Ⅰ 電磁爐調溫的原理及電路圖
用NTC電阻受熱阻值的變化來調溫
Ⅱ IGBT工作原理
IGBT工作原理:
IGBT的等效電路如圖1所示。由圖1可知,若在IGBT的柵極和發射極之間加上驅動正電壓,則MOSFET導通,這樣PNP晶體管的集電極與基極之間成低阻狀態而使得晶體管導通;若IGBT的柵極和發射極之間電壓為0V,則MOSFET截止,切斷PNP晶體管基極電流的供給,使得晶體管截止。
由此可知,IGBT的安全可靠與否主要由以下因素決定:
——IGBT柵極與發射極之間的電壓;
——IGBT集電極與發射極之間的電壓;
——流過IGBT集電極-發射極的電流;
——IGBT的結溫。
如果IGBT柵極與發射極之間的電壓,即驅動電壓過低,則IGBT不能穩定正常地工作,如果過高超過柵極-發射極之間的耐壓則IGBT可能永久性損壞;同樣,如果加在IGBT集電極與發射極允許的電壓超過集電極-發射極之間的耐壓,流過IGBT集電極-發射極的電流超過集電極-發射極允許的最大電流,IGBT的結溫超過其結溫的允許值,IGBT都可能會永久性損壞。
Ⅲ 逆變器後級雙NE555晶元的驅動板都可以通用嗎
電動汽車逆變器用於控制汽車主電機為汽車運行提供動力,IGBT功率模塊是電動汽車逆變器的核心功率器件,其驅動電路是發揮IGBT性能的關鍵電路。
電動汽車逆變器用於控制汽車主電機為汽車運行提供動力,IGBT功率模塊是電動汽車逆變器的核心功率器件,其驅動電路是發揮IGBT性能的關鍵電路。驅動電路的設計與工業通用變頻器、風能太陽能逆變器的驅動電路有更為苛刻的技術要求,其中的電源電路受到空間尺寸小、工作溫度高等限制,面臨諸多挑戰。本文設計一種驅動供電電源,並通過實際測試證明其可用性。
常見的驅動電源採用反激電路和單原邊多副邊的變壓器進行設計。由於反激電源在開關關斷期間才向負載提供能量輸出的固有特性,使得其電流輸出特性和瞬態控制特性相對來說都比較差。在100kW量級的IGBT模塊空間布局中,單個變壓器集中生產4到6個互相隔離的正負電源的設計存在諸多不弊端:電源過於集中,爬電距離和電氣間隙難以保證,板上電源供電距離過長等等。本設計採用常見的非專用晶元進行電路設計,前級SEPIC電路實現閉環,後級半橋電路實現隔離有效解決了上述問題。該電路成功應用於國際領先的新能源汽車逆變器設計中。應用表明,該設計具有較好的靈活性、高可靠性和瞬態響應能力。
1 電動汽車逆變器驅動電源的要求分析
電動汽車逆變器驅動電源一般為6個互相隔離的+15V/-5V電源。該電源的功率、電氣隔離能力、峰值電流能力、工作溫度等等都有嚴格的要求。以英飛凌的汽車級IGBT模塊FS800R07A2E3_B31為目標進行電源指標的具體計算,該模塊支持高達150kW的逆變器系統設計。
1.1 驅動功率計算
該驅動電源的輸入功率計算公式為:
P=f_sw×Q_g×△V_g/η(1)
其中f_sw開關頻率取10kHz,Q_g根據數據手冊取8.6nC,△V_g為門極驅動電壓取23V。考慮到功率較小,效率取85%。此外注意到數據手冊中的8.6nC是按照電壓+/-15V計算,需考慮折算,最後計算結果為1.8W。考慮設計裕量1.1倍,記為2W。
1.2 驅動電流計算
平均驅動電流計算公式為:
I_av=f_sw×Q_g(2)
可以計算得到平均電流為86mA。
峰值電流計算公式為:
I_peak=△V_g/(R_gext+R_gint)(3)
R_gext為外部門極電阻,按數據手冊取開通1.8歐關斷0.75歐。R_gint為內部門極電阻,按數據手冊取0.5歐,得到開通峰值電流10A,關斷峰值電流18.4A。實際使用中,開通電阻和關斷電阻需要進行開關速度與短路保護能力等性能的折衷,良好的設計值在2.2~5.1歐范圍,因此實際開關峰值電流在4~10A范圍。
2 驅動電源電路設計
2.1 電源拓撲設計
該電源的輸入是新能源乘用車常規的12V電源,該電源通常波動范圍是8~16V,而驅動電源的輸出需要相對穩定。需要設計多組寬壓輸入、定壓輸出的隔離電源。本設計把電源分成兩級:前級電源實現寬壓輸入、定壓輸出功能,後級實現隔離功能,結構見圖1.