A. 施密特觸發器的實現
隧道二極體
施密特觸發器可以利用簡單的隧道二極體(英語:tunnel diode)實現,這種二極體的伏安特性在第一象限中是一條「N」形曲線。振盪輸入會使二極體的伏安特性從「N」形曲線的上升分支移動到另一分支,然後在輸入值超越上升和下降翻轉閾值時回到起點。不過,這類施密特觸發器的性能可以利用基於晶體管的元件來提升,因為基於晶體管的元件可以通過非常直接的利用正反饋來提升翻轉性能。
比較器
施密特觸發器常用接入正反饋的比較器來實現。對於這一電路,翻轉發生在接近地的位置,遲滯量由R1與R2的阻值控制。
比較器提取了兩個輸入之差的符號。當同相(+)輸入的電壓高於反相(-)輸入的電壓時,比較器輸出翻轉到高工作電壓+Vs;當同相(+)輸入的電壓低於反相(-)輸入的電壓時,比較器輸出翻轉到低工作電壓-Vs。這里的反相(-)輸入是接地的,因此這里的比較器實現了函數符號,具有二態輸出的特性,只有高和低兩種狀態,當同相(+)端連續輸入時總有相同的符號。
由於電阻網路將施密特觸發器的輸入端(即比較器的同相(+)端)和比較器的輸出端連接起來,施密特觸發器的表現類似比較器,能在不同的時刻翻轉電平,這取決於比較器的輸出是高還是低。若輸入是絕對值很大的負輸入,輸出將為低電平;若輸入是絕對值很大的正輸入,輸出將為高電平,這就實現了同相施密特觸發器的功能。不過對於取值處於兩個閾值之間的輸入,輸出狀態同時取決於輸入和輸出。例如,如果施密特觸發器的當前狀態是高電平,輸出會處於正電源+Vs上。這時V+就會成為Vin和+Vs間的分壓器。在這種情況下,只有當V+=0(接地)時,比較器才會翻轉到低電平。由電流守恆,可知此時滿足下列關系:
因此必須降低到低於-R1Vs/R2時,輸出才會翻轉狀態。一旦比較器的輸出翻轉到−Vs,翻轉回高電平的閾值就變成了+R1Vs/R2。這樣,電路就形成了一段圍繞原點的翻轉電壓帶,而觸發電平是±R1Vs/R2。只有當輸入電壓上升到電壓帶的上限,輸出才會翻轉到高電平;只有當輸入電壓下降到電壓帶的下限,輸出才會翻轉回低電平。若R1為0,R2為無窮大(即開路)。電壓帶的寬度會壓縮到0,此時電路就變成一個標准比較器 。輸出特性如右圖所示。閾值T由R1Vs/R2給出,輸出M的最大值是電源軌。 實際配置的非反相施密特觸發電路如下圖所示。
輸出特性曲線與上述基本配置的輸出曲線形狀相同,閾值大小也與上述配置滿足相同的關系。不同點在於上例的輸出電壓取決於供電電源,而這一電路的輸出電壓由兩個齊納二極體確定。在這一配置中,輸出電平可以通過選擇適宜的齊納二極體來改變,而輸出電平對於電源波動具有抵抗力,也就是說輸出電平提高了比較器的電源電壓抑制比(PSRR)。電阻R3用於限制通過二極體的電流,電阻R4將比較器的輸入漏電流引起的輸入失調電壓降低到最小。
兩個晶體管
在使用正反饋配置實現的施密特觸發器中,比較器自身可以實現的大部分復雜功能都沒有使用。因此,電路可以用兩個交叉耦合的晶體管來實現(即晶體管可以用另外一種方式來實現輸入級)。基於2個晶體管的施密特觸發電路如下圖所示。通路RC1 R1 R2設定了晶體管T2的基極電壓,不過,這一分壓通路會受到晶體管T1的影響,如果T1開路,通路將會提供更高的電壓。因此,在兩個狀態間翻轉的閾值電壓取決於觸發器的現態。
對於如上所示的NPN晶體管,當輸入電壓遠遠低於共射極電壓時,T1不會導通。晶體管T2的基極電壓由上述分壓電路決定。由於接入負反饋,共射極上所加的電壓必須幾乎與分壓電路上所確定的電壓幾乎一樣高,這樣就能使T2導通,並且觸發器的輸出是低電平狀態。當輸入電壓(T1基極電壓)上升到比電阻RE上的電壓(射極電壓)稍高時,T1將會導通。當T1開始導通時,T2不再導通,因為此時分壓通路提供的電壓低於T2基極電壓,而射極電壓不會降低,因為T1此時消耗通過RE的電流。此時T2不導通,觸發器過渡到高電平狀態。
此時觸發器處於高電平狀態,若輸入電壓降低得足夠多,則通過T1的電流會降低,這會降低T2的共射極電壓並提高其基極電壓。當T2開始導通時,RE上的電壓上升,然後會降低T1的基極-射極電位,T1不再導通。
在高電平狀態時,輸出電壓接近V+;但在低電平狀態時,輸出電壓仍會遠遠高於V−。因此在這種情況下,輸出電壓不夠低,無法達到邏輯低電平,這就需要在觸發器電路上附加放大器。
上述電路可以被簡化:R1可以用短路連接代替,這樣T2基極就直接連接到T1集電極,R2可以去掉並以開路代替。電路運行的關鍵是當T1接通(電流輸入基極的結果)時,通過RE的電流比T1截止時小,因為T1導通時會使T2截止,而當T2導通時,相比T1會為RE提供更大的通過電流。當流入RE的電流減小時,其上的電壓會降低,因此一旦電流開始流入T1,輸入電壓一定會降低以使T1回到截止狀態,這是因為此時T1的射極電壓已降低。這一施密特觸發緩沖器也可以變成一個施密特觸發反相器,而且在此過程中還能省去一個電阻,方法是將RK2以短接代替,並將Vout連接到T2射極而不是集電極。不過在這種情況下,RE的阻值應該更大,因為此時RE要充當輸出端的下拉電阻,作用是當輸出應該為低電平時,其會降低輸出端的電壓。若RE的阻值較小,其上只能產生一個較小的電壓,在輸出應該為數字低電平時,這一電壓實際上會提高輸出電壓。
B. 求一個簡易觸發電路的設計
最簡單可用4個電阻,構成觸發器。
將接電機+-極的兩個點通過電阻接到兩個按鈕處專,按鈕處接下拉電阻,屬就形成了觸發器。這樣可在按鈕松開後燈的亮或滅可以保持。
電阻的大小和接發要視你的電路具體情況而定,你發圖來可以幫你算一下。
然後用一個小繼電器(大約2塊錢一個的那種就行),將繼電器線圈接在電機+和電源之間,繼電器接220v和燈泡。
C. 求上拉電阻和下拉電阻的畫法及其解釋
上拉電阻:一般應用於OC輸出電路,比如P0口設定為輸入/輸出時,如果沒有上拉電阻,當向P0口寫入FFH時,P0口依然不能輸出高電平,此時P0處於懸空狀態,當接有上拉電阻時會輸出FFH。
下拉電阻:有時候是為了加快信號的反映速度,有時候是為了固定電平狀態或抗干擾。
拉電流:當此點輸出為高電平時,此點可以向外輸出的電流。
灌電流:當此點輸出為低電平時,此點可以從外部吸入的電流。
灌電流對單片機的影響:由於單片機內部線路較細,如果灌電流太大會燒毀晶元,一般單片機的總電流都要求小於50毫安。
如下圖的兩個BiasResaitor電阻就是上拉電阻和下拉電阻。圖中,上部的一個BiasResaitor電阻因為是接地,因而叫做下拉電阻,意思是將電路節點A的電平向低方向(地)拉;同樣,圖中,下部的一個BiasResaitor電阻因為是電源(正),因而叫做上拉電阻,意思是將電路節點A的電平向高方向(電源正)拉。當然,許多電路中上拉下拉電阻中間的那個12k電阻是沒有的或者看不到的。我找來這個圖是RS-485/RS-422匯流排上的,可以一下子認識上拉下拉的意思。但許多電路只有一個上拉或下拉電阻,而且實際中,還是上拉電阻的為多
D. 我想設計一個電路 只有兩個高電平輸入時輸出高電平 只有輸入兩個低電平時才能輸出低電平 其他情況不工作
1樓只說了一抄種情況,這問題本襲身就有問題,當輸入一個高一個低,怎麼辦。兩個高電平輸入時輸出高電平,為典型雙輸入與門。只有輸入兩個低電平時才能輸出低這是或門。這應說的是RS觸發器,當輸入一個高一個低,保持原態
E. 單片機的按鍵啟動和復位電路圖
單片機的復位有上電復位和按鈕手動復位兩種。如圖(a)所示為上電復位電迴路,圖(答b)所示為上電按鍵復位電路。
上電復位是利用電容充電來實現的,即上電瞬間RST端的電位與VCC相同,隨著充電電流的減少,RST的電位逐漸下降。圖(a)中的R是施密特觸發器輸入端的一個10KΩ下拉電阻,時間常數為10×10-6×10×103=100ms。只要VCC的上升時間不超過1ms,振盪器建立時間不超過10ms,這個時間常數足以保證完成復位操作。上電復位所需的最短時間是振盪周期建立時間加上2個機器周期時間,在這個時間內RST的電平應維持高於施密特觸發器的下閾值。
上電按鍵復位(b)所示。當按下復位按鍵時,RST端產生高電平,使單片機復位。復位後,其片內各寄存器狀態改變,片內RAM內容不變。
由於單片機內部的各個功能部件均受特殊功能寄存器控制,程序運行直接受程序計數器PC指揮。各寄存器復位時的狀態決定了單片機內有關功能部件的初始狀態。
另外,在復位有效期間(即高電平),80C51單片機的ALE引腳和引腳均為高電平,且內部RAM不受復位的影響。
圖要點一下查看大圖才清楚哦O(∩_∩)O