① 大學電路 相量
電阻是不可能為復數的,圖中出現的8+j6稱為「復阻抗」,既包含電阻,也包含電抗。電抗由電感感抗和電容容抗組成。復阻抗所使用的電路符號與電阻相同。
在電路中,電路的平均功率指的就是有功功率P,只要電阻才消耗有功功率。
電路的角頻率:ω=2πf= 314rad/s。
電路平均功率P=440=復阻抗消耗的有功+R消耗的有功=I²×8+IR²×R=5²×8+4²×R。
所以:R=15(Ω)。因此:U1(相量)=IR(相量)×R=4∠0°×15=60∠0°(V)。
復阻抗上的電壓:U2(相量)=I(相量)×(8+j6)=5∠-36.87°×10∠36.87°=50∠0°(V)。
KVL:U(相量)=U2(相量)+U1(相量)=50∠0°+60∠0°=110∠0°(V)。即U=110V。
此時,電路的視在功率:S1=IU=5×110=550(VA)。
功率因數角為:φ1=電壓U(相量)相位-電流I(相量)相位角=0°-(-36.87°)=36.87°,功率因數為:cosφ1=cos36.87°=0.8。
有功功率P=UIcosφ1=110×5×0.8=440(W),無功功率:Q1=UIsinφ1=110×5×sin36.87°=330(var)。
增加並聯電容器C後,電路的有功功率P=440W保持不變,cosφ2=0.9,則S2=P/cos2=440/0.9=4400/9(VA);補償後的無功功率:Q2=S2×sin(arccos0.9)=(4400/9)×sin25.84°=213.1(var)。
需補償的無功容量:△Q=Q1-Q2=330-213.1=116.9(var)。
而:△Q=U²/Xc,所以:Xc=U²/△Q=110²/116.9=103.5072(Ω)=1/(ωC)=1/(314×C),所以:C=1/(314×103.5072)=3.077×10^(-5)(F)=30.77(μF)。
② 電路相量法求角度
相量運算:抄
1. 向量相乘,模相乘,角相加。
2. 向量相除,模相除,角相減。
加減運算比較復雜:
3. 向量相加,先轉化成實部加虛部形式,然後實部同實部相加,虛部同虛部相加,再轉回模角形式。
4. 向量相減,同加法相似,即先轉成實部加虛部形式,再把實部和虛部分別相減,再轉回模角形式。
③ 關於電路相量
這是類似於電阻電路和電感電路的視在功率計算分解和計算公式。這里J是復變函數虛數,代表90度相角,+J表示超前90度,UIsinφ超前UIcosφ 90度
復數公式S=UIcosφ+jUIsinφ--轉化為三角函數公式是----S=UIcosφ+UIsin(φ+90度)=
S=UIcosφ+UIcos(φ+90度+90度)=UIcosφ+UIcos(φ+90度+90度)=UI角(φu-φi)
180度相量與0度相量相反,因此產生了減號,以上三角函數公式是解釋相位的差異描述。
φu電壓初相角,φi電流初相角。
④ 關於電路相量計算的問題
問題點比較多,一個個來回答。
1、相量計算乘、除時,乘法角度相加,除法角度相減,這是沒錯的;
2、U(相量)=380∠-53.1°V,I(相量)=10∠30°A,則:φu=-53.1°,φi=30°,φ=φu-φi=-53.1°-30°=-83.1°。有功功率:P=UIcosφ=380×10×cos(-83.1°)。你的表達式為:10×380∠83.1°是錯誤的,因為這個式子還是個相量,這個式子繼續展開為:380×10×(cos83.1°+jsin83.1°),是個復數,而有功功率不可能是相量(復數)。所以有功功率的求法是:電壓有效值×電流有效值×cosφ,其中φ為電壓相位(φu)與電流相位(φi)的相位差,而不是你以為的式子。你的式子是錯誤的。
3、電路的功率也可以用復功率來表達:S*=U(相量)×I*,其中S*表示復功率,S*=P+jQ;I*表示電流相量I(相量)的共軛復數。,例如:I(相量)=10∠30°=10(√3/2+j1/2)=5√3+j5(A),那麼:I*=5√3-j5=10∠-30°;I*只是一個復數而不是相量。
這樣:S*=380∠-53.1°×10∠-30°=380×10∠-83.1°=3800×(cos83.1°-jsin83.1°)=P+jQ。
P=3800cos83.1°(W),Q=-3800sin83.1°(var),其中Q的負值代表電路呈現容性,向外部提供無功功率。
⑤ 電路分析時相量計算怎麼手算啊,就像2∠45
相量有兩種表來示形式:1、模自+幅角;2、復數形式。加減法時,採用復數形式計算。如果是「模+幅角」的形式,就轉化為復數形式。如你的題目中:2∠45°+1∠30°=2×(cos45°+jsin45°)+1×(cos30°+jsin30°)=√2/2+j√2/2+√3/2+j0.5=(√2/2+√3/2)+j(0.5+√2
⑥ 電路分析時 相量計算 怎麼手算啊,就像2∠45+1∠
幅角都是特殊角度進行純手工計算:
如:2∠45°+2∠60°=2×(√2/2+j√2/2)+2×(1/2+j√3/2)=√2+j√2+1+j√3=(1+√2)+j(√2+√3)=......
相量加減分析要用平行四邊形法則,特殊角度好算,非特殊角度可以化成復數後再運算。
相量乘除法運算較簡單,乘法:模相乘、角度相加,出發模相處,角度相減。
但是如果不是特殊角度,如果非要採用手工計算,恐怕就得使用三角函數表了(也就是中學常用的《學生數學用表》)。否則一般角度的正餘弦值是得不出來的,要不然就得使用計算器。
(6)電路相量角擴展閱讀:
運算中,需要注意的是,相量復數用頭上帶點的大寫字母表示。分析中的相量一般都是指有效值相量。
相量表示正弦量是指兩者有對應關系,並不是指兩者相等。因為正弦量是時間函數,而相量只是與正弦量的大小及初相相對應的復數。
分析正弦穩態電路的一種方法。1893年由德國人C.P.施泰因梅茨首先提出。此法是用稱為相量的復數來代表正弦量,將描述正弦穩態電路的微分(積分)方程變換成復數代數方程,從而在較大的程度上簡化了電路的分析和計算。目前,在進行分析電路的正弦穩態時,人們幾乎都採用這種方法。
⑦ 電路分析時相量計算怎麼手算啊,就像2∠45+1∠
相量加減分析要用平行四邊形法則,特殊角度好算,非特殊角度可以化成復數後再運算。
相量乘除法運算較簡單,乘法:模相乘、角度相加,出發模相處,角度相減。
如果幅角都是特殊角度的話,還能進行純手工計算;
如:2∠45°+2∠60°=2×(√2/2+j√2/2)+2×(1/2+j√3/2)=√2+j√2+1+j√3=(1+√2)+j(√2+√3)=......
但是如果不是特殊角度,如果非要採用手工計算,恐怕就得使用三角函數表了(也就是中學常用的《學生數學用表》)。否則一般角度的正餘弦值是得不出來的,要不然就得使用計算器。
(7)電路相量角擴展閱讀:
相量僅適用於頻率相同的正弦電路.由於頻率一定,在描述電路物理量時就可以只需考慮振幅與相位,振幅與相位用一個復數表示,其中復數的模表示有效值,輻角表示初相位.這個復數在電子電工學中稱為相量。
兩同頻率正弦量疊加,表述為:Asin(ωt+α)+Bsin(ωt+β)=(Acosα+Bcosβ)sinωt+(Asinα+Bsinβ)cosωt.易知,疊加後頻率沒變,相位變化,而且服從相量(復數)運演算法則.故相量相加可以描述同頻率正弦量的疊加。
相量的的乘除可以表示相位的變化,例如:電感Ι電壓超前電流90度,用相量法表示為U=jχI,其中j為單位復數,χ為感抗。
⑧ 電路相量法
解:U(相量)=Ua(相量)+Ub(相量)+Uc(相量)=220∠10°+220∠-110°+220∠攜頃130°=220e^(j10°)+220e^(-j110°)+220e^(j130°)=220e^(j10°)[1+e^(-j120°)+e^(j120°)]。
這是根據相量的定義,得到的表達式。e^(-j120°)=cos120°-jsin120°=-0.5-j√3/2;e^(j120°)=cos120°+jsin120°=-0.5+j√3/2。
所以:U(相量)=220e^(j10°)×(1-0.5-j√3/2-0.5+j√寬隱雹3/2)=0。
U(相慎帆量)=U∠φ=Ue^(jφ)——這就是相量的定義。e^j(φ1+φ2)=e^(jφ1)×e^(jφ2)。
或者:U(相量)=220×(cos10°+jsin10°+cos110°-jsin110°+cos130°+jsin130°)=220×(0.9848+j0.1736-0.3420-j0.9396-0.6428+j0.7660)=220×(0.9848-0.3420-0.6428)+j220×(0.1736-0.9396+0.7660)=0+0=0(V)。