『壹』 需要一個運放電路,輸入波形既能放大又能縮小的線路圖,請問誰有
用反相放大電路即可(如下圖),只需把比例電阻中的一個改成電位器,當輸入電阻Ri的阻值大於反饋電阻Ro時就縮小信號,當輸入電阻Ri的阻值小於反饋電阻Ro時就放大信號。
『貳』 運放電路的工作原理
運放電路的工作原理是把被控制的非電量(如溫度、轉速、壓力、流量、照度等)用感測器轉換為電信號,再與給定量比較,得到一個微弱的偏差信號。因為這個微弱的偏差信號的幅度和功率均不足以推動顯示或者執行機構,所以需要把這個偏差信號放大到需要的程度,再去推動執行機構或送到儀表中去顯示。
內部原理是有5個引腳,分為正電源跟負電源,兩個輸入和一個輸出,輸入會有兩個電壓,輸入之後就會產生一個電壓差,電壓差加在輸入電阻上面,裡面還有一個壓控電壓源,它會把收到的一個小電壓放大G倍,這個增益是非常非常大的,然後再通過一個內部的輸出電阻輸出出去,那麼就可以得到一個被放大的電壓。如果輸入的兩個電壓差異比較大,又沒有一個反饋的話,那麼就會形成一個電壓比較。如果上面輸入的電壓比較大的話,那就會導致增益的結果電壓特別大,則會達到一個電壓的上限。如果上面的電壓比下面的要小一點的話,那麼這里就會出現一個下限的電壓值接近於負電壓的值。因此,反饋在這個電路中是非常重要的,加上反饋後,輸入的電壓就會構成一個比較正常的數學關系,這也是運放最常見的使用方法。
『叄』 運放電路的原理
【運放電路的原理】運放如圖有兩個輸入端a(反相輸入端),b(同相輸入端)和一個輸出端o。也分別被稱為倒向輸入端非倒向輸入端和輸出端。當電壓U-加在a端和公共端(公共端是電壓為零的點,它相當於電路中的參考結點。)之間,且其實際方向從a 端高於公共端時,輸出電壓U實際方向則自公共端指向o端,即兩者的方向正好相反。當輸入電壓U+加在b端和公共端之間,U與U+兩者的實際方向相對公共端恰好相同。為了區別起見,a端和b 端分別用"-"和"+"號標出,但不要將它們誤認為電壓參考方向的正負極性。電壓的正負極性應另外標出或用箭頭表示。反轉放大器和非反轉放大器如下圖:
一般可將運放簡單地視為:具有一個信號輸出埠(Out)和同相、反相兩個高阻抗輸入端的高增益直接耦合電壓放大單元,因此可採用運放製作同相、反相及差分放大器。
運放的供電方式分雙電源供電與單電源供電兩種。對於雙電源供電運放,其輸出可在零電壓兩側變化,在差動輸入電壓為零時輸出也可置零。採用單電源供電的運放,輸出在電源與地之間的某一范圍變化。
運放的輸入電位通常要求高於負電源某一數值,而低於正電源某一數值。經過特殊設計的運放可以允許輸入電位在從負電源到正電源的整個區間變化,甚至稍微高於正電源或稍微低於負電源也被允許。這種運放稱為軌到軌(rail-to-rail)輸入運算放大器。
運算放大器的輸出信號與兩個輸入端的信號電壓差成正比,在音頻段有:輸出電壓=A0(E1-E2),其中,A0 是運放的低頻開環增益(如 100dB,即 100000 倍),E1 是同相端的輸入信號電壓,E2 是反相端的輸入信號電壓。
【運放】是運算放大器的簡稱。在實際電路中,通常結合反饋網路共同組成某種功能模塊。由於早期應用於模擬計算機中,用以實現數學運算,故得名「運算放大器」,此名稱一直延續至今。運放是一個從功能的角度命名的電路單元,可以由分立的器件實現,也可以實現在半導體晶元當中。