『壹』 石英晶體振盪器電路是採用的何種形式的反饋 反饋量大小對電路有何影響
石英晶體振盪電路常用電路有門電路、考比斯電路、皮爾斯電路等,但是所有振盪電路的反饋都是交流正反饋。反饋量的大小同振盪器的起振時間相關,但不是唯一關系。
『貳』 石英晶振的石英晶體原理
石英晶體提供了兩種共振模式,由 C1 與 L1 構成的串聯共振,與由 C0、C1 與 L1 構成的並聯共振。
對於一般的 MHz 級石英晶體而言,串聯共振頻率一般會比並聯共振頻率低若干 KHz。 頻率在 30 MHz 以下的石英晶體,通常工作時的頻率處於串聯共振頻率與並聯共振頻率之間,此時石英晶體呈現電感性阻抗。因為,外部電路上的電容會把電路的振盪頻率拉低一些。在設計石英晶體振盪電路時,也應令電路上的雜散電容與外加電容合計値與晶體廠商使用的負載電容值相同,振盪頻率才會准確符合廠商的規格。
頻率在 30 MHz 以上(到 200 MHz)的石英晶體,通常工作於串聯共振模式,工作時的阻抗處於最低點,相當於 Rs 。 此種晶體通常標示串聯電阻( < 100 Ω )而非並聯負載電容。 為了達到高的振盪頻率,石英晶體會振盪在它的一個諧波頻率上,此諧波頻率是基頻的整數倍。 只使用奇數次諧波,例如 3 倍、 5 倍、與 7 倍的泛音晶體。 要達到所要的振盪頻率,振盪電路上會加入額外的電容器與電感器,以選擇出所需的頻率。 石英晶體振盪器分非溫度補償式晶體振盪器、溫度補償晶體振盪器(TCXO)、電壓控制晶體振盪器(VCXO)、恆溫控制式晶體振盪器(OCXO)和數字化/μp補償式晶體振盪器(DCXO/MCXO)等幾種類型。其中,無溫度補償式晶體振盪器是最簡單的一種,在日本工業標准(JIS)中,稱其為標准封裝晶體振盪器(SPXO)。現以SPXO為例,簡要介紹一下石英晶體振盪器的結構與工作原理。
石英晶體,有天然的也有人造的,是一種重要的壓電晶體材料。石英晶體本身並非振盪器,它只有藉助於有源激勵和無源電抗網路方可產生振盪。SPXO主要是由品質因數(Q)很高的晶體諧振器(即晶體振子)與反饋式振盪電路組成的。石英晶體振子是振盪器中的重要元件,晶體的頻率(基頻或n次諧波頻率)及其溫度特性在很大程度上取決於其切割取向。石英晶體諧振器的基本結構、(金屬殼)封裝及其等效電路如圖1所示。
只要在晶體振子板極上施加交變電壓,就會使晶片產生機械變形振動,此現象即所謂逆壓電效應。當外加電壓頻率等於晶體諧振器的固有頻率時,就會發生壓電諧振,從而導致機械變形的振幅突然增大。在圖1(c)所示的晶體諧振器的等效電路中,Co為晶片
(a)石英晶體振子的結構
(b)金屬殼封裝示圖(c)等效電路
與金屬板之間的靜電電容;L、C為壓電諧振的等效參量;R為振動磨擦損耗的等效電阻。石英晶體諧振器存在一個串聯諧振頻率fos(1/2π),同時也存在一個並聯諧振頻率fop(1/2π)。由於Co?C,fop與fos之間之差值很小,並且R?ωOL,R?1/ωOC,所以諧振電路的品質因數Q非常高(可達數百萬),從而使石英晶體諧振器組成的振盪器頻率穩定度十分高,可達10-12/日。石英晶體振盪器的振盪頻率既可近似工作於fos處,也可工作在fop附近,因此石英晶體振盪器可分串聯型和並聯型兩種。用石英晶體諧振器及其等效電路,取代LC振盪器中構成諧振迴路的電感(L)和電容(C)元件,則很容易理解晶體振盪器的工作原理。
SPXO的總精度(包括起始精度和隨溫度、電壓及負載產生的變化)可以達到±25ppm。SPXO既無溫度補償也無溫度控制措施,其頻率溫度特性幾乎完全由石英晶體振子的頻率溫度特性所決定。在0~70℃范圍內,SPXO的頻率穩定度通常為20~1000ppm,SPXO可以用作鍾頻振盪器。 TCXO是通過附加的溫度補償電路使由周圍溫度變化產生的振盪頻率變化量削減的一種石英晶體振盪器。
1TCXO的溫度補償方式
CXO,對石英晶體振子頻率溫度漂移的補償方法主要有直接補償和間接補償兩種類型:
(1)直接補償型
直接補償型TCXO是由熱敏電阻和阻容元件組成的溫度補償電路,在振盪器中與石英晶體振子串聯而成的。在溫度變化時,熱敏電阻的阻值和晶體等效串聯電容容值相應變化,從而抵消或削減振盪頻率的溫度漂移。該補償方式電路簡單,成本較低,節省印製電路板(PCB)尺寸和空間,適用於小型和低壓小電流場合。但當要求晶體振盪器精度小於±1pmm時,直接補償方式並不適宜。
(2)間接補償型
間接補償型又分模擬式和數字式兩種類型。模擬式間接溫度補償是利用熱敏電阻等溫度感測元件組成溫度-電壓變換電路,並將該電壓施加到一支與晶體振子相串接的變容二極體上,通過晶體振子串聯電容量的變化,對晶體振子的非線性頻率漂移進行補償。該補償方式能實現±0.5ppm的高精度,但在3V以下的低電壓情況下受到限制。數字化間接溫度補償是在模擬式補償電路中的溫度—電壓變換電路之後再加一級模/數(A/D)變換器,將模擬量轉換成數字量。該法可實現自動溫度補償,使晶體振盪器頻率穩定度非常高,但具體的補償電路比較復雜,成本也較高,只適用於基地站和廣播電台等要求高精度化的情況。
2.TCXO發展現狀
TCXO在近十幾年中得到長足發展,其中在精密TCXO的研究開發與生產方面,日本居領先和主宰地位。在70年代末汽車電話用TCXO的體積達20?以上,主流產品降至0.4?,超小型化的TCXO器件體積僅為0.27?。在30年中,TCXO的體積縮小了50餘倍乃至100倍。日本京陶瓷公司採用迴流焊接方法生產的表面貼裝TCXO厚度由4mm降至2mm,在振盪啟動4ms後即可達到額定振盪幅度的90%。金石(KSS)集團生產的TCXO頻率范圍為2~80MHz,溫度從-10℃到60℃變化時的穩定度為±1ppm或±2ppm;數字式TCXO的頻率覆蓋范圍為0.2~90MHz,頻率穩定度為±0.1ppm(-30℃~+85℃)。日本東澤通信機生產的TCO-935/937型片式直接溫補型TCXO,頻率溫度特性(點頻15.36MHz)為±1ppm/-20~+70℃,在5V±5%的電源電壓下的頻率電壓特性為±0.3ppm,輸出正弦波波形(幅值為1VPP),電流損耗不足2mA,體積1?,重量僅為1g。PiezoTechnology生產的X3080型TCXO採用表面貼裝和穿孔兩種封裝,正弦波或邏輯輸出,在-55℃~85℃范圍內能達到±0.25~±1ppm的精度。國內的產品水平也較高,如北京瑞華欣科技開發有限公司推出的TCXO(32~40MHz)在室溫下精度優於±1ppm,第一年的頻率老化率為±1ppm,頻率(機械)微調≥±3ppm,電源功耗≤120mw。前高穩定度的TCXO器件,精度可達±0.05ppm。
高精度、低功耗和小型化,仍然是TCXO的研究課題。在小型化與片式化方面,面臨不少困難,其中主要的有兩點:一是小型化會使石英晶體振子的頻率可變幅度變小,溫度補償更加困難;二是片式封裝後在其迴流焊接作業中,由於焊接溫度遠高於TCXO的最大允許溫度,會使晶體振子的頻率發生變化,若不採限局部散熱降溫措施,難以將TCXO的頻率變化量控制在±0.5×10-6以下。但是,TCXO的技術水平的提高並沒進入到極限,創新的內容和潛力仍較大。
3.TCXO的應用
石英晶體振盪器的發展及其在無線系統中的應用
(a)
(b)
圖2移動通信機電路框圖及其TCXO外觀
由於TCXO具有較高的頻率穩定度,而且體積小,在小電流下能夠快速啟動,其應用領域重點擴展到移動通信系統。
圖2(a)為移動通信機射頻(RF)電路框圖。TCXO作為基準振盪器為發送信道提供頻率基準,同時作為接收通道的第一級本機振盪器;另一隻TCXO作為第2級本機振盪器,將其振盪信號輸入到第2變頻器。行動電話要求的頻率穩定度為0.1~2.5ppm(-30~+75℃),但出於成本上的考慮,通常選用的規格為1.5~2.5ppm。行動電話用12~20MHz的TCXO代表性產品之一是VC-TCXO-201C1,採用直接補償方式,外觀如圖2(b)所示,由日本金石(KSS)公司生產。 電壓控制晶體振盪器(VCXO),是通過施加外部
控制電壓使振盪頻率可變或是可以調制的石英晶體振盪器。在典型的VCXO中,通常是通過調諧電壓改變變容二極體的電容量來「牽引」石英晶體振子頻率的。VCXO允許頻率控制范圍比較寬,實際的牽引度范圍約為±200ppm甚至更大。
如果要求VCXO的輸出頻率比石英晶體振子所能實現的頻率還要高,可採用倍頻方案。擴展調諧范圍的另一個方法是將晶體振盪器的輸出信號與VCXO的輸出信號混頻。與單一的振盪器相比,這種外差式的兩個振盪器信號調諧范圍有明顯擴展。
在移動通信基地站中作為高精度基準信號源使用的VCXO代表性產品是日本精工·愛普生公司生產的VG-2320SC。這種採用與IC同樣塑封的4引腳器件,內裝單獨開發的專用IC,器件尺寸為12.6mm×7.6mm×1.9mm,體積為0.19?。其標准頻率為12~20MHz,電源電壓為3.0±0.3V,工作電流不大於2mA,在-20~+75℃范圍內的頻率穩定度≤±1.5ppm,頻率可變范圍是±20~±35ppm,啟動振盪時間小於4ms。金石集團生產的VCXO,頻率覆蓋范圍為10~360MHz,頻率牽引度從±60ppm到±100ppm。VCXO封裝發展趨勢是朝SMD方向發展,並且在電源電壓方面盡可能採用3.3V。日本東洋通信機生產的TCO-947系列片式VCXO,早在90年代中期前就應用於汽車電話系統。該系列VCXO的工作頻率點是12.8MHz、13MHz、14.5MHz和15.36MHz,頻率溫度特性±2.5ppm/-30~+75℃,頻率電壓特性±0.3ppm/5V±5%,老化特性±1ppm/年,內部採用SMD/SMC,並採用激光束和汽相點焊方式封裝,高度為4mm。日本富士電氣化學公司開發的個人手持電話系統(PHS)等移動通信用VCXO,共有兩大類六個系列,為適應SMT要求,全部採用SMD封裝。Saronix的S1318型、Vectron國際公司的J型、Champion技術公司的K1526型和Fordahi公司的DFVS1-KH/LH等VCXO,均是表面貼裝器件,電源電壓為3.3V或5V,可覆蓋的頻率范圍或最高頻率分別為32~120MHz、155MHz、2~40MHz和1-50MHz,牽引度從±25ppm到±150ppm不等。MF電子公司生產的T-VCXO系列產品尺寸為5mm×7mm,曾被業內認為是外形尺寸最小的產品,但這個小型化的記錄很快被打破。新推出的雙頻終端機用VCXO尺寸僅為5.8mm×4.8mm,並且有的內裝2隻VCXO。Raltron電子公司生產的VX-8000系
圖3壓控SAW振盪器內部結構
圖4OCXO內部結構示圖
列表面貼裝VCXO,採用引線封裝時高度為0.185英寸,採用扁平封裝時僅為0.15英寸,工作頻率可在1~160MHz內選擇,標准頻率調整范圍為±100ppm,線性度優於±10%,穩定度優於±25ppm/0~70℃,老化率為±2ppm/年,輸出負載達10個LSTTL(單價達10美元以上)。
於1998年7月上市的單價2000日元的UCV4系列壓控振盪器(VCO),面向全球移動通信系統(GSM)和個人數字蜂窩電話(PDC),可用頻率范圍為650~1700MHz,電源電壓為2.2~3.3V,尺寸僅為4.8mm×5.5mm×1.9mm,體積為0.05?,重量0.12g。
日本精工·愛普生公司利用ST切型晶片製作的聲表面波(SAW)諧振器(Q≌2000),型號為FS-555,用4.8mm×5.2mm×1.5mm陶瓷容器包封,振盪頻率范圍達250~500MHz,頻率初始偏差為±25~100ppm,在-20~60℃范圍內的頻率穩定度是±27ppm,老化率為±10ppm/年。利用FS-555組成的壓控SAW振盪器內部結構如圖3所示。欲擴大頻率調節范圍,可加大串聯電感Lo的電感量。由於SAW諧振器的頻率可達2GHz以上,為壓控SAW振盪器(VCSO)的高頻化提供了一條重要途徑。 CXO是利用恆溫槽使晶體振盪器或石英晶體振子的溫度保持恆定,將由周圍溫度變化引起的振盪器輸出頻率變化量削減到最小的晶體振盪器,其內部結構如圖4所示。在OCXO中,有的只將石英晶體振子置於恆溫槽中,有的是將石英晶體振子和有關重要元器件置於恆溫槽中,還有的將石英晶體振子置於內部的恆溫槽中,而將振盪電路置於外部的恆溫槽中進行溫度補償,實行雙重恆溫槽控製法。利用比例控制的恆溫槽能把晶體的溫度穩定度提高到5000倍以上,使振盪器頻率穩定度至少保持在1×10-9。OCXO主要用於移動通信基地站、國防、導航、頻率計數器、頻譜和網路分析儀等設備、儀表中。
OCXO是由恆溫槽控制電路和振盪器電路構成的。通常人們是利用熱敏電阻「電橋」構成的差動串聯放大器,來實現溫度控制的。具有自動增益控制(AGC)的(C1app)振盪電路,獲得振盪頻率高穩定度的比較理想的技術方案。
在近幾年中,OCXO的技術水平有了很大的提高。日本電波工業公司開發的新器件功耗僅為老產品的1/10。在克服OCXO功耗較大這一缺點方面取得了重大突破。該公司使用應力補償切割(SCCut)石英晶體振子製作的OCXO,與使用AT切形石英晶體振子的OCXO比較,具有高得多的頻率穩定度和非常低的相位雜訊。相位雜訊是指信號功率與雜訊功率的比率(C/N),是表徵頻率顫抖的技術指標。在對預期信號既定補償處,以1Hz帶寬為單位來測量相位雜訊。Bliley公司用AT切形晶體製作的NV45A在補償點10Hz、100Hz、1kHz和10kHz處的相位雜訊分別為100、135、140和145dBc/Hz,而用SC切割晶體製成的同樣OCXO,則在所有補償點上的雜訊性能都優於5dBc/Hz。
金石集團生產的OCXO,頻率范圍為5~120MHz,在-10~+60℃的溫度范圍內,頻率穩定度有±0.02、±0.03和±0.05ppm,老化指標為±0.02ppm/年和±0.05ppm/年。Oak頻率控制公司的4895型4.096~45MHz雙恆溫箱控制OCXO,溫度穩定度僅為0.002ppm(2×10-10)/0~75℃;4895型OCXO的尺寸是50.8mm×50.8mm×38.3mm,老化率為±0.03ppm/年。如果體積縮小一點,在性能指標上則會有所犧牲。Oak公司生產的10~25MHz表面貼裝OCXO,頻率穩定度為±0.05ppm/0~70℃。PiezoCrystal的275型用於全球定位系統(GPS)的OCXO採用SC切形石英晶體振子,在0~75℃范圍內總頻偏小於±0.005ppm,最大老化率為±0.005ppm/年。Vectron國際公司的CO-760型OCXO,尺寸為25.4mm見方,高12.7mm,在OCXO產品中,體積算是較小的。隨著移動通信產品的迅猛增長,對OCXO的市場需求量會逐年增加。OCXO的發展方向是順應高頻化、高頻率穩定度和低相位雜訊的要求,但在尺寸上的縮小餘地非常有限。
日本金石、始建於1948年的NibonDempaKogyo公司和美國摩托羅位、韓國的Sunny-Emi等公司,都是生產石英晶體器件較大的廠商。國內生產石英晶體振盪器等元器件的單位有原電子工業部第十研究所、北京707廠、國營第875廠和一些合資企業等。我國對人造石英晶體及其元器件的研究開發起步較早,生產能力也較大。就石英晶體振盪器而言,與國外先進水平比較,主要是在片式化、小型化、高頻化和頻率溫度特性等方面還存在差距。盡快縮小這些差距,進一步擴大生產規模,提高產品性價比,是提高在國際市場上競爭力的必由之路。與此同時,還要跟蹤該器件發展的新動向,如,視頻發生器等振盪器的研究與應用。
『叄』 什麼是晶振電路
單片機工作都需要有時鍾信號電路,晶振是時鍾信號的一種。
晶振電路就是產生一種周期性波形的電路,如果頻率定了,就可以通過分頻的方式實現定時,也就是你的時鍾信號。
『肆』 什麼是晶振電路
凱越翔晶振是晶體振盪器的簡稱,在電氣上它可以等效成一個電容和一個電阻並聯再串聯一個電容的二端網路。電工學上這個網路有兩個諧振點,以頻率的高低分,其中較低的頻率是串聯諧振;較高的頻率是並聯諧振。由於晶體自身的特性致使這兩個頻率的距離相當的接近,在這個極窄的頻率范圍內,晶振等效為一個電感,所以只要晶振的兩端並聯上合適的電容它就會組成並聯諧振電路。這個並聯諧振電路加到一個負反饋電路中就可以構成正弦波振盪電路,由於晶振等效為電感的頻率范圍很窄,所以即使其他元件的參數變化很大,這個振盪器的頻率也不會有很大的變化。晶振有一個重要的參數,那就是負載電容,一般的晶振的負載電容為10PF或20pF.選擇與負載電容值相等的並聯電容,就可以得到晶振標稱的諧振頻率。一般的晶振振盪電路都是在一個反相放大器的兩端接入晶振,再有兩個電容分別接到晶振的兩端,每個電容的另一端再接到地,這兩個電容串聯的容量值就應該等於負載電容,請注意一般IC的引腳都有等效輸入電容,這個不能忽略。
『伍』 石英晶體振盪電路
圖中標示這支電感的型號為EC36-2R2K-G,所以它的電感量是2.2uH。
『陸』 石英晶體振盪電路的頻率如何調
從你線路布置來看,X1是無源32.768KHz晶體吧,若是這樣電容配的有點大,C1、C2調整到20PF左右即可;若X1是晶振就不用這樣配置電路了,32.768KHz振盪器內部帶有線路設計,不需再外接電容,給匹配電壓之後就有信號輸出。
『柒』 誰能告訴我石英晶體振盪器的具體工作原理啊
石英晶體振盪器是高精度和高穩定度的振盪器,被廣泛應用於彩電、計算機、遙控器等各類振盪電路中,以及通信系統中用於頻率發生器、為數據處理設備產生時鍾信號和為特定系統提供基準信號。 一、石英晶體振盪器的基本原理 1、石英晶體振盪器的結構 石英晶體振盪器是利用石英晶體(二氧化硅的結晶體)的壓電效應製成的一種諧振器件,它的基本構成大致是:從一塊石英晶體上按一定方位角切下薄片(簡稱為晶片,它可以是正方形、矩形或圓形等),在它的兩個對應面上塗敷銀層作為電極,在每個電極上各焊一根引線接到管腳 上,再加上封裝外殼就構成了石英晶體諧振器,簡稱為石英晶體或晶體、晶振。其產品一般用金屬外殼封裝,也有用玻璃殼、陶瓷或塑料封裝的。 2、壓電效應 若在石英晶體的兩個電極上加一電場,晶片就會產生機械變形。反之,若在晶片的兩側施加機械壓力,則在晶片相應的方向上將產生電場,這種物理現象稱為壓電效應。如果在晶片的兩極上加交變電壓,晶片就會產生機械振動,同時晶片的機械振動又會產生交變電場。在一般情況下,晶片機械振動的振幅和交變電場的振幅非常微小,但當外加交變電壓的頻率為某一特定值時,振幅明顯加大,比其他頻率下的振幅大得多,這種現象稱為壓電諧振,它與LC迴路的諧振現象十分相似。它的諧振頻率與晶片的切割方式、幾何形狀、尺寸等有關。 3、符號和等效電路 當晶體不振動時,可把它看成一個平板電容器稱為靜電電容C,它的大小與晶片的幾何尺寸、電極面積有關,一般約幾個PF到幾十PF。當晶體振盪時,機械振動的慣性可用電感L來等效。一般L的值為幾十mH 到幾百mH。晶片的彈性可用電容C來等效,C的值很小,一般只有0.0002~0.1pF。晶片振動時因摩擦而造成的損耗用R來等效,它的數值約為100Ω。由於晶片的等效電感很大,而C很小,R也小,因此迴路的品質因數Q很大,可達1000~10000。加上晶片本身的諧振頻率基本上只與晶片的切割方式、幾何形狀、尺寸有關,而且可以做得精確,因此利用石英諧振器組成的振盪電路可獲得很高的頻率穩定度。 4、諧振頻率 從石英晶體諧振器的等效電路可知,它有兩個諧振頻率,即(1)當L、C、R支路發生串聯諧振時,它的等效阻抗最小(等於R)。串聯揩振頻率用fs表示,石英晶體對於串聯揩振頻率fs呈純阻性,(2)當頻率高於fs時L、C、R支路呈感性,可與電容C。發生並聯諧振,其並聯頻率用fd表示。 根據石英晶體的等效電路,可定性畫出它的電抗—頻率特性曲線。可見當頻率低於串聯諧振頻率fs或者頻率高於並聯揩振頻率fd時,石英晶體呈容性。僅在fs<f<fd極窄的范圍內,石英晶體呈感性。 二、石英晶體振盪器類型特點 石英晶體振盪器是由品質因素極高的石英晶體振子(即諧振器和振盪電路組成。晶體的品質、切割取向、晶體振子的結構及電路形式等,共同決定振盪器的性能。國際電工委員會(IEC)將石英晶體振盪器分為4類:普通晶體振盪(TCXO),電壓控制式晶體振盪器(VCXO),溫度補償式晶體振盪(TCXO),恆溫控制式晶體振盪(OCXO)。目前發展中的還有數字補償式晶體損振盪(DCXO)等。 普通晶體振盪器(SPXO)可產生10^(-5)~10^(-4)量級的頻率精度,標准頻率1—100MHZ,頻率穩定度是±100ppm。SPXO沒有採用任何溫度頻率補償措施,價格低廉,通常用作微處理器的時鍾器件。封裝尺寸范圍從21×14×6mm及5×3.2×1.5mm。 電壓控制式晶體振盪器(VCXO)的精度是10^(-6)~10^(-5)量級,頻率范圍1~30MHz。低容差振盪器的頻率穩定度是±50ppm。通常用於鎖相環路。封裝尺寸14×10×3mm。 溫度補償式晶體振盪器(TCXO)採用溫度敏感器件進行溫度頻率補償,頻率精度達到10^(-7)~10^(-6)量級,頻率范圍1—60MHz,頻率穩定度為±1~±2.5ppm,封裝尺寸從30×30×15mm至11.4×9.6×3.9mm。通常用於手持電話、蜂窩電話、雙向無線通信設備等。 恆溫控制式晶體振盪器(OCXO)將晶體和振盪電路置於恆溫箱中,以消除環境溫度變化對頻率的影響。OCXO頻率精度是10^(-10)至10^(-8)量級,對某些特殊應用甚至達到更高。頻率穩定度在四種類型振盪器中最高。 三、石英晶體振盪器的主要參數 晶振的主要參數有標稱頻率,負載電容、頻率精度、頻率穩定度等。不同的晶振標稱頻率不同,標稱頻率大都標明在晶振外殼上。如常用普通晶振標稱頻率有:48kHz、500 kHz、503.5 kHz、1MHz~40.50 MHz等,對於特殊要求的晶振頻率可達到1000 MHz以上,也有的沒有標稱頻率,如CRB、ZTB、Ja等系列。負載電容是指晶振的兩條引線連接IC塊內部及外部所有有效電容之和,可看作晶振片在電路中串接電容。負載頻率不同決定振盪器的振盪頻率不同。標稱頻率相同的晶振,負載電容不一定相同。因為石英晶體振盪器有兩個諧振頻率,一個是串聯揩振晶振的低負載電容晶振:另一個為並聯揩振晶振的高負載電容晶振。所以,標稱頻率相同的晶振互換時還必須要求負載電容一至,不能冒然互換,否則會造成電器工作不正常。頻率精度和頻率穩定度:由於普通晶振的性能基本都能達到一般電器的要求,對於高檔設備還需要有一定的頻率精度和頻率穩定度。頻率精度從10^(-4)量級到10^(-10)量級不等。穩定度從±1到±100ppm不等。這要根據具體的設備需要而選擇合適的晶振,如通信網路,無線數據傳輸等系統就需要更高要求的石英晶體振盪器。因此,晶振的參數決定了晶振的品質和性能。在實際應用中要根據具體要求選擇適當的晶振,因不同性能的晶振其價格不同,要求越高價格也越貴,一般選擇只要滿足要求即可。 四、石英晶體振盪器的發展趨勢 1、小型化、薄片化和片式化:為滿足行動電話為代表的攜帶型產品輕、薄、短小的要求,石英晶體振盪器的封裝由傳統的裸金屬外殼覆塑料金屬向陶瓷封裝轉變。例如TCXO這類器件的體積縮小了30~100倍。採用SMD封裝的TCXO厚度不足2mm,目前5×3mm尺寸的器件已經上市。 2、高精度與高穩定度,目前無補償式晶體振盪器總精度也能達到±25ppm,VCXO的頻率穩定度在10~7℃范圍內一般可達±20~100ppm,而OCXO在同一溫度范圍內頻率穩定度一般為±0.0001~5ppm,VCXO控制在±25ppm以下。 3、低雜訊,高頻化,在GPS通信系統中是不允許頻率顫抖的,相位雜訊是表徵振盪器頻率顫抖的一個重要參數。目前OCXO主流產品的相位雜訊性能有很大改善。除VCXO外,其它類型的晶體振盪器最高輸出頻率不超過200MHz。例如用於GSM等行動電話的UCV4系列壓控振盪器,其頻率為650~1700 MHz,電源電壓2.2~3.3V,工作電流8~10mA。 4、低功能,快速啟動,低電壓工作,低電平驅動和低電流消耗已成為一個趨勢。電源電壓一般為3.3V。目前許多TCXO和VCXO產品,電流損耗不超過2 mA。石英晶體振盪器的快速啟動技術也取得突破性進展。例如日本精工生產的VG—2320SC型VCXO,在±0.1ppm規定值范圍條件下,頻率穩定時間小於4ms。日本東京陶瓷公司生產的SMD TCXO,在振盪啟動4ms後則可達到額定值的90%。OAK公司的10~25 MHz的OCXO產品,在預熱5分鍾後,則能達到±0.01 ppm的穩定度。 五、石英晶體振盪器的應用 1、石英鍾走時准、耗電省、經久耐用為其最大優點。不論是老式石英鍾或是新式多功能石英鍾都是以石英晶體振盪器為核心電路,其頻率精度決定了電子鍾表的走時精度。從石英晶體振盪器原理的示意圖中,其中V1和V2構成CMOS反相器石英晶體Q與振盪電容C1及微調電容C2構成振盪系統,這里石英晶體相當於電感。振盪系統的元件參數確定了振頻率。一般Q、C1及C2均為外接元件。另外R1為反饋電阻,R2為振盪的穩定電阻,它們都集成在電路內部。故無法通過改變C1或C2的數值來調整走時精度。但此時我們仍可用加接一隻電容C有方法,來改變振盪系統參數,以調整走時精度。根據電子鍾表走時的快慢,調整電容有兩種接法:若走時偏快,則可在石英晶體兩端並接電容C,如圖4所示。此時系統總電容加大,振盪頻率變低,走時減慢。若走時偏慢,則可在晶體支路中串接電容C。如圖5所示。此時系統的總電容減小,振盪頻率變高,走時增快。只要經過耐心的反復試驗,就可以調整走時精度。因此,晶振可用於時鍾信號發生器。 2、隨著電視技術的發展,近來彩電多採用500kHz或503 kHz的晶體振盪器作為行、場電路的振盪源,經1/3的分頻得到 15625Hz的行頻,其穩定性和可靠性大為提高。面且晶振價格便宜,更換容易。 3、在通信系統產品中,石英晶體振盪器的價值得到了更廣泛的體現,同時也得到了更快的發展。許多高性能的石英晶振主要應用於通信網路、無線數據傳輸、高速數字數據傳輸等。
『捌』 求一個石英晶體振盪器原理圖
原理圖:
石英晶體振盪器憑借其高精度和高穩定度,被廣泛應用於彩電、計算機、遙控器等各類振盪電路中,以及通信系統中用於頻率發生器、為數據處理設備產生時鍾信號和為特定系統提供基準信號。下面,松季電子為你全解石英晶體振盪器的工作原理。
一、石英晶體振盪器的結構:
石英晶體振盪器是利用石英晶體(二氧化硅的結晶體)的壓電效應製成的一種諧振器件,它的基本構成大致是:
從一塊石英晶體上按一定方位角切下薄片(簡稱為晶片,它可以是正方形、矩形或圓形等),在它的兩個對應面上塗敷銀層作為電極,在每個電極上各焊一根引線接到管腳上,再加上封裝外殼就構成了石英晶體諧振器。
二、壓電效應:
若在石英晶體的兩個電極上加一電場,晶片就會產生機械變形。反之,若在晶片的兩側施加機械壓力,則在晶片相應的方向上將產生電場,這種物理現象稱為壓電效應。如果在晶片的兩極上加交變電壓,晶片就會產生機械振動,同時晶片的機械振動又會產生交變電場。
三、符號和等效電路:
當晶體不振動時,可把它看成一個平板電容器稱為靜電電容C,它的大小與晶片的幾何尺寸、電極面積有關,一般約幾個PF到幾十PF。當晶體振盪時,機械振動的慣性可用電感L來等效。一般L的值為幾十mH 到幾百mH。
晶片的彈性可用電容C來等效,C的值很小,一般只有0.0002~0.1pF。晶片振動時因摩擦而造成的損耗用R來等效,它的數值約為100Ω。由於晶片的等效電感很大,而C很小,R也小,因此迴路的品質因數Q很大,可達1000~10000。
加上晶片本身的諧振頻率基本上只與晶片的切割方式、幾何形狀、尺寸有關,而且可以做得精確,因此利用石英諧振器組成的振盪電路可獲得很高的頻率穩定度。
四、諧振頻率:
從石英晶體諧振器的等效電路可知,它有兩個諧振頻率。
1、即當L、C、R支路發生串聯諧振時,它的等效阻抗最小(等於R)。串聯揩振頻率用fs表示,石英晶體對於串聯揩振頻率fs呈純阻性。
2、當頻率高於fs時L、C、R支路呈感性,可與電容C。發生並聯諧振,其並聯頻率用fd表示。 根據石英晶體的等效電路,可定性畫出它的電抗—頻率特性曲線。當頻率低於串聯諧振頻率fs或者頻率高於並聯揩振頻率fd時,石英晶體呈容性。
(8)石英晶振電路擴展閱讀:
晶振在應用具體起到的作用,微控制器的時鍾源可以分為兩類:基於機械諧振器件的時鍾源,如晶振、陶瓷諧振槽路;RC(電阻、電容)振盪器。
一種是皮爾斯振盪器配置,適用於晶振和陶瓷諧振槽路。另一種為簡單的分立RC振盪器。基於晶振與陶瓷諧振槽路的振盪器通常能提供非常高的初始精度和較低的溫度系數。
RC振盪器能夠快速啟動,成本也比較低,但通常在整個溫度和工作電源電壓范圍內精度較差,會在標稱輸出頻率的5%至50%范圍內變化。
但其性能受環境條件和電路元件選擇的影響。需認真對待振盪器電路的元件選擇和線路板布局。在使用時,陶瓷諧振槽路和相應的負載電容必須根據特定的邏輯系列進行優化。具有高Q值的晶振對放大器的選擇並不敏感,但在過驅動時很容易產生頻率漂移(甚至可能損壞)。
『玖』 請問什麼是晶振電路謝謝
日振電路:
晶振是電路中常用用的時鍾元件,全稱是叫晶體震盪器,在單片專機系統屬里晶振的作用非常大,他結合單片機內部的電路,產生單片機所必須的時鍾頻率,單片機的一切指令的執行都是建立在這個基礎上的,晶振的提供的時鍾頻率越高,那單片機的運行速度也就越快。
晶振用一種能把電能和機械能相互轉化的晶體在共振的狀態下工作,以提供穩定,精確的單頻振盪。在通常工作條件下,普通的晶振頻率絕對精度可達百萬分之五十。高級的精度更高。有些晶振還可以由外加電壓在一定范圍內調整頻率,稱為壓控振盪器(vco)。
晶振的作用是為系統提供基本的時鍾信號。通常一個系統共用一個晶振,便於各部分保持同步。有些通訊系統的基頻和射頻使用不同的晶振,而通過電子調整頻率的方法保持同步。
晶振通常與鎖相環電路配合使用,以提供系統所需的時鍾頻率。如果不同子系統需要不同頻率的時鍾信號,可以用與同一個晶振相連的不同鎖相環來提供。
『拾』 石英晶體振盪電路產生的頻率是多少
下圖是石英晶體的示意圖、等效電路及電抗頻率特性:
從石英晶體諧振器的等效電路可知,它有兩個諧振頻率,
1、當L,C,R支路發生串聯諧振時,可知其等效阻抗最小(等於R)。串聯諧振頻率為:
fs=1/2πsqrt(LC);
2、當頻率高於fS時,L,C,R支路呈感性,可與電容C0發生並聯諧振,並聯諧振頻率為:
fp=fs*sqrt(1+C/C0);
註:sqrt表示開方運算。
由於C<<C0,因此fp與fs非常接近!
增大C0,可以使石英晶體的並聯諧振頻率fp更加接近串聯諧振頻率fs。因此,可以在石英晶體的兩端並聯一個電容,使頻率更加穩定或達到微調頻率的目的。
實際的石英晶體頻率就是由上述等效電路中的L、C、C0決定,這些參數,取決於石英晶體的晶片特性。一般在幾十kHz至幾百MHz。