導航:首頁 > 電器電路 > 電路定理重點

電路定理重點

發布時間:2023-08-22 20:12:07

電路有哪些基本定律

基爾霍夫電路定律(Kirchhoff Circuit Laws)簡稱為基爾霍夫定律,指的是兩條電路學定律,基爾霍夫電流定律與基爾霍夫電壓定律。它們涉及了電荷的守恆及電勢的保守性。1845年,古斯塔夫·基爾霍夫首先提出基爾霍夫電路定律。現在,這定律被廣泛地應用於電氣工程學。
基爾霍夫電路定律

基爾霍夫電路定律是集總電路的基本定律,它包括電流定律和電壓定律.

基爾霍夫電流定律(KCL)指出:在集總電路中,任何時刻,對任一節點,所有流出節點的支路電流的代數和恆等於零.

代數和是根據流入還是流出節點判斷的.流出為+,流入為-.對節點,I1+I2+...+In=0.

基爾霍夫電壓定律(KVL)指出:在集總電路中,任何時刻,對任一迴路,所有支路電壓的代數和恆等於零.

上式計算是要指定一個迴路繞行方向,支路電壓參考方向與迴路繞行方向一致,取+.反之,取-.

U1+U2+...+Un=0

應用
當電路中各電動勢[1]及電阻給定時,可任意標定電流方向,根據基爾霍夫方程組即可唯一地解出各支路的電流值。基爾霍夫定律是電路計算的理論基礎。根據基爾霍夫定律可導出其他一些有用的定理,它們在電路計算中非常有效和簡便。

基爾霍夫定律在穩恆條件下嚴格成立;在准穩條件下,即整個電路的尺度遠遠小於電路工作頻率下的電磁波長時,基爾霍夫定律也符合得相當好。基爾霍夫定律在交流電路中也可應用

㈡ 求電路原理的重點知識內容

給你個大綱

一、電阻性網路分析
電流、電壓及其參考方向,電流與電壓的關聯參考方向;
電功率和電能量的概念;
吸收功率和發出功率的概念及其判定;
線性非時變電阻、電壓源、電流源、受控電源及運算放大器的特性;
KCL和KVL;
樹、割集、基本迴路和基本割集的概念;
有向圖的矩陣表示;
獨立和完備網路變數的概念;
等效電路的概念;
戴維寧-諾頓等效電路;
線性二端電阻'性網路入端電阻的概念及入端電阻的計算;
節點分析法和迴路(網孔)分析法;
疊加定理及其應用;
戴維寧-諾頓等效網路定理及其應用;
特勒根定理(互易定理)及其應用;
最大功率傳輸定理及其應用;
網路定理的綜合應用;
含理想運算放大器電路的分析。

二、動態網路分析
線性非時變電容、電感元件的特性;
單位階躍函數和單位沖擊函數的概念及其主要性質;
一階電路和簡單二階電路微分方程的建立及相應初始條件的確定;
各種響應的概念;
求解一階電路的三要素法;
一階、二階電路沖擊響應的計算;

零狀態響應的線性和時不變性質;
常用簡單函數的拉氏變換;
利用部分分式法求拉氏逆變換(不含重極點情況);
KCL、KVL的運算形式;
基本電路元件的運算模型;
用運演算法求解電路的暫態過程(2~3階電路);
網路函數的概念及網路函數的確定;
網路函數與對應沖擊響應的關系、網路函數與對應正弦穩態響應的關系;
雙口網路的Z、Y、H、T參數方程及Z、Y、H、T參數的計算;
雙口網路的相互連接;
雙口網路的等效電路;
有端接雙口網路的分析。

三、正弦穩態分析和廣義正弦穩態分析
同頻率正弦量的相量及相量圖表示;
KCL、KVL的相量形式;
基本電路元件的相量模型,阻抗和導納;
正弦穩態電路的分析計算(含利用相量圖分析);
正弦穩態電路中各種功率的概念及計算,功率因數及功率因數的提高;
最大功率傳輸(共軛匹配);
RLC串聯及並聯諧振電路;
耦合電感元件的特性方程,同名端的概念及同名端的確定(含用實驗方法);
含耦合電感元件電路的分析;
理想變壓器的特性方程及理想變壓器的阻抗變換性質;
對稱三相電路的概念,對稱三相電路中線量與相量的關系;
對稱三相電路的功率;
對稱三相電路的分析計算;
兩表法測量三相三線制電路的功率;
結構簡單的不對稱三相電路的分析計算(電源對稱,含利用位形圖分析);
非正弦周期電流、電壓的有效值,非正弦周期電流電路的平均功率;
非正弦周期電流電路的分析計算。

㈢ 電路的基本定律是什麼

在換路前後電容電壓和電感電流為有限值的條件下,換路前後瞬間電容電壓和電感電流不能躍變。

由於電容通過電場儲能,所以在0+和0-這兩個時間點的U必然是相等的,也即U不能突變(能量不能突變)。同理,電感通過磁場儲能,所以在0+和0-這兩個時間點的I必然是相等的,也即I不能突變(能量不能突變)。對於電容,U(0+)=U(0-),對於電感,I(0+)=I(0-)。就是換路定理的核心。

換路定則:

在模擬電路中對動態電路進行時域分析時,一般採用三要素法求解電感中電流或電容上的電壓,此時在分析電路時設t=0為換路瞬間,以t=0-表示換路前的終了瞬間,t=0+表示換路後的初始瞬間。0+和0-在數值上都等於0,但是前者是指從負值趨於0,後者是指從正值趨於0。

從t=0-到t=0+瞬間,由電容元件和電感元件的性質可知,電容元件上電壓不能躍變,電感元件上電流不能躍變,這就是換路原則。

㈣ 閉合電路的歐姆定律知識點總結

(一 ) 部分電路歐姆定律
1.電流
(1) 電流的形成:電荷的定向移動就形成電流。形成電流的條件是:
①要有能自由移動的電荷; ②導體兩端存在電壓。

(2) 電流強度:通過導體橫截面的電量 q 跟通過這些電量所用時間 t 的比值,叫電流強度。
①電流強度的定義式為:l=q/t
②電流強度的微觀表達式為:I=nqSv

n 為導體單位體積內的自由電荷數,q 是自由電荷電量,v 是自由電荷定向移動的速率,S是導體的橫截面積。

(3)電流的方向:物理學中規定正電荷的定向移動方向為電流的方向,與負電荷定向移
動方向相反。 在外電路中電流由高電勢端流向低電勢端,在電源內部由電源的負極流向正極。

2.電阻定律
(1) 電阻:導體對電流的阻礙作用就叫電阻,數值上:R=U/I。

(2) 電阻定律:公式:R=ρL/S ,式中的ρ為材料的電阻率,由導體的材料和溫度決定。純金屬的電阻率隨溫度的升高而增大,某些半導體材料的電阻率隨溫度的升高而減小,某些合金的電阻率幾乎不隨溫度的變化而變化。

(3) 半導體:導電性能介於導體和絕緣體之間,如鍺、硅、砷化鎵等。
半導體的特性:光敏特性、熱敏特性和摻雜特性,可以分別用於制光敏電阻、熱敏電阻及晶體管等。

(4) 超導體:有些物體在溫度降低到絕對零度附近時。電阻會突然減小到無法測量的程度,這種現象叫超導;發生超導現象的物體叫超導體,材料由正常狀態轉變為超導狀態的溫度叫做轉變溫度 Tc。

3.部分電路歐姆定律
內容:導體中的電流跟它兩端的電壓成正比,跟它的電阻成反比。
公式:I=U/R

適用范圍:金屬、電解液導電,但不適用於氣體導電。
歐姆定律只適用於純電阻電路,而不適用於非純電阻電路。

伏安特性:描述導體的電壓隨電流怎樣變化。若U-I圖線為過原點的直線,這樣的元件叫線性元件;若u-i圖線為曲線叫非線性元件。

㈤ 電路原理

電路原理是研究電流、電壓、電阻、電感、電容等基本電學量之間關系的理論,主要包括電路的基本概念、電路元件的特性、電路擾拍定理和分析方法等方面。電路原理是電子技術的基礎,掌握電路原理可以幫助人們設計和分析各種電子電路,包括放大電路、濾波電路、穩壓電路等等。電路原理是電子工程師和電子技術人員必須掌握的基本知識之一。

5. 交流電路:正弦波、交流電孫李畝路的基本特性、頻率、相位等。

6. 模擬電路設計:放大電路、濾波電路、振盪電路等。

以上是電路原理的主要內容,掌握這些知識可以幫助人們理解和設計各種電子電路。

㈥ 閉合電路的歐姆定律的知識點是什麼

在同一電路中,導體中的電流跟導體兩端的電壓成正比,跟導體的電阻阻值成反比,這就是歐姆定律,基本公式是I=U/R。歐姆定律由喬治·西蒙·歐姆提出,為了紀念他對電磁學的貢獻,物理學界將電阻的單位命名為歐姆,以符號Ω表示。

閉合迴路功率與電阻關系由歐姆定律I=U/R的推導式R=U/I或U=IR不能說導體的電阻與其兩端的電壓成正比,與通過其的電流成反比,因為導體的電阻是它本身的一種性質,取決於導體的長度、橫截面積、材料和溫度,即使它兩端沒有電壓,沒有電流通過,它的阻值也是一個定值。(這個定值在一般情況下,可以看做是不變的,因為對於光敏電阻和熱敏電阻來說,電阻值是不定的。對於一般的導體來講,還存在超導的現象,這些都會影響電阻的阻值,也不得不考慮。)
電阻的單位歐姆簡稱歐(Ω)。1Ω定義為:當導體兩端電勢差為1伏特(ν),通過的電流是1安培(Α)時,它的電阻為1歐(Ω)。
一個導體的電阻R不僅取決於導體的性質,它還與工作點的溫度(t°C)有關。對於有些金屬、合金和化合物,當溫度降到某一臨界溫度t°C時,電阻率會突然減小到無法測量,這就是超導現象。 導體的電阻與溫度有關。一般來說,金屬導體的電阻會隨溫度升高而增大,如電燈泡中鎢絲的電阻。半導體的電阻與溫度的關系很大,溫度稍有增加電阻值即會減小很多。通過實驗可以找出電阻與溫度變化之間的關系,利用電阻的這一特性,可以製造電阻溫度計(通常稱為「熱敏電阻溫度計」)。
部分電路歐姆定律公式: I=U/R U = RI 或 I = U/R = GU (I=U:R)
公式說明
其中G = 1/R,電阻R的倒數G叫做電導,其國際單位制利用歐姆定律測電阻為西門子(S)。 其中:I、U、R——三個量是屬於同一部分電路中同一時刻的電流強度、電壓和電阻。 I=Q/t 電流=電荷量/時間 (單位均為國際單位制) 也就是說:電流=電壓/ 電阻 或者 電壓=電阻×電流『只能用於計算電壓、電阻,並不代表電阻和電壓或電流有變化關系』
適用范圍
歐姆定律通常只適用於線性電阻(純電阻電路,即只做熱功不做機械功的電路),如金屬、電解液(酸、鹼、鹽的水溶液)。
引申推論
由歐姆定律所推公式: 串聯電路: I總=I1=I2(串聯電路中,各處電流相等) U總=U1+U2(串聯電路中,總電壓等於各部分兩端電壓的總和) R總=R1+R2+R3...+Rn U1:U2=R1:R2(串聯成正比分壓) 當有n個定值電阻R0串聯時,總電阻 R=nR0 並聯電路: I總=I1+I2(並聯電路中,幹路電流等於各支路電流的和) U總=U1=U2 (並聯電路中,電源電壓與各支路兩端電壓相等) 1/R總=1/R1+1/R2 I1:I2=R2:R1 (並聯反比分流) R總=R1·R2\(R1+R2) R總=R1·R2·R3:(R1·R2+R2·R3+R1·R3 ) 即1/R總=1/R1+1/R2+……+1/Rn 當有n個定值電阻R0並聯時,總電阻 R=R0/n 即總電阻小於任一支路電阻但並聯越多總電阻越小 串聯分壓(電壓)並聯分流(電流) 部分電路的歐姆定律 對於一個任意給定的閉合電路,根據歐姆定律,通過任一電阻器的電流乘以該電阻阻值就是該電阻兩端的電壓。所有電阻兩端的電壓和就是電源電動勢。由於內電路的電流方向是由負極流向正極,因此,我們可以認為電源所分的電壓是負的。於是我們得出結論:對於閉合電路中所有用電器分得的電壓代數和為零。由此,我們可以得出推論:在任意一個復雜電路中,任取一塊閉合電路,也能夠有以下結論(即部分電路的歐姆定律):給定一個方向以後(順時針或者逆時針),各用電器分得的電壓代數和為零。
[編輯本段]全電路歐姆定律(閉合電路歐姆定律)
公式
I=E/(R+r) U-電壓 伏特(V) R-電阻 歐姆(Ω) I-電流 安培(A)
公式說明
其中E為電動勢,R為外電路電阻,r為電源內阻,內電壓U內=Ir,E=U內+U外 適用范圍:純電阻電路歐姆定律閉合電路中的能量轉化: E=U+Ir EI=UI+IR P釋放=EI P輸出=UI 純電阻電路中 P輸出=I^2R =E^2R/(R+r)^2 =E^2/(R^2+2r+r^2/R) 當 r=R時 P輸出最大,P輸出=E^2/4r (均值不等式) (在同一電路中,當 U-電壓 伏特(V) R-電阻 歐姆(Ω) I-電流 安培(A) 時,便可用伏安法測電阻!)
歐姆定律的微分形式
在通電導線中取一圓柱形小體積元,其長度ΔL,截面積為ΔS,柱體軸線沿著電流密度J的方向,則流過ΔS的電流ΔI為: ΔI=JΔS 由歐姆定律:ΔI=JΔS=-ΔU/R 由電阻R=ρΔL/ΔS,得:歐姆定律JΔS=-ΔUΔS/(ρΔL) 又由電場強度和電勢的關系,-ΔU/ΔL=E,則: J=1/ρ*E=σE (E為電場強度,σ為電導率)
[編輯本段]有關歐姆定律的公式(包括推導公式)
主要公式
由歐姆定律所推公式: 並聯電路 串聯電路歐姆定律實驗I總=I1+I2 I總=I1=I2 U總=U1=U2 U總=U1+U2+···+Un 1:R總=1:R1+1:R2 R總=R1+R2+···+Rn I1:I2=R2:R1 U1:U2=R1:R2 R總=R1R2 :(R1+R2) R總=R1R2R3 :(R1R2+R2R3+R1R3) 也就是說:電流=電壓÷電阻 或者 電壓=電阻×電流 流過電路里電阻的電流,與加在電阻兩端的電壓成正比,與電阻的阻值成反比。 ⑴串聯電路 P(電功率)U(電壓)I(電流)W(電功)R(電阻)T(時間) 電流處處相等 I1=I2=I 總電壓等於各用電器兩端電壓之和 U=U1+U2 總電阻等於各電阻之和 R=R1+R2 U1:U2=R1:R2 消耗的總功率等於各電功率之和 W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 總功率等於各功率之和 P=P1+P2 ⑵並聯電路 總電流等於各幹路電流之和 I=I1+I2 電壓關系:電路中各支路兩端電壓相等 U1=U2=U 總電阻倒數等於各電阻倒數之和 R=R1R2÷(R1+R2)註:此只限於並聯兩個電阻,若是多個電阻,則總電路的等效電阻的倒數等於各支路電阻倒數的和 總電功等於各電功之和 W=W1+W2 I1:I2=R2:R1 W1:W2=I1:I2=R2:R1 P1:P2=R2:R1=I1:I2 總功率等於各功率之和 P=P1+P2歐姆定律⑶同一用電器的電功率 ①額定功率比實際功率等於額定電壓比實際電壓的平方 Pe/Ps=(Ue/Us)的平方
有關電路的公式
⑴電阻 R R=ρL/S註:其中ρ不是密度,而是導線材料在常溫下長度為1m橫截面積為1mm^2時的阻值 ②電阻等於電壓除以電流 R=U÷I ③電阻等於電壓平方除以電功率 R=UU÷P ⑵電功 W 電功等於電流乘電壓乘時間 W=UIt(普式公式) 電功等於電功率乘以時間 W=PTt 電功等於電荷乘電壓 W=QU 電功等於電流平方乘電阻乘時間 W=I×IRt(純電阻電路) 電功等於電壓平方除以電阻再乘以時間 W=U•U÷R×t(同上) ⑶電功率 P ①電功率等於電壓乘以電流 P=UI ②電功率等於電流平方乘以電阻 P=IIR(純電阻電路) ③電功率等於電壓平方除以電阻 P=UU÷R(同上) ④電功率等於電功除以時間 P=W:Tt ⑷電熱 Q 電熱等於電流平方成電阻乘時間 Q=IIRt(普式公式) 電熱等於電流乘以電壓乘時間 Q=UIt=W(純電阻電路) 歐姆定律之電路變化 一、有關電路變化的問題可分為 (1)判斷電表示數變化的問題(開關斷、閉,滑動變阻器移動); (2)電能表量程的選擇及變化分為問題; (3)滑動變阻器的取值范圍問題。 二、可以填空、選擇、計算等形式出現 三、分析方法: (1)看清變化前後電路的連接方式,滑動變阻器滑片的移動引起接入電阻如何變化,開關通斷變化的電路,先看清變化前後電路是什麼連接方式; (2)從電路圖中分析電流表、電壓表測的是哪一部分電路的電流、電壓; (3)根據串、並聯電路的性質和特點,靈活運用歐姆定律進行求解。
[編輯本段]喬治·西蒙·歐姆
生平簡介
喬治·西蒙·歐姆(Georg Simon Ohm,1787~1854年)是德國物理學家。生於巴伐利亞埃爾蘭根城。歐姆的父親是一個技術熟練的鎖匠,對哲學和數學都十分愛好。歐姆從小就在父親的教育下學習數學並受到有關機械技能的訓練,這對他後來進行研究工作特別是自製儀器有很大的幫助。歐姆的研究,主要是在1817~1827年擔任中學物理教師期間進行的。 歐姆研究過程與成果
歐姆第一階段的實驗是探討電流產生的電磁力的衰減與導線長度的關系,其結果於1825年5月在他的第一篇科學論文中發表。在這個實驗中,他碰到了測量電流強度的困難。在德國科學家施威格發明的檢流計啟發下,他把斯特關於電流磁效應的發現和庫化扭秤方法巧妙地結合起來,設計了一個電流扭力秤,用它測量電流強度。歐姆從初步的實驗中出發,電流的電磁力與導體的長度有關。其關系式與今天的歐姆定律表示式之間看不出有什麼直接聯系。歐姆在當時也沒有把電勢差(或電動勢)、電流強度和電阻三個量聯系起來。 早在歐姆之前,雖然還沒有電阻的概念,但是已經有人對金屬的電導率(傳導率)進行研究。歐姆很努力,1825年7月,歐姆也用上述初步實驗中所用的裝置,研究了金屬的相對電導率。他把各種金屬製成直徑相同的導線進行測量,確定了金、銀、鋅、黃銅、鐵等金屬的相對電導率。雖然這個實驗較為粗糙,而且有不少錯誤,但歐姆想到,在整條導線中電流不變的事實表明電流強度可以作為電路的一個重要基本量,他決定在下一次實驗中把它當作一個主要觀測量來研究。 在以前的實驗中,歐姆使用的電池組是伏打電堆,但是這種電堆的電動勢不穩定,使他大為頭痛。後來經人建議,改用鉍銅溫差電偶作電源,從而保證了電源電動勢的穩定。 1826年,歐姆用上面圖中的實驗裝置導出了他的定律。在木質座架上裝有電流扭力秤,DD'是扭力秤的玻璃罩,CC'是刻度盤,s是觀察用的放大鏡,m和m'為水銀杯,abb'a'為鉍框架,鉍、銅框架的一條腿相互接觸,這樣就組成了溫差電偶。A、B是兩個用來產生溫差的錫容器。實驗時把待研究的導體插在m和m'兩個盛水銀的杯子中,m和m'成了溫差電池的兩個極。 歐姆准備了截面相同但長度不同的導體,依次將各個導體接入電路進行實驗,觀測扭力拖拉磁針偏轉角的大小,然後改變條件反復操作,根據實驗數據歸納成下關系: x=q/(b+l)式中x表示流過導線的電流的大小,它與電流強度成正比,和A和B為電路的兩個參數,L表示實驗導線的長度。 1826年4月歐姆發表論文,把歐姆定律改寫為:x=ksa/ls為導線的橫截面積,K表示電導率,A為導線兩端的電勢差,L為導線的長度,X表示通過L的電流強度。如果用電阻l'=l/ks代入上式,就得到X=a/I'這就是歐姆定律的定量表達式,即電路中的電流強度和電勢差成正比而與電阻成反比。為了紀念歐姆對電磁學的貢獻,物理學界將電阻的單位命名為歐姆,以符號Ω表示。

㈦ 簡單電路知識點

簡單電路基礎知識練習(第一、二章)【知識結構】簡單直流電路簡單直流電路電路組成:基本定律:電路分類:電路三種工作狀態:電阻定律歐姆定律焦耳定律通路開路短路串聯電路並聯電路混聯電路簡單電路分析、計算萬用表基本原理電阻測量電位計算【重、難點知識】1、電路中主要物理量 2、基本定律3、電路中各點電位計算 4、簡單直流電路分析計算【內容提要】1、電路(1)、組成:由電源、用電器(負載)、連接導線、開關及保護裝置組成的閉合迴路。(2)、作用:實現電能的傳輸和轉換。2、電流(1)、定義:電荷的定向移動形成電流。(2)、電路中有持續電流的條件:①、電路為閉合通路。②、電路兩端存在電壓,電源的作用就是為電路提供持續的電壓。3、電流的大小 等於通過導體橫截面的電荷量與通過這些電荷量所用時間的比值,即: I單位安培(A)、q單位庫侖(C)、t單位秒(S)。4、電阻 表示原件或導體對電流呈現阻礙作用大小的物理量,在一定溫度下,導體的電阻可用電阻定律計算。 (1)、電阻定律數學表達式: (2)、電阻定律:導體的電阻和它的長度成正比,與它的橫截面積成反比。 (3)、說明:①、ρ是反映材料導電性能的物理量,稱為「電阻率」。②、導體的電阻與溫度有關。5、部分電路歐姆定律 反映電流、電壓、電阻三者間關系,數學表達式為:6、電能、電功率 電流通過用電器時,將電能轉換為其他形式的能(1)、轉換電能的計算:W=Uit(2)、電功率計算:;對純阻性電路適用。(3)、電熱的計算(焦耳定律):7、閉合(全)電路歐姆定律(1)、文字敘述:閉合電路內的電流與電源電動勢成正比,與電路的總電阻成反比。(2)、數學表達式:(3)、說明:E代表電源電動勢、R代表外電路電阻、r電源內部電阻。電路參數的變化將使電路中電流、電壓分配關系及功率消耗等發生改變。8、電源外特性 閉合電路中,電源端電壓隨負載電流變化的規律,即:9、串聯電路的

㈧ 電路定律及適用條件

基爾霍夫電路定律簡稱為基爾霍夫定律,指的是兩條電路學定律,基爾霍夫電流定律與基爾霍夫電壓定律。它們涉及了電荷的守恆及電勢的保守性。

條件:

任何物理可實現電路,在換路瞬間電路中的儲能不發生突變。

由於電容通過電場儲能,能量公式為 0.5×C×sqrt(U),所以在0+和0-這兩個時間點的U必然是相等的,也即U不能突變(能量不能突變)。

同理,電感通過磁場儲能,能量公式為 0.5×L×sqrt(I),所以在0+和0-這兩個時間點的I必然是相等的,也即I不能突變(能量不能突變)。

對於電容,U(0+)=U(0-),對於電感,I(0+)=I(0-)。就是換路定理的核心。

電壓定律內容

基爾霍夫電壓定律表明:如果從迴路中任意一點,以順時針方向或逆時針方向沿迴路循行一周,則在這個方向上的電位降之和應等於電位升之和.即:U升=U降。

在任一瞬間,沿任意迴路的循行方向(順時針方向或逆時針方向), 迴路中各部分電壓的代數和恆等於零。書中規定:凡電動勢的參考方向與所選迴路循行方向一致者取「負」,相反者則取「正」; 凡電流參考方向與迴路循行方向一致者,該電流在電阻上所產生的電壓降取「正」。

以上內容參考:網路-迴路電壓定律

㈨ 電路基礎 求《電路》考試重點。或者是您認為的重點,謝謝!

1.判斷吸收還是發出來概率;
2.求等源效電阻;
3.電路的基本分析方法;(尤其是結點電壓法)
4.電路定理,其中的疊加定理,最大功率傳輸基本每次必考!很可能和其他知識點復合在一起。
5.儲能元件的性質;
6.一階電路,二階電路的響應;(三要素法分析一階電路)
7.正弦電路的分析;(向量法)
8.耦合電感;(去耦方法!)
9.變壓器,理想變壓器;
10.三相電路(有功功率,無功功率,視在功率,復功率)當然,又有那個,最大功率傳輸;
11.戴維寧,諾頓定理;(必考)
12.非正弦周期信號處理方法,求有效值,平均值和平均功率等等;
13.線性電路的復頻域分析;拉普拉斯變換,運算電路求解;
14.二埠網路的分析,注意T矩陣的求法以及各種矩陣之間的轉換;

閱讀全文

與電路定理重點相關的資料

熱點內容
應聘國家電網需提前准備什麼意思 瀏覽:349
屋托邦傢具 瀏覽:542
半等效電路 瀏覽:637
公司如何翻新設備 瀏覽:711
做防水為什麼要通水 瀏覽:381
廣州紅米手機店維修點在哪裡 瀏覽:975
甘肅防水安檢機多少錢一台 瀏覽:400
傢具大師什麼商業模式 瀏覽:137
布基膠帶怎麼防水 瀏覽:373
日本電路分析 瀏覽:753
層高20米怎麼做防水 瀏覽:622
翻新游戲機如何鑒別 瀏覽:265
黃色瓷磚如何搭配傢具 瀏覽:683
南海東芝家用電器 瀏覽:242
江門市牆面翻新服務如何 瀏覽:348
五菱售後服務維修 瀏覽:194
石膏粉配什麼凝固防水 瀏覽:119
蘋果如何預約維修app 瀏覽:845
赫連娜傢具 瀏覽:569
鄭州傢具商城 瀏覽:745