1)r<r0,f引<f斥,F分子力表現為斥力
(2)r=r0,f引=f斥,F分子力=0,E分子勢能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表現為引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子勢能≈0
5.熱力學第一定律W+Q=ΔU{(做功和熱傳遞,這兩種改變物體內能的方式,在效果上是等效的),
W:外界對物體做的正功(J),Q:物體吸收的熱量(J),ΔU:增加的內能(J),涉及到第一類永動機不可造出〔見第二冊P40〕}
6.熱力學第二定律
克氏表述:不可能使熱量由低溫物體傳遞到高溫物體,而不引起其它變化(熱傳導的方向性);
開氏表述:不可能從單一熱源吸收熱量並把它全部用來做功,而不引起其它變化(機械能與內能轉化的方向性){涉及到第二類永動機不可造出〔見第二冊P44〕}
7.熱力學第三定律:熱力學零度不可達到{宇宙溫度下限:-273.15攝氏度(熱力學零度)}
注:
(1)布朗粒子不是分子,布朗顆粒越小,布朗運動越明顯,溫度越高越劇烈;
(2)溫度是分子平均動能的標志;
3)分子間的引力和斥力同時存在,隨分子間距離的增大而減小,但斥力減小得比引力快;
(4)分子力做正功,分子勢能減小,在r0處F引=F斥且分子勢能最小;
(5)氣體膨脹,外界對氣體做負功W<0;溫度升高,內能增大ΔU>0;吸收熱量,Q>0
(6)物體的內能是指物體所有的分子動能和分子勢能的總和,對於理想氣體分子間作用力為零,分子勢能為零;
(7)r0為分子處於平衡狀態時,分子間的距離;
(8)其它相關內容:能的轉化和定恆定律〔見第二冊P41〕/能源的開發與利用、環保〔見第二冊P47〕/物體的內能、分子的動能、分子勢能〔見第二冊P47〕。

14.帶電粒子在電場中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下)
類平 垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d)
拋運動 平行電場方向:初速度為零的勻加速直線運動d=at2/2,a=F/m=qE/m
注:
(1)兩個完全相同的帶電金屬小球接觸時,電量分配規律:原帶異種電荷的先中和後平分,原帶同種電荷的總量平分;
(2)電場線從正電荷出發終止於負電荷,電場線不相交,切線方向為場強方向,電場線密處場強大,順著電場線電勢越來越低,電場線與等勢線垂直;
(3)常見電場的電場線分布要求熟記〔見圖[第二冊P98];
(4)電場強度(矢量)與電勢(標量)均由電場本身決定,而電場力與電勢能還與帶電體帶的電量多少和電荷正負有關;
(5)處於靜電平衡導體是個等勢體,表面是個等勢面,導體外表面附近的電場線垂直於導體表面,導體內部合場強為零,導體內部沒有凈電荷,凈電荷只分布於導體外表面;
(6)電容單位換算:1F=106μF=1012PF;
(7)電子伏(eV)是能量的單位,1eV=1.60×10-19J;
(8)其它相關內容:靜電屏蔽〔見第二冊P101〕/示波管、示波器及其應用〔見第二冊P114〕等勢面〔見第二冊P105〕。

十一、恆定電流
1.電流強度:I=q/t{I:電流強度(A),q:在時間t內通過導體橫載面的電量(C),t:時間(s)}
2.歐姆定律:I=U/R {I:導體電流強度(A),U:導體兩端電壓(V),R:導體阻值(Ω)}
3.電阻、電阻定律:R=ρL/S{ρ:電阻率(Ω•m),L:導體的長度(m),S:導體橫截面積(m2)}
4.閉合電路歐姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U內+U外
{I:電路中的總電流(A),E:電源電動勢(V),R:外電路電阻(Ω),r:電源內阻(Ω)}
5.電功與電功率:W=UIt,P=UI{W:電功(J),U:電壓(V),I:電流(A),t:時間(s),P:電功率(W)}
6.焦耳定律:Q=I2Rt{Q:電熱(J),I:通過導體的電流(A),R:導體的電阻值(Ω),t:通電時間(s)}
7.純電阻電路中:由於I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.電源總動率、電源輸出功率、電源效率:P總=IE,P出=IU,η=P出/P總{I:電路總電流(A),E:電源電動勢(V),U:路端電壓(V),η:電源效率}
9.電路的串/並聯 串聯電路(P、U與R成正比) 並聯電路(P、I與R成反比)
電阻關系(串同並反) R串=R1+R2+R3+ 1/R並=1/R1+1/R2+1/R3+
電流關系 I總=I1=I2=I3 I並=I1+I2+I3+
電壓關系 U總=U1+U2+U3+ U總=U1=U2=U3
功率分配 P總=P1+P2+P3+ P總=P1+P2+P3+
10.歐姆表測電阻
(1)電路組成 (2)測量原理
兩表筆短接後,調節Ro使電表指針滿偏,得
Ig=E/(r+Rg+Ro)
接入被測電阻Rx後通過電表的電流為
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由於Ix與Rx對應,因此可指示被測電阻大小
(3)使用方法:機械調零、選擇量程、歐姆調零、測量讀數{注意擋位(倍率)}、撥off擋。
(4)注意:測量電阻時,要與原電路斷開,選擇量程使指針在中央附近,每次換擋要重新短接歐姆調零。
11.伏安法測電阻
電流表內接法: 電流表外接法:

電壓表示數:U=UR+UA 電流表示數:I=IR+IV
Rx的測量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的測量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真
選用電路條件Rx>>RA [或Rx>(RARV)1/2] 選用電路條件Rx<<RV [或Rx<(RARV)1/2]
12.滑動變阻器在電路中的限流接法與分壓接法
限流接法

電壓調節范圍小,電路簡單,功耗小 電壓調節范圍大,電路復雜,功耗較大
便於調節電壓的選擇條件Rp>Rx 便於調節電壓的選擇條件Rp<Rx
注:(1)單位換算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各種材料的電阻率都隨溫度的變化而變化,金屬電阻率隨溫度升高而增大;(3)串聯總電阻大於任何一個分電阻,並聯總電阻小於任何一個分電阻;(4)當電源有內阻時,外電路電阻增大時,總電流減小,路端電壓增大;(5)當外電路電阻等於電源電阻時,電源輸出功率最大,此時的輸出功率為E2/(2r);(6)其它相關內容:電阻率與溫度的關系半導體及其應用超導及其應用〔見第二冊P127〕。
十二、磁場
1.磁感應強度是用來表示磁場的強弱和方向的物理量,是矢量,單位:(T),1T=1N/A•m
2.安培力F=BIL;(註:L⊥B) {B:磁感應強度(T),F:安培力(F),I:電流強度(A),L:導線長度(m)}
3.洛侖茲力f=qVB(注V⊥B);質譜儀〔見第二冊P155〕 {f:洛侖茲力(N),q:帶電粒子電量(C),V:帶電粒子速度(m/s)}
4.在重力忽略不計(不考慮重力)的情況下,帶電粒子進入磁場的運動情況(掌握兩種):
(1)帶電粒子沿平行磁場方向進入磁場:不受洛侖茲力的作用,做勻速直線運動V=V0
(2)帶電粒子沿垂直磁場方向進入磁場:做勻速圓周運動,規律如下:(a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)運動周期與圓周運動的半徑和線速度無關,洛侖茲力對帶電粒子不做功(任何情況下);(c)解題關鍵:畫軌跡、找圓心、定半徑、圓心角(=二倍弦切角)。
註:
(1)安培力和洛侖茲力的方向均可由左手定則判定,只是洛侖茲力要注意帶電粒子的正負;
(2)磁感線的特點及其常見磁場的磁感線分布要掌握〔見圖及第二冊P144〕;(3)其它相關內容:地磁場/磁電式電表原理〔見第二冊P150〕/迴旋加速器〔見第二冊P156〕/磁性材料
十三、電磁感應
1.[感應電動勢的大小計算公式]
1)E=nΔΦ/Δt(普適公式){法拉第電磁感應定律,E:感應電動勢(V),n:感應線圈匝數,ΔΦ/Δt:磁通量的變化率}
2)E=BLV垂(切割磁感線運動) {L:有效長度(m)}
3)Em=nBSω(交流發電機最大的感應電動勢) {Em:感應電動勢峰值}
4)E=BL2ω/2(導體一端固定以ω旋轉切割) {ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:勻強磁場的磁感應強度(T),S:正對面積(m2)}
3.感應電動勢的正負極可利用感應電流方向判定{電源內部的電流方向:由負極流向正極}
*4.自感電動勢E自=nΔΦ/Δt=LΔI/Δt{L:自感系數(H)(線圈L有鐵芯比無鐵芯時要大),ΔI:變化電流,∆t:所用時間,ΔI/Δt:自感電流變化率(變化的快慢)}
註:(1)感應電流的方向可用楞次定律或右手定則判定,楞次定律應用要點〔見第二冊P173〕;(2)自感電流總是阻礙引起自感電動勢的電流的變化;(3)單位換算:1H=103mH=106μH。(4)其它相關內容:自感〔見第二冊P178〕/日光燈〔見第二冊P180〕。
十四、交變電流(正弦式交變電流)
1.電壓瞬時值e=Emsinωt 電流瞬時值i=Imsinωt;(ω=2πf)
2.電動勢峰值Em=nBSω=2BLv 電流峰值(純電阻電路中)Im=Em/R總
3.正(余)弦式交變電流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想變壓器原副線圈中的電壓與電流及功率關系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在遠距離輸電中,採用高壓輸送電能可以減少電能在輸電線上的損失:P損´=(P/U)2R;(P損´:輸電線上損失的功率,P:輸送電能的總功率,U:輸送電壓,R:輸電線電阻)〔見第二冊P198〕;
6.公式1、2、3、4中物理量及單位:ω:角頻率(rad/s);t:時間(s);n:線圈匝數;B:磁感強度(T);
S:線圈的面積(m2);U:(輸出)電壓(V);I:電流強度(A);P:功率(W)。
注:
(1)交變電流的變化頻率與發電機中線圈的轉動的頻率相同即:ω電=ω線,f電=f線;
(2)發電機中,線圈在中性面位置磁通量最大,感應電動勢為零,過中性面電流方向就改變;
(3)有效值是根據電流熱效應定義的,沒有特別說明的交流數值都指有效值;
(4)理想變壓器的匝數比一定時,輸出電壓由輸入電壓決定,輸入電流由輸出電流決定,輸入功率等於輸出功率,當負載的消耗的功率增大時輸入功率也增大,即P出決定P入;
(5)其它相關內容:正弦交流電圖象〔見第二冊P190〕/電阻、電感和電容對交變電流的作用〔見第二冊P193〕。
十五、電磁振盪和電磁波
1.LC振盪電路T=2π(LC)1/2;f=1/T {f:頻率(Hz),T:周期(s),L:電感量(H),C:電容量(F)}
2.電磁波在真空中傳播的速度c=3.00×108m/s,λ=c/f {λ:電磁波的波長(m),f:電磁波頻率}
注:
(1)在LC振盪過程中,電容器電量最大時,振盪電流為零;電容器電量為零時,振盪電流最大;
(2)麥克斯韋電磁場理論:變化的電(磁)場產生磁(電)場;
(3)其它相關內容:電磁場〔見第二冊P215〕/電磁波〔見第二冊P216〕/無線電波的發射與接收〔見第二冊P219〕/電視雷達〔見第二冊P220〕。

H. 這個電路中晶振旁邊沒有22pf電容,這個可以嗎

<p>晶體旁邊不加電容是可以的。</p><p>晶體旁邊加的這個電容被我們稱之為晶體負載電容。晶體的諧振頻率為Fr,加了電容的諧振頻率為有載諧振頻率FL。晶體諧振頻率Fr與晶體有載諧振頻率FL的關系為:</p>
<p>FL=Fr
+
Ts*CL</p>
<p>式中Ts為晶體的牽引量,單位為ppm/pF。CL為晶體的負載電容,即晶體旁邊加的那個電容,單位為pF。</p><p>如果電路不加負載電容,則電路會工作在晶體諧振頻率上。所以電路中是可以不加負載電容的。</p><p>晶體發生諧振後,會呈現為純電阻,即諧振阻抗。在有載諧振中,諧振電阻一般會與負載電容呈反比例關系。也就是說負載電容越小,電路的諧振阻抗越高,就越不容易起振,輸出波形幅度就越小。</p><p>而事實上,電路直接工作在晶體諧振頻率的狀態是非常理想化的。我們一般的電路都或多或少的有一些雜散電容。當電路振盪時,這些雜散電容便被視為晶體的負載電容進行工作。由於這些雜散電容一般都很小,且不穩定,這就造成晶體振盪頻率不穩定,且諧振阻抗增高。這就是網友「大烙鐵」所說的「可能工作不穩定,頻率不準確」。當然,如果你的振盪電路較為簡單,而且PCB走線設計的又十分合理,PCB上的雜散電容小到可以忽略不計且十分穩定,那麼就如網友「ny_peter」所說不加電容。</p><p>那麼在設計電路時該如何加這個負載電容呢?首先你要明白FL這個有載諧振頻率就是你的電路所要的頻率。電路中的雜散電容為Cy的話,根據上面的公式,你所設計的電路頻率應為:</p>
<p>FL
=
Fr
+
Ts*(Cy+CL)</p>
<p>設計時,你的負載電容CL可以用可調電容替代,調整CL值直到電路工作在你所要的頻率上。一般時候這個負載電容CL值不要太小,上面說過電容太小,諧振阻抗會變高,不利於起振且輸出幅度小。所以這個電容值一般選取在10至30pF之間。此時由於負載電容CL值遠遠大於雜散電容Cy值,因此對雜散電容的不穩定性可以忽略不計。這就是網友「大烙鐵」所說的加了負載電容的電路會更穩定,頻率更准確。</p><p>說了這么多,都是我個人多年工作經驗總結出來的,希望對你有用。</p>

I. 已知某一並聯諧振迴路的諧振頻率為1MHz,要求對990KHz的干擾信號有足夠的衰減,問並

不同的製造商提供各種形狀與大小的石英晶體,其性能指標也各不一樣。這些指標包括諧振頻率、諧振模式、負載電容、串聯阻抗、 管殼電容以及驅動電平。本應用筆記幫助讀者理解這些指標參數,並允許用戶根據應用選擇合適的晶體以及在MAX1470超外差接收機電路應用中獲得最佳效果。 不同的製造商提供各種形狀與大小的石英晶體,其性能指標也各不一樣。這些指標包括諧振頻率、諧振模式、負載電容、串聯阻抗、管殼電容以及驅動電平。本篇應用筆記幫助讀者理解這些指標參數,並允許用戶根據應用選擇合適的晶體以及在MAX1470超外差接收機電路應用中獲得最佳效果。晶體的等效電路見圖1。圖中包括了動態元件:電阻Rs、電感Lm、電容Cm和並聯電容Co。這些動態元件決定了晶體的串聯諧振頻率和諧振器的Q值。並聯電容Co是晶體電極、管殼和引腿作用的結果。圖1. 晶體模型以下詳細給出主要的性能指標。 諧振頻率晶體頻率可以根據接收頻率指定。由於MAX1470使用低端注入的10.7MHz中頻,晶體頻率可由下式給出(單位為MHz):對於315MHz應用,晶體的頻率可為4.7547MHz,而在433.92MHz應用時需要6.6128MHz晶體。僅基頻模式的晶體需要指定(無需泛音)。 諧振模式晶體具有兩種諧振模式:串聯(兩個頻率中的低頻率)和並聯(反諧振,兩個頻率中的高頻率)。所有在振盪電路中呈現純阻性時的晶體都表現出兩種諧振模式。在串聯諧振模式中,動態電容的容抗Cm、感抗Lm相等且極性相反,阻抗最小。在反諧振點。阻抗卻是最大的,電流是最小的。在振盪器應用中不使用反諧振點。通過添加外部元件(通常是電容),石英晶體可振盪在串聯與反諧振頻率之間的任何頻率上。在晶體工業中,這就是並聯頻率或者並聯模式。這個頻率高於串聯諧振頻率低於晶體真正的並聯諧振頻率(反諧振點)。圖2給出了典型的晶體阻抗與頻率關系的特性圖。圖2. 晶體阻抗相對頻率 負載電容和可牽引性在使用並聯諧振模式時負載電容是晶體一個重要的指標。在該模式當中,晶體的總電抗呈現感性,與振盪器的負載電容並聯,形成了LC諧振迴路,決定了振盪器的頻率。當負載電容值改變後,輸出頻率也隨之改變。因而,晶體的生產商必須知道振盪器電路中的負載電容,這樣可以在工廠中使用同樣的負載電容來校準。如果使用諧振在不同的負載電容上的晶體,那麼晶體頻率將偏離額定的工作頻率,這樣參考頻率將引入誤差。因而,需要添加外部電容,改變負載電容,使晶體重新振盪到需要的工作頻率上。圖3給出MAX1470評估板電路里的晶體圖。在這個電路中,C14和C15是串聯牽引電容,而C16是並聯牽引電容。Cevkit為等效的MAX1470晶元加上評估PCB的寄生電容。Cevkit約為5pF。圖3. 評估板晶體等效電路串聯牽引電容會加快晶體振盪,而並聯電容會減緩振盪。Cevkit為5pF,如果使用負載電容為5pF的晶體,會振盪到需要的頻率上,因而無需外部的電容(C16不接,同時C14和C15在板上短接)。評估板本身使用3pF負載電容的晶體,需要兩個15pF電容串聯加速振盪。負載電容的計算如下:在這個例子中,如果不使用兩個串聯電容,4.7547MHz晶體會振盪在4.7544MHz,而接收機將調諧在314.98MHz而不是315.0MHz,頻率誤差約為20kHz,也就是60ppm。因而,關鍵是使用串聯或者並聯或者兩種形式匹配晶體的負載容抗(取決於電容的值)。例如,1pF並聯電容是6pF負載電容所需要的(或者以下的結合形式:C14 = C15 = 27pF, C16 = 5pF)。謹慎使用大電容值的C16,因為它會增大諧振電路的電流,導致晶體停振,圖4給出了並聯電容和振盪器電流的關系圖。圖4. 晶體振盪器電流與附加的並聯負載電容的關系在定製的PCB板中,如果Cevkit未知,可以使用頻譜分析儀監測中頻(在信號進入頻譜分析儀之前確保使用隔直電容),然後使用串聯和並聯電容調諧中頻頻率至10.7MHz。 串聯電阻普通晶體的典型串聯電阻為25Ω至100Ω。晶體製造商通常給出該電阻的特性並指定了其最大值。在MAX1470振盪電路中該電阻不要超過100Ω。 管殼或者並聯電容這個便是晶體電極、管殼和引腳的電容。典型值范圍為2pF至7pF。 驅動電平必須限制晶體的功耗,在過分機械振動的條件下石英晶體會停振。由於非線性,晶體

閱讀全文

與牽引LC電路相關的資料

熱點內容
綿陽三星手機維修點 瀏覽:432
自營店買到翻新機怎麼辦 瀏覽:39
家裡做錦鯉池怎麼做防水 瀏覽:848
維修促銷信息怎麼寫 瀏覽:447
腰線牆屋內怎麼做防水 瀏覽:856
南昌方太熱水器售後服務電話號碼 瀏覽:15
怎麼快捷清理防水漆 瀏覽:677
電路儲存元件 瀏覽:276
白色傢具怎麼配入戶玄關搭配 瀏覽:781
京東售後過期了怎麼申請嗎 瀏覽:368
摩托車維修視頻教程全套12集 瀏覽:119
翻新金幣怎麼玩兒 瀏覽:704
家電保險什麼意思 瀏覽:384
夏普維修售後服務 瀏覽:989
棚頂防水膠布多少錢一米 瀏覽:543
電機繞組維修視頻 瀏覽:124
消防水箱的閥門怎麼關閉 瀏覽:42
北京帥康灶具售後維修電話 瀏覽:796
微軟surface維修中心北京 瀏覽:698
順德這邊哪裡有蘋果售後 瀏覽:338