① X射線機原理及構造
x光機是產生X光的設備,其主要由X光球管和X光機電源以及控制電路等組成,而X光球管又由陰極燈絲(Cathod)和陽極靶(Anode)以及真空玻璃管組成,X光機電源又可分為高壓電源和燈絲電源兩部分,其中燈絲電源用於為燈絲加熱,高壓電源的高壓輸出端分別家在陰極燈絲和陽極靶兩端,提供一個高壓電場使燈絲上活躍的電子加速流向陽極靶,形成一個高速的電子流,轟擊陽極靶面後,99%轉化為熱量,1%由於康普頓效應產生X射線。
結構圖:
② 什麼是X光
X光是一種射線,就是我們常說的X射線
X射線的發現者威廉·康拉德·倫琴於1845年出生在德國尼普鎮。他於1869年從蘇黎世大學獲得哲學博士學位。在隨後的十九年間,倫琴在一些不同的大學工作,逐步地贏得了優秀科學家的聲譽。1888年他被任命為維爾茨堡大學物理所物理學教授兼所長。1895年倫琴在這里發現了X射線。
1895年9月8日這一天,倫琴正在做陰極射線實驗。陰極射線是由一束電子流組成的。當位於幾乎完全真空的封閉玻璃管兩端的電極之間有高電壓時,就有電子流產生。陰極射線並沒有特別強的穿透力,連幾厘米厚的空氣都難以穿過。這一次倫琴用厚黑紙完全覆蓋住陰極射線,這樣即使有電流通過,也不會看到來自玻璃管的光。可是當倫琴接通陰極射線管的電路時,他驚奇地發現在附近一條長凳上的一個熒光屏(鍍有一種熒光物質氰亞鉑酸鋇)上開始發光,恰好象受一盞燈的感應激發出來似的。他斷開陰極射線管的電流,熒光屏即停止發光。由於陰極射線管完全被覆蓋,倫琴很快就認識到當電流接通時,一定有某種不可見的輻射線自陰極發出。由於這種輻射線的神密性質,他稱之為「X射線」——X在數學上通常用來代表一個未知數。
這一偶然發現使倫琴感到興奮,他把其它的研究工作擱置下來,專心致志地研究X射線的性質。經過幾周的緊張工作,他發現了下例事實。(1)X射線除了能引起氰亞鉑酸鋇發熒光外,還能引起許多其它化學製品發熒光。(2)X射線能穿透許多普通光所不能穿透的物質;特別是能直接穿過肌肉但卻不能透過骨胳,倫琴把手放在陰極射線管和熒光屏之間,就能在熒光屏上看到他的手骨。(3)X射線沿直線運行,與帶電粒子不同,X射線不會因磁場的作用而發生偏移。
1895年12月倫琴寫出了他的第一篇X射線的論文,發表後立即引起了人們極大的興趣和振奮。在短短的幾個月內就有數以百計的科學家在研究X射線,在一年之內發表的有關論文大約就有一千篇!在倫琴發明的直接感召下而進行研究的科學家當中有一位是安托萬·亨利·貝克雷爾。貝克雷爾雖然是有意在做X射線的研究,但是卻偶然發現了甚至更為重要的放射現象。
在一般情況下,每當用高能電子轟擊一個物體時,就會有X射線產生。X射線本身並不是由電子而是由電磁波構成的。因此這種射線與可見輻射線(即光波)基本上相似,不過其波長要短得多。
當然X射線的最著名的應用還是在醫療(包括口腔)診斷中。其另一種應用是放射性治療,在這種治療當中X射線被用來消滅惡性腫瘤或抑制其生長。X射線在工業上也有很多應用,例如,可以用來測量某些物質的厚度或勘測潛在的缺陷。X射線還應用於許多科研領域,從生物到天文,特別是為科學家提供了大量有關原子和分子結構的信息。
發現X射線的全部功勞都應歸於倫琴。他獨自研究,他的發現是前所未料的,他對其進行了極佳的追蹤研究,而且他的發現對貝克雷爾及其他研究人員都有重要的促進作用。
然而人們不要過高地估計倫琴的重要性。X射線的應用當然很有益處,但是不能認為它如同法拉第電磁感應的發現一樣,改變了我們的整個技術;也不能認為X射線的發明在科學理論中有其真正重大的意義。人們知道紫外線(波長要比可見光短)已近一個世紀了,X射線與紫外線相類似,但是它的波長比紫外線還要短,它的存在與經典物理學的觀點完全相符。總之,我認為完全有理由把倫琴遠排在貝克雷爾之後,因為貝克雷爾的發現具有更重大的意義。
倫琴目己沒有孩子,但他和妻子抱養了一個女兒。1901年倫琴獲得諾貝爾物理獎,是獲得該項獎的頭一個人。他於1923年在德國慕尼黑與世長辭。
③ 我用x光機測電路板的工作,對身體有什麼危害
X光對人體是輕度有害的,但是也取決於個人的耐受問題,總體來說不應該有什麼;在生活中,你應該有意識的去均衡營養,多吃蔬菜水果,對你抵抗一些疾病會有幫助的。
首先要從X線的基本原理談起。X線是德國物理學家倫琴·威廉·康拉德於1895年11月8日發現的。當時由於人們對這種射線不了解,就給它取了個未知數「X」的名字,後來人們便稱它為「X射線」。X線對人體健康確有一定危害,X線照射量越大,對人體的損害就越大。X線照射量可在身體內累積,其主要危害是對人體血液成分中的白細胞具有一定的殺傷力,使人體血液中的白細胞數量減少,進而導致機體免疫功能下降,使病菌容易侵入機體而發生疾病。
④ x線機的工作原理
x光機
x光機是產生X光的設備,其主要由X光管和X光機電源以及控制電路等組成,而X光管又由陰極燈絲 (Cathod)和陽極靶(Anode)以及真空玻璃管組成,X光機電源又可分為高壓電源和燈絲電源兩部分,其中燈絲電源用於為燈絲加熱,高壓電源的高壓輸出端分別家在陰極燈絲和陽極靶兩端,提供一個高壓電場使燈絲上活躍的電子加速流向陽極靶,形成一個高速的電子流.
X光的產生方式
制動輻射(Bremsstrahlung)和特性輻射(Characteristic)。制動輻射:高速電子突然減速後,其動能以X光的形式釋放出來;特性輻射: 高速電子撞擊原子和外圍軌道上電子,使之游離且釋放出能量,這種能量即X光。
x光機基本原理
X-ray 是由德國侖琴教授在1895年所發現。這種由真空管發出能穿透物體的輻射線,在電磁光譜上能量較可見光強,波長較短,頻率較高,相類似之輻射線有宇宙射線,X-ray等。
產生X-Ray必須要有X光球管,而X光球管基本構造必須擁有:
陰極燈絲 (Cathod)
陽極靶 (Anode)
真空玻璃管 (Evacuated glass envelope)
當然還要有電源能量供應
X-ray 產生方式有兩種
Bremsstrahlung (制動輻射) 高速電子突然減速後,其動能轉變成能量釋放出來,此能量即為X-ray,且此能量會隨減速之程度而有所不同。
Characteristic (特性輻射) 高速電子撞擊原子和外圍軌道上電子,使之游離且釋放之能量,即為X-ray。
診斷用X-ray其產生方式所佔比例: 30% 特性輻射70% 制動輻射
X-Ray特性
能穿透物體 為不可見光 於電磁波光譜內 波長范圍廣 直線散射 光速進行 能使螢光物質發光 能使底片感光 會造成散射線
當X-ray進入物體時,會有三種情形發生:
被物體吸收 (Absorption)
產生散射現(Scatter)
穿透(Penetration)
影響Radiographic Quality之三要素:
Density (黑化度)- mAs
Contrast(對比度)- kVp
Sharpness(清晰度)- motion, Geometric
Distortion(失真度)- position, angle
X-Ray波長與Film上contrast之關系
在X-ray穿透過病人,其穿透率主要和病人組織結構及X-Ray波長有關。
短波長X-ray (high kV)
能量較高,穿透性好,造成在Film上較低之對比度(low contrast)。
長波長X-ray (low kV)
能量較低,較易被人體所吸收,穿透性較差,而在Film上對比度較高(High contrast)。
應用
X光機廣泛應用於醫療衛生,科學教育,工業各個領域,例如X光機可用於醫院協助醫生診斷疾病,用於工業的無損探傷,火車站和機場的安全檢查等等。