A. 電容與電阻串聯是什麼電路
電容與電阻串聯是諧振電路。
對於包含電容和電感及電阻元件的無源一埠網路,其埠可能呈現容性、感性及電阻性,當電路埠的電壓U和電流I,出現同相位,電路呈電阻性時。稱之為諧振現象,這樣的電路,稱之為諧振電路。
諧振的實質是電容中的電場能與電感中的磁場能相互轉換,此增彼減,完全補償。電場能和磁場能的總和時刻保持不變,電源不必與電容或電感往返轉換能量,只需供給電路中電阻所消耗的電能。
(1)電容組電路擴展閱讀:
串聯諧振優點:
1、所需電源容量大大減小。系列串聯諧振試驗裝置是利用諧振電抗器和被試品電容產生諧振,從而得到所需高電壓和大電流的,在整個系統中,電源只需要提供系統中有功消耗的部分,因此,試驗所需的電源功率只有試驗容量的1/Q倍(Q為品質因素)。
2、設備的重量和體積大大減小。串聯諧振電源中,不但省去了笨重的大功率調壓裝置和普通的大功率工頻試驗變壓器,而且,諧振激磁電源只需試驗容量的1/Q,使得系統重量和體積大大減小,一般為普通試驗裝置的1/5~1/10。
3、改善輸出電壓波形。諧振電源是諧振式濾波電路,能改善輸出電壓的波形畸變,獲得很好的正弦波,有效地防止了諧波峰值引起的對被試品的誤擊穿。
4、防止大的短路電流燒傷故障點。在諧振狀態,當被試品的絕緣弱點被擊穿時,電路立即脫諧(電容量變化,不滿足諧振條件),迴路電流迅速下降為正常試驗電流的1/Q。
而採用並聯諧振或者傳統試驗變壓器的方式進行交流耐壓試驗時,擊穿電流立即上升幾十倍,兩者相比,短路電流與擊穿電流相差數百倍。所以,串聯諧振能有效地找到絕緣弱點,又不存在大的短路電流燒傷故障點的憂患。
5、不會出現任何恢復過電壓。被試品發生擊穿閃絡時,因失去諧振條件,高電壓也立即消失,電弧立刻熄滅,裝置的保護迴路動作,切斷輸出。
B. 電容並到電路起什麼作用啊
一、電容的分類和作用
電容(Electric
capacity),由兩個金屬極,中間夾有絕緣材料(介質)構成。由於絕緣材料的不同,所構成的電容器的種類也有所不同。
按結構可分為:固定電容,可變電容,微調電容。
按介質材料可分為:氣體介質電容,液體介質電容,無機固體介質電容,有機固體介質電容電解電容。
按極性分為:有極性電容和無極性電容。
我們最常見到的就是電解電容。
電容在電路中具有隔斷直流電,通過交流電的作用,因此常用於級間耦合、濾波、去耦、旁路及信號調諧。
二、電容的單位
電阻的基本單位是:F
(法),此外還有μF(微法)、pF(皮法),另外還有一個用的比較少的單位,那就是:nF(納法),由於電容
F
的容量非常大,所以我們看到的一般都是μF、nF、pF的單位,而不是F的單位。
他們之間的具體換算如下:
1F=1000000μF
1μF=1000nF=1000000pF
三、電容的耐壓
單位:V(伏特)
每一個電容都有它的耐壓值,這是電容的重要參數之一。普通無極性電容的標稱耐壓值有:63V、100V、160V、250V、400V、
600V、1000V等,有極性電容的耐壓值相對要比無極性電容的耐壓要低,一般的標稱耐壓值有:4V、6.3V、10V、16V、25V、35V、
50V、63V、80V、100V、220V、400V等。
四、電容的種類
電容的種類有很多,可以從原理上分為:無極性可變電容、無極性固定電容、有極性電容等,從材料上可以分為:CBB電容(聚乙烯),滌綸電容、瓷片電容、雲母電容、獨石電容、電解電容、鉭電容等。
五、特點
無感CBB電容
2層聚丙乙烯塑料和2層金屬箔交替夾雜然後捆綁而成。
無感,高頻特性好,體積較小
不適合做大容量,價格比較高,耐熱性能較差。
電解電容
兩片鋁帶和兩層絕緣膜相互層疊,轉捆後浸泡在電解液(含酸性的合成溶液)中。
容量大。
高頻特性不好。
電解電容其作用是:
隔直流:作用是阻止直流通過而讓交流通過。
旁路(去耦):為交流電路中某些並聯的元件提供低阻抗通路。
耦合:作為兩個電路之間的連接,允許交流信號通過並傳輸到下一級電路。
濾波:將整流以後的鋸齒波變為平滑的脈動波,接近於直流。
儲能:儲存電能,用於必須要的時候釋放。
1uF/100V,0.1uF/100V,0.01uF/100V,0.0033uF/100V。以上為無感CCB電容。作用如下:
隔直流:作用是阻止直流通過而讓交流通過。
旁路(去耦):為交流電路中某些並聯的元件提供低阻抗通路。
耦合:作為兩個電路之間的連接,允許交流信號通過並傳輸到下一級電路。
濾波:將整流以後的鋸齒波變為平滑的脈動波,接近於直流。
C. 電容在電路中起什麼作用
電容在電路中的作用:具有隔斷直流、連通交流、阻止低頻的特性,廣泛應用在耦合、隔直、旁路、濾波、調諧、能量轉換和自動控制等。
1、濾波電容:它接在直流電壓的正負極之間,以濾除直流電源中不需要的交流成分,使直流電平滑,通常採用大容量的電解電容,也可以在電路中同時並接其它類型的小容量電容以濾除高頻交流電。
2、退耦電容:並接於放大電路的電源正負極之間,防止由電源內阻形成的正反饋而引起的寄生振盪。
3、旁路電容:在交直流信號的電路中,將電容並接在電阻兩端或由電路的某點跨接到公共電位上,為交流信號或脈沖信號設置一條通路,避免交流信號成分因通過電阻產生壓降衰減。
4、耦合電容:在交流信號處理電路中,用於連接信號源和信號處理電路或者作為兩放大器的級間連接,用於隔斷直流,讓交流信號或脈沖信號通過,使前後級放大電路的直流工作點互不影響。
5、調諧電容:連接在諧振電路的振盪線圈兩端,起到選擇振盪頻率的作用。
6、襯墊電容:與諧振電路主電容串聯的輔助性電容,調整它可使振盪信號頻率范圍變小,並能顯著地提高低頻端的振盪頻率。
7、補償電容:與諧振電路主電容並聯的輔助性電容,調整該電容能使振盪信號頻率范圍擴大。
8、中和電容:並接在三極體放大器的基極與發射極之間,構成負反饋網路,以抑制三極體極間電容造成的自激振盪。
9、穩頻電容:在振盪電路中,起穩定振盪頻率的作用。
10、定時電容:在RC時間常數電路中與電阻R串聯,共同決定充放電時間長短的電容。
D. 求電容串聯並聯在電路中各有什麼作用
首先要了解電容的特性:
電容的特性就是儲存電荷和釋放電荷,利用電容的這個特性,在不同的電路中發揮其作用。1、濾波:消除(減緩)電壓的波動,當電壓處於波峰時,電壓向電容充電,電壓處於低谷時,電容釋放電荷,使電路中的電壓波動趨向平緩,在這種電路中,電容容量越大,效果越明顯,所以使用的電容都是大容量的。2、耦合:就是傳送交流信號,由於避免前後級互相之間影響直流工作狀態,交流信號的傳送在許多場合下都不能直接連接傳送給後一級,而利用電容的充、放電特性,把交流信號傳送到後一級,這種耦合適用於有一定的頻率,頻率越高,耦合越明顯,採用的電容容量就越小。3、旁路:從以上兩種情況看到,電容容量越小、信號頻率越低,電容對於信號來說相當於斷路;電容容量越大、信號頻率越高,那麼,電容對於信號來說相當於導通;如果我們在信號線路上接有一個電容到地(零位),那麼信號中越高頻率的信號就越會通過電容落地(流失),這時電容對高頻來說就是起到了旁路作用,所以,電容旁路往往是對高頻進行衰減、濾除的一種做法。
分析電容的並聯和串聯的作用和特性:
1、電容器並聯時,相當於電極的面積加大,電容量也就加大了。並聯時的總容量為各電容量之和:C並=C1+C2+C3+…… 順便說說電容器的串聯。若三個電容器串聯後外加電壓為U, 則U=U1+U2+U3=Q1/C1+Q2/C2+Q3/C3, 而電荷Q1=Q2=Q3=Q,所以Q/C串=(1/C1+1/C2+1/C3)Q 1/C串=1/C1+1/C2+1/C3 可見,串聯後總電容量減小。
2、 電容器串聯時,要並聯阻值比電容器絕緣電阻小的電阻,使各電容器上的電壓分配均勻,以免電壓分配不均而損壞電容器。 又可知,電容的串、並聯計算正好與電阻的串、並聯計算相反。
電壓是充電時的電壓,容量與電流,電壓的關系和功率相似,和負載有關, 電壓和容量為定量時 ,負載電阻越小,電流越大,時間越短 電壓和負載為定量時 ,容量越大,電流不變,時間越長 但實際放電電路中,一般負載是不變的,電容的電壓是逐漸下降的,電流也就逐漸下降 。 1.電容量(uf)=電流(mA)/15 限流電阻(Ω)=310/最大允許浪涌電流 放電電阻(KΩ)=500/電容(uf) 2.計算方式 C=15×I C為電容容量 單位微法 i設備為工作電流 單位為安 如一個燈泡的電阻為0.6安 電容就選擇 15×0.6=9微法 在電路里串連 9微法的 電容就可以了 3.經驗公式,1uF輸出50mA(如果是線性的話,10000F的超級電容可以達到500兆安培的浪涌電流) 還有 4.半波整流方式計算應該是每uF電容量提供約30mA電流,這是在中國的50Hz220V線路上的參考。
tob_id_5319
全波整流時電流加倍,即每uF可提供60mA電流。 而我比較清楚的是,書本上的公式: R*C≥(3~5)*T/2,需要知道紋波成份中的頻率最低信號的頻率是多少(即最大的T),然後來確定C的值。 電容的容量。 電容容量表示能貯存電能的大小。電容對交流信號的阻礙作用稱為容抗,容抗與交流信號的頻率和電容量有關,容抗XC=1/2πf c (f表示交流信號的頻率,C表示電容容量)。 ④電容的容量單位和耐壓。 電容的基本單位是F(法),其它單位還有:毫法(mF)、微法(uF)、納法(nF)、皮法(pF)。由於單位F 的容量太大,所以我們看到的一般都是μF、nF、pF的單位。換算關系:1F=1000000μF,1μF=1000nF=1000000pF。 每一個電容都有它的耐壓值,用V表示。一般無極電容的標稱耐壓值比較高有:63V、100V、160V、250V、400V、600V、1000V等。有極電容的耐壓相對比較低,一般標稱耐壓值有:4V、6.3V、10V、16V、25V、35V、50V、63V、80V、100V、220V、400V等。 電力電容器計算:如標稱電壓690v,容量15kvar的三相電容組。用於600v電路中,三角形接法,則實際有效的容量為:s=15kvar*600*600/(690*690)=11.34kvar。 即:容量和電壓成平方比關系
E. 電容在不同電路中的名稱及作用是什麼
電容器是一種儲能元件,具有「隔直通交,陰低頻通高頻」的特性,人們為了認識和鑒別不同電路中的電容器,根據其在線路中的作用而給它起了許多名稱,了解這些名稱和作用,對讀圖是墊腳有幫助的.下面介紹一些常用名稱的含義.1、濾波電容它並接在電路正負極之間,把電路中無用的交流電流去掉,一般採用大容量電解電容器,也有採用其他固定電容器的.2、退耦電容並接於電路正負極之間,可防止電路通過電源內阻形成的正反饋通路而引起的寄生振盪.3、耦合電容連接於信號源和信號處理電路或兩級放大器之間,用以隔斷直流電,讓交流電或脈動信號通過,使相信的放大器直流工作點互不影響.4、旁路電容並接在電阻兩端或由某點直接跨接至共用電信為交直流信號中的交流或脈動信號設置一條通路,避免交流成分在通過電阻時產生壓降.5、中和電容連接於三極體基極與集電極之間,用於克服三極體極間電容而引起的自激振盪.6、槽路電容(調諧電容)連接於諧振電路或振盪電路線圈兩端的電容.7、墊整電容在電路在能使振盪信號的頻率范圍減小,而且顯著提高低頻端振盪頻率的電容,它是與槽路主電容串聯的.8、補償電容在振盪電路中,能使振盪信號的頻率范圍得到擴大的電容,它與主電容並聯起輔助作用.9、逆程電容並接在行輸出管集電極與發射極之間,用來產生行掃描鋸齒波逆程的電容.10、自舉升壓電容利用其儲能來提升電路由某的電位,使其電位值高於為該點供電的電源電壓.11、「S」校正電容串接於偏轉線圈迴路中,用於校正兩邊延伸失真.12、穩頻電容在振盪電路中,用來穩定振盪頻率的電容.13、定時電容在RC定時電路中與電阻R串聯共同決定時間長短的電容.14、降壓限流電容串接於交流電路中用於它對交流電的容抗進行分壓限流.15、縮短電容這種電容是在UHF高頻頭中為了縮短振盪電感的長度而串接的電容.16、克拉潑電容在電容三點式振盪電路中,串接在振盪電感線圈的電容,為了水運晶體管結電容的影響,提高頻率穩定性.17、錫拉電容在電容三點式振盪電路中,並接在振盪電感線圈兩端的電容,為了消除晶體管結電容的影響,使其振盪頻率越就越容易起振.18、加速電容接在振盪反饋電路中,使正反饋過程加速,提高振盪幅度.19、預加重電容為了防止音頻調制信號在調制時可能使高頻分量產生衰減或丟失,而適當提升高頻分量的RC網路中的電容.20、去加重電容對音頻信號中經預加提升的那部分高頻分量連同噪音一起衰減掉,恢復伴音信號的本來面貌的RC網路中的電容.21、穩幅電容在鑒頻器中,用來穩定輸出信號幅度.22、消亮點電容在顯像管附屬電路中,用以消除關機亮點的電容.23、移相電容用來改變交流電信號相位的電容.24、反饋電容跨接於放大器的輸入與輸出端用來反饋信號的電容25、軟啟動電容通常接在電源開關管基極的,防止開機時加在開關基極的浪涌電流或電壓太大而損壞開關管.26、啟動電容串接於單相電機副繞組,為電機副繞組提供啟動用的移相交流電流,電機運轉正常時與副繞組斷開.27、運轉電容串接於單相電機副繞組,為電機副繞組提供移相交流電流,電機運轉正常時與副繞組仍串於電路中.交流安規瓷介電容器用於防止電子設備交流迴路中的天線電波干擾,防止家用電器等設備的電源雜訊,防止設備出現故障時產生觸電等電子產品中.28、高頻低壓瓷介電容器CC1系列為一類高頻低壓瓷介電容器,用在低損耗和電容量高穩定性的地方或用在要求溫度系數有明確規定的地方.如:諧振迴路、高頻旁路、溫度補償、控制電路時間常數的元件,穩定性要求高的耦合元件.CC81系列為一類高頻高壓瓷介電容器,用於UR≥0.63KV以上的高壓諧振電路中,或用在低損耗和電容量穩定性的地方或用在要求溫度系數有明確規定的地方.CT1系列為二類低頻帶低壓瓷介電容器,用於對tgs值和容量穩定性要求不高的電器中,如低頻、耦合、濾波、退耦等,亦可用作控制電路的時間常數元件.CT81系列為二類低頻高壓瓷介電容器.用於高壓旁路和耦合電路中,介電常數大,容量大、損耗低.CS1系列——三類低頻低壓瓷介電容器用於超高頻,甚高頻電路中作寬頻旁路耦合之用,具有介電常數高、體積小、容量大的特點.CT82系列——超高壓瓷介電容器多用於對耐壓有超高要求的高壓旁路中.具有體積小、耐溫、耐濕性能好,損耗低的特點.
F. 請問有許多電容並聯組成的電路是什麼電路它的作用及工作原理是什麼
你是不是在電路圖上看到的?很多個電容並聯在電源和地之間,但沒有其他電子元器件?
如果是以上的這種情況,那麼我可以肯定,你看到的電容是退耦電容。
退耦(有時候也叫去耦電容)是一種提高電路可靠性特別是提高集成電路供電電源質量的重要措施。
一般系統電路中都有獨立的電源電路,但這個電路的質量並不一定很高,電壓依然有可能波動。同時,電路中的一部分器件有可能存在啟動、停用這種交替狀態。這些都會導致電源電壓發生一些輕微的變動。對於一些精密電路而言,這些看似輕微的波動就可能改變電路的運行狀態,使得輸出發生變化或者不穩定。為此,一般在精密電路和重要集成電路的電源端會並聯上兩個去耦電容組合,一個是電解電容(濾低頻),一個是無極性電容(濾高頻),這種做法可以大大提升電源質量。在繪制電路原理圖時(特別是利用Protel這種軟體),很多工程師會把去耦電容都放在一起(一個系統中,很可能有多個地方需要用到去耦電容組,所以這樣的組合有好幾套,最後每個精密電路或重要集成電路都分配一組),在繪制PCB的時候再分開(參考上面的組合),而且最好越貼近保護的集成電路或精密電路,效果越好。