Ⅰ 數控機床故障分析與維修經驗總結
數控機床故障分析與維修經驗總結
數控機床加工柔性好,精度高,生產效率高。但是也會經常產生故障,這就需要維修人員有足夠的知識和能力去判斷分析床故障分析!為此,我為你整理了一篇維修老手的經驗總結,一起來學習吧!
數控機床的應用越來越廣泛,其加工柔性好,精度高,生產效率高,具有很多的優點。但由於技術越來越先進、復雜,對維修人員的素質要求很高,要求他們具有較深的專業知識和豐富的維修經驗,在數控機床出現故障才能及時排除。
在數控機床的應用越來越廣泛。我公司有幾十台數控設備,數控系統有多種類型,幾年來這些設備出現一些故障,通過對這些故障的分析和處理,我們取得了一定的經驗。下面結合一些典型的實例,對數控機雀嫌扮床的故障進行系統分析,以供參考。
一、NC系統故障
1.硬體故障
有時由於NC系統出現硬體的損壞,使機床停機。對於這類故障的診斷,首先必須了解該數控系統的工作原理及各線路板的功能,然後根據故障現象進行分析,在有條件的情況下利用交換法准確定位故障點。
例一、一台採用德國西門子SINUMERIK SYSTEM3的數控機床,其PLC採用S5─130W/B,一次發生故障,通過NC系統PC功能輸入的R參數,在加工中不起作用,不能更改加工程序中R參數的數值。通過對NC系統工作原理及故障現象的分析,我們認為PLC的主板有問題,與另一台機床的主板對換後,進一步確定為PLC主板的問題。經專業廠家維修,故障被排除。
例二、另一台機床也是採用SINUMERIK SYSTEM 3數控系統,其加工程序程序號輸入不進去,自動加工無法進行。經確認為NC系統存儲器板出現問題,維修後,故障消除。
例三、一台採用德國HEIDENHAIN公司TNC 155的數控銑床,一次發生故障,工作時系統經常死機,停電時經常丟失機床參數和程序。經檢查發現NC系統主板彎曲變形,經校直固定後,系統恢復正常,再也沒有出現類似故障。
2.軟故障
數控機床有些故障是由於NC系統機床參數引者備起的,有時因設置不當,有時因意外使參數發生變化或混亂,這類故障只要調整好參數,就會自然消失。還有些故障由於偶然原因使NC系頃灶統處於死循環狀態,這類故障有時必須採取強行啟動的方法恢復系統的使用。
例一、一台採用日本發那科公司FANUC-OT系統的數控車床,每次開機都發生死機現象,任何正常操作都不起作用。後採取強制復位的方法,將系統內存全部清除後,系統恢復正常,重新輸入機床參數後,機床正常使用。這個故障就是由於機床參數混亂造成的。
例二、一台專用數控銑床,NC系統採用西門子的SINUMERIK SYSTEM 3,在批量加工中NC系統顯示2號報警「LIMIT SWITCH」,這種故障是因為Y軸行程超出軟體設定的極限值,檢查程序數值並無變化,經仔細觀察故障現象,當出現故障時,CRT上顯示的Y軸坐標確定達到軟體極限,仔細研究發現是補償值輸入變大引起的,適當調整軟體限位設置後,故障被排除。這個故障就是軟體限位設置不當造成的。
例三、一台採用西門子SINUMERIK 810的數控機床,一次出現問題,每次開機系統都進入AUTOMATIC狀態,不能進行任何操作,系統出現死機狀態。經強制啟動後,系統恢復正常工作。這個故障就是因操作人員操作失誤或其它原因使NC系統處於死循環狀態。
3.因其它原因引起的NC系統故障有時因供電電源出現問題或緩沖電池失效也會引起系統故障。
例一、一台採用德國西門子SINUMERIK SYSTEM 3的數控機床,一次出現故障,NC系統加上電後,CRT不顯示,檢查發現NC系統上「COUPLING MODULE」板上左邊的發光二極體閃亮,指示故障。對PLC進行熱啟動後,系統正常工作。但過幾天後,這個故障又出現了,經對發光二極體閃動頻率的分析,確定為電池故障,更換電池後,故障消除。
例二、一台採用西門子SINUMERIK 810的數控機床,有時在自動加工過程中,系統突然掉電,測量其24V直流供電電源,發現只有22V左右,電網電壓向下波動時,引起這個電壓降低,導致 NC系統採取保護措施,自動斷電。經確認為整流變壓器匝間短路,造成容量不夠。更換新的整流變壓器後,故障排除。
例三、另一台也是採用西門子SINUMIK 810的數控機床,出現這樣的故障,當系統加上電源後,系統開始自檢,當自檢完畢進入基本畫面時,系統掉電。經分析和檢查,發現X軸抱閘線圈對地短路。系統自檢後,伺服條件准備好,抱閘通電釋放。抱閘線圈採用24V電源供電,由於線圈對地短路,致使24V電壓瞬間下降,NC系統採取保護措施自動斷電。
二、伺服系統的故障
由於數控系統的控制核心是對機床的進給部分進行數字控制,而進給是由伺服單元控制伺服電機,帶動滾珠絲杠來實現的,由旋轉編碼器做位置反饋元件,形成半閉環的位置控制系統。所以伺服系統在數控機床上起的作用相當重要。伺服系統的故障一般都是由伺服控制單元、伺服電機、測速電機、編碼器等出現問題引起的。下面介紹幾例:
例一、伺服電機損壞
一台採用SINUMERIK 810/T的數控車床,一次刀塔出現故障,轉動不到位,刀塔轉動時,出現6016號報警「SLIDE POWER PACK NO OPERATION」,根據工作原理和故障現象進行分析,刀塔轉動是由伺服電機驅動的,電機一啟動,伺服單元就產生過載報警,切斷伺服電源,並反饋給NC 系統,顯示6016報警。檢查機械部分,更換伺服單元都沒有解決問題。更換伺服電機後,故障被排除。
例二、一台採用直流伺服系統的美國數控磨床,E軸運動時產生「E AXIS EXECESSFOLLOWING ERROR」報警,觀察故障發生過程,在啟動E軸時,E軸開始運動,CRT上顯示的E軸數值變化,當數值變到14時,突然跳變到471,為此我們認為反饋部分存在問題,更換位置反饋板,故障消除。
例三、另一台數控磨床,E軸修整器失控,E軸能回參考點,但自動修整或半自動時,運動速度極快,直到撞到極限開關。觀察發生故障的過程,發現撞極限開關時,其顯示的坐標值遠小於實際值,肯定是位置反饋的問題。但更換反饋板和編碼器都未能解決問題。後仔細研究發現,E軸修整器是由Z軸帶動運動的,一般回參考點時,E軸都在Z軸的一側,而修整時,E軸修整器被Z軸帶到中間。為此我們做了這樣的試驗,將E軸修整器移到Z軸中間,然後回參考點,這時回參點也出現失控現象;為此我們斷定可能由於E軸修整器經常往復運動,導致E軸反饋電纜折斷,而接觸不良。校線證實了我們的判斷,找到斷點,焊接並採取防折措施,使機床恢復工作。
三、外部故障
由於現代的數控系統可變性越來越高,故障率越來越低,很少發生故障。大部分故障都是非系統故障,是由外部原因引起的。
1.現代的數控設備都是機電一體化的產品,結構比較復雜,保護措施完善,自動化程度非常高。有些故障並不是硬體損壞引起的,而是由於操作、調整、處理不當引起的。這類故障在設備使用初期發生的頻率較高,這時操作人員和維護人員對設備都不特別熟悉。
例一、一台數控銑床,在剛投入使用的時候,旋轉工作台經常出現不旋轉的問題,經過對機床工作原理和加工過程進行分析,發現這個問題與分度裝置有關,只有分度裝置在起始位置時,工作台才能旋轉。
例二、另一台數控銑床發生打刀事故,按急停按鈕後,換上新刀,但工作台不旋轉,通過PLC梯圖分析,發現其換刀過程不正確,計算機認為換刀過程沒有結束,不能進行其它操作,按正確程序重新換刀後,機床恢復正常。
例三、有幾台數控機床,在剛投入使用的時候,有時出現意外情況,操作人員按急停按鈕後,將系統斷電重新啟動,這時機床不回參考點,必須經過一番調整,有時得手工將軸盤到非干涉區。後來吸取教訓,按急停按鈕後,將操作方式變為手動,松開急停按鈕,把機床恢復到正常位置,這時再操作或斷電,就不會出現問題。
2.由外部硬體損壞引起的故障
這類故障是數控機床常見故障,一般都是由於檢測開關、液壓系統、氣動系統、電氣執行元件、機械裝置等出現問題引起的。有些故障可產生報警,通過報答信息,可查找故障原因。
例一、一台數控磨床,數控系統採用西門子SINUMERIK SYSTEM 3,出現故障報警F31「SPINDLE COOLANT CIRCUIT」,指示主軸冷卻系統有問題,而檢查冷卻系統並無問題,查閱PLC梯圖,這個故障是由流量檢測開關B9.6檢測出來的,檢查這個開關,發現開關已損壞,更換新的開關,故障消失。
例二、一台採用西門子SINUMERIK 810的數控淬火機床,一次出現6014「FAULT LEVEL HARDENING LIQUID」機床不能工作。報警信息指示,淬火液面不夠,檢查液面已遠遠超出最低水平,檢測液位開關,發現是液位開關出現問題,更換新的開關,故障消除。
有些故障雖有報警信息,但並不能反映故障的根本原因。這時要根據報警信息、故障現象來分析。
例三、一台數控磨床,E軸在回參考點時,E軸旋轉但沒有找到參考點,而一直運動,直到壓到極限開關,NC系統顯示報警「EAXIS AT MAX.TRAVEL」。根據故障現象分析,可能是零點開關有問題,經確認為無觸點零點開關損壞,更換新的開關,故障消除。
例四、一台專用的數控銑床,在零件批量加工過程中發生故障,每次都發生在零件已加工完畢,Z軸後移還沒到位,這時出現故障,加工程序中斷,主軸停轉,並顯示F97號報警「SPINDLESPEED NOT OK STATION 2」,指示主軸有問題,檢查主軸系統並無問題,其它問題也可導致主軸停轉,於是我們用機外編程器監視PLC梯圖的運行狀態,發現刀具液壓卡緊壓力檢測開關 F21.1,在出現故障時,瞬間斷開,它的斷開表示銑刀卡緊力不夠,為安全起見,PLC使主軸停轉。經檢查發現液壓壓力不穩,調整液壓系統,使之穩定,故障被排除。
還有些故障不產生故障報警,只是動作不能完成,這時就要根據維修經驗,機床的工作原理,PLC的運行狀態來判斷故障。
例五、一台數控機床一次出現故障,負載門關不上,自動加工不能進行,而且無故障顯示。這個負載門是由氣缸來完成開關的,關閉負載門是PLC輸出Q2.0控制電磁閥Y2.0來實現的。用NC系統的PC功能檢查PLC
Q2.0的狀態,其狀態為1,但電磁閥卻沒有得電。原來PLC輸出Q2.0通過中間繼電器控制電磁閥Y2.0,中間繼電器損壞引起這個故障,更換新的`繼電器,故障被排除。
例六、一台數控機床,工作台不旋轉,NC系統沒有顯示故障報警。根據工作台的動作原理,工作台旋轉第一步應將工作台氣動浮起,利用機外編程器,跟蹤 PLC梯圖的動態變化,發現PLC這個信號並未發出,根據這個線索繼續查看,最後發現反映二、三工位分度頭起始位置檢測開關I9.7、I10.6動作不同步,導致了工作台不旋轉。進一步確認為三工位分度頭產生機械錯位,調整機械裝置,使其與二工位同步,這樣使故障消除。
發現問題是解決問題的第一步,而且是最重要的一步。特別是對數控機床的外部故障,有時診斷過程比較復雜,一旦發現問題所在,解決起來比較輕松。對外部故障的診斷,我們總結出兩點經驗,首先應熟練掌握機床的工作原理和動作順序。其次要熟練運用廠方提供的PLC梯圖,利用NC系統的狀態顯示功能或用機外編程器監測PLC的運行狀態,根據梯圖的鏈鎖關系,確定故障點,只要做到以上兩點,一般數控機床的外部故障,都會被及時排除。
拓展
數控機床專業就業方向
我國製造企業已普遍運用先進的數控技術,隨之而來的是對數控人才的大量需求。 數控就業前景美妙在興旺國度中,數控機床曾經大量普遍運用。我國製造業與國際先進工業國度相比存在著很大的差距,機床數控化率還不到2%關於目前我國現有的有限數量的數控機床(大局部為進口產品)也未能充沛應用。原因是多方面的,數控就業人才的匾乏無疑是主要緣由之一、由於數控技術是最典型的、應用最普遍的機電光一體化綜合技術,我國迫切需求大量的從研討開發到運用維修的各個層次的數控技術人才。
一、數控就業的人才需求主要集中在以下的企業和地域:
1、國有大中型企業,特別是目前經濟效益較好的軍工企業和國度嚴重配備製造企業。軍工製造業是我國數控技術的主要應用對象. 有很大的數控就業空間。杭州發電設備廠用6000元月薪招不到數控技術工。
2、隨著民營經濟的飛速開展,我國沿海經濟興旺地域(如廣東,浙江、江蘇、山東),數控就業人才更是供不應求,主要集中在模具製造企業和汽車零部件製造企業。具有數控學問的模具技工的年薪已開到了30萬元,超越了「博士」。
二、數控人才的學問構造—數控就業技藝需求:
另一個來源就是從企業現有員工中選擇人員參與不同層次的數控技術中、短期培訓,以順應企業對數控人才的急需。這些人員普通具有企業所需的工藝背景、比擬豐厚的理論經歷,但是他們大局部是傳統的機類或電類專業的各級畢業生,學問面較窄,特別是對計算機應用技術和計算機數控系統不太理解。
就業方向
在工業企業,從事數控程序編制、數控設備的使用、維護與技術管理,數控設備銷售與售後服務等工作。數控技術專業在主要面向機械、模具、電子、電氣、輕工等行業,可從事產品設計與加工、數控編程、數控機床操作、數控常用CAM軟體多軸加工、數控設備調試與維修等相關工作。數控技術應用專業的畢業生分配單位的性質分布如下:三資企業佔58%,國有企業佔26%,民營企業佔9%,其他佔5%。數控技術應用專業的畢業生所從事的工作性質分布如下:操作佔55.7%,編程佔13.4%,維修佔9.4%,工藝佔8.0%,生產管理佔7.1%,質量檢測佔4.5%,綜合佔1.2%,營銷佔1.7%,行政管理佔1.4%,其他佔5.5%。
就業前景
數控技術專業是一種集機、電、液、光、計算機、自動控制技術為一體的知識密集型技術,它是製造業實現現代化、柔性化、集成化生產的基礎,同時也是提高產品質量,提高生產率必不可少的物質手段。日本、美國、德國等工業發達國家採用數控技術所獲取經濟效益大致為:操作人員減少50%,成本降低60%,機床利用率達60%--80%,機床台數減少50%,生產面積減少40%。世界製造業由於數控技術的廣泛應用,普通機械逐漸被高效率、高精度的數控設備所替代。數控技術在機械製造業的廣泛應用,已成為國民經濟發展的強大動力。加入世貿組織後,隨著經濟的快速發展,中國正逐步成為「世界製造中心」,數控化率已成為衡量一個國家或企業製造技術水平和經濟實力的重要指標之一(數控化率:設備擁有量中數控設備所佔的比例)。目前我國機床的數控化率僅為1.9%,而日本高達30%,美國超過了40%。在發達國家數控機床已經普遍大量使用,而我國數控技術應用推廣同發達國家相比差距很大。我國數年內將增加40-50萬台數控機床,相應需要60-80萬數控專業技術人才。
;Ⅱ 發那科數控系統出現等待復位,急停,返回信號解除時怎麼維修
修修噠數控維修分析:有多種原因會引起發那科數控系統出現急停報警的,如電氣方面可以引起急停迴路不閉合。另外如果機核友床一直處於急停狀態,首先檢查急停迴路中KA繼電器是否吸合;繼電器如果吸合而系統仍然處於急停狀態,可以判斷出故障不是出自電氣迴路方面,這時可以從其他方面查找原因。檢查系統參游擾數設置是否錯誤,或者系改磨槐統信號不能正常輸入輸出或復位條件不能滿足引起的急停故障。
機床維修
Ⅲ 維修數控機床的六種方法
維修數控機床的六種方法
數控機床技術復雜且種類繁多,維修問題是影響數控機床有效利用的首要問題。下面,我為大家講講維修數控機床的方法,希望對大家有所幫助!
診斷多種故障綜合症
下面通過CVT035型晶體管直流驅動器的典型實例,說明多種故障綜合症的診斷方法。該故障伺服板,經初步檢查看出,電路板外觀很臟,輸出級燒損嚴重,可見用戶的維護保養比較欠缺,處理這種故障,應該首先清除臟物,修復輸出級,切忌貿然通電,否則可能引發短路,擴大故障面。例如鐵粉灰塵的導電短路,輸出級開關管擊穿對前級和電源的短租寬局路等等。經上述處理後,通電檢查又發現如下故障:(1)“欠壓”紅燈有時閃亮(“READY”綠燈閃滅);(2)電機不轉;(3)開關電源(±15V)變壓器Tl和電源開關管V69異常發燙。
這是一例典型的綜合症,而且故障之間可能存在某種因果關系,所以處理故障需要順序進行,否則可能事倍功半,甚至引發故障面擴大。我們通過分析,做出如下維修排序:開關電源一>“欠壓”燈——>電機運轉。首先檢查電源板,通過測量主迴路150V直流電壓和斷開±15V負載的檢查後,得知故障在開關電源板內部,在檢查電源板中發現10V穩壓管V32的電壓只有9.5V,由此檢查下去,找到故障原因:V32的限流電阻Rl85阻值變大。更換Rl85後,±15V電源板和“欠壓”燈等均恢復正常,但電機仍不轉。可見,以上燈閃和元件發燙均由Rl85變值引起,電機不轉則另有原因。按通常的檢查方法,可以逐級檢測,但由於經驗的緣故,我們只做簡單的變換轉向試驗,結果發現反向運轉正常,所以很快查出故障原因:換向電路的集成塊N5(TL084)失效,更換N5後,一切正常。
CT4一OS3型查頻器的一例特殊故障
CT4一OS3型變頻器常用於YBM90和MK5oo加工中心的刀庫驅動。在維修中,我們多次碰到該變頻器時好時壞的缺相故障,並且測得缺相電壓只有60至200V(正常為400V)。由於這是一種時好時壞的軟故障,診斷查尋困難。
但是,我們發現該變頻器這種故障的.多數原因是脈沖隔離級問題——振盪弊讓不穩定。這種故障現象,用示波器檢查,很難發現“波形丟失”,但一般都有三組脈沖幅值不相等,甚至差異軟大的現象。其實,仔細分析一下隔離級電路的特點就能看出問題,這是一個比較特殊的間歇振盪器,僅用二隻三級管,分別做振盪管和振盪器電源開關巧碰。由於採用單管振盪,而且振盪電路串入限流電阻和二隻三極體,加上變壓器輸出負載,所以振盪電路損耗大,增益低,容易造成電路偶發性停振和脈沖幅值不足的毛病,即產生時好時壞的電機缺相故障。從以上分析可以看出,這種電路對脈沖變壓器Q值和三極體β值要求嚴格,用戶維修時,可以採用如下措施得到彌補:(1)選用高β(120至180)振盪管;(2)適當減少限流電阻阻值,即在51Ω電阻上並接100一270Ω。
PC介面法
由於數控機床各單元(除驅動器外)與數控系統之間都是通過PC介面(1/O)實現信號的傳遞和控制,因此,許多故障都會通過PC介面信號反映出來,我們可以通過查閱PC機床側的1/O信號診斷各種復雜的機床故障或判別故障在數控系統還是在機床電氣。其方法很簡單,即要求熟悉全部PC(機床側)介面信號的現行狀態和正常狀態(或製成一張表格),診斷時,通過對全部PC(機床側)介面信號的現行狀態和正常狀態逐一查看比對,找出有故障的介面信號,然後根據信號的外部邏輯關系,查出故障原因。當你熟悉了PC介面信號後,應用這種PC介面比對法,非常簡便快快捷,而且避免了分板復雜的梯形圖程序。
西門子3GG系統數據異常的恢復
瑞士STUDER S45一6磨床配備西門子3GG系統,為雙NC雙PLC結構,該系統具有很強的自診斷功能,發生故障時,可以藉助屏幕提示,快速診斷修復故障。但是如果發生系統無法啟動,並且PLC處於停止狀態,屏幕不亮,那麼系統的自診斷功能將無法發揮作用,導致診斷困難。發生這種故障的原因比較多,如果電池電壓低於2.7V,必須更換電池;如果NC或PLC硬體損壞,需要更換電路板;如果機床的24V電源低於21V,需要檢查電源電路和負載。
但是我們碰到更多的故障原因並不是硬體故障,而是機床數據異常這類軟故障。其原因比較復雜,如電網干擾、電磁波干擾、電池失效、操作失誤等均有可能造成機床數據的丟失或混亂,以致系統無法啟動。
象這類軟故障我們可以採用全清恢復法使系統恢復運行。3GG系統的全清步驟如下:
(1) 機床數據、用戶程序、設定數據和背景存貯器的清除;
(2) 3GG系統的初始化;
(3) PLc清零;
(4) 恢復被清除的全部數據、程序。一般需要設定波特率,調出128KB內存,然後,通過磁碟等媒體輸入數據、程序。
(5) 試驗並檢查伺服系統的全部KV系數。
(6) 完成這些步驟後,系統恢復正常。
採用電阻比對法診斷電源負載短路
故障障實例:FANUC一BESK伺服驅動板十15V負載軟擊穿燒保險絲。我們維修時,通過初步檢查判定故障原因是負載局部短路,並且用數字表測得十15V對“地”電阻,正常板為1.3KΩ 故障板為300Ω。因為通電好燒保險絲,根本無法通電檢查,所以只能做電阻測量或拆元件檢查。
但是,由於該伺服板的十15V電源與其負載(24隻集成元件)的印刷電路成放射型結構,所以,電阻測量時無法做電路切割分離,並且由於元件多且為直接焊裝,也不可能逐一拆卸檢查。維修的實際操作十分困難,即使故障解決了,也往往弄得電路板傷痕累累。處理這種既不能做電路切割分離或元件拆卸也無法通電檢查的故障,我們採用電阻比對法檢查很方便。診斷檢查時,不切割電路也不焊脫元件,而是直接測量十15V端與各集成元件的有關管腳問的電阻值,同時將故障板與正常板做對應值比較,即可查出故障。處理以上故障時,考慮到元件管腳多,所以首先分析厚膜塊內部電路(圖中已標出)和集成塊管腳功能圖,然後從中篩選出若干主要的測試點,做電阻測量。當測量到Q7時,發現其3腳( + 15V)對14腳(輸出)電阻為150Ω(正常為6KΩ ,懷疑Q7(LM339)有問題,更換Q7後,伺服板恢復正常,說明Q7管腳間阻值異常系內部軟擊穿,從而引起電源短路。
快速過程的分步模擬法
有些控制過程,如步進電機的自動升降速過程,直流調速器的停車制動過程,只有零點幾秒的瞬間時間。查尋這種快速過程的電路故障,顯然無法採用一般儀表進行故障跟蹤檢測,所以故障診斷比較困難。下面通過故障實例一5V型直流可控硅主驅動停車時間太長的故障,介紹我們採用的特殊方法一分步模擬法。
經過對故障板的初步檢查,判斷故障原因在V5主驅動器制動電路。該制動控制邏輯復雜,涉及電路多,診斷故障決非舉手之勞,而且由於制動過程短,無法測量,所以我們採用分步模擬法進行診斷檢查。由電路原理得知制動過程如下:(1)本橋逆變,釋放能量;(2)自動換橋,再生制動;(3)再次換橋,電路復原。
為了分步測量的需要,以速度指令、速度反饋和電流反饋為設定量,將以上過程細分為八個步驟(列成一張表),然後逐步改變相應設定量,檢測有關電路信號,對照電路邏輯,查出故障。我們做分步測試進行到第二步(即速度指令由1變0)時,發現“a後移”和“積分停止”均為高電平,按電路邏輯,應為低電平,據此查對電路,很快找出A2板中與非門Dl06(型號:FZHI01)有問題,更換後,故障排除。
;Ⅳ 常用的數控機床維修方法有哪些
常用的數控機床維修方法:數控設備維修是一項很復雜、技術含專量很高的一項工作,數控設備屬與普通設備有較大的差別。 1、利用數控系統的自診斷功能 一般CNC系統都有較為完備的自診斷系統,無論是發那科系統還是西門子系統,數控系統上電初始化時或運行中均能對自 身或介面做出一定范圍的自診斷。維修人員應熟悉系統自診斷各種報警信息。根據說明書進行分析以確定故障范圍,定位故障元器件,對於進口的數控系統一般只能 定位到板級,其片級維修一般可依靠各數控系統的廠家售後維修部門。 2、利用PLC程序的邏輯查找。 現在一般CNC控制系統均帶有PLC控制器,大多為內置式PLC控制。維修人員應根據梯形圖對機床控制電器進行分析,在CRT上直觀地看出CNC系統I/O的狀態。通過PLC程序的邏輯分析, 進口泵方便地檢查出問題存在部位,如FANUC-OT系統中自診斷頁面等。根據圖紙PLC梯圖進行分析,定位機床與CNC系統介面故障,以確定故障部位是機械、電器、液壓還是氣動故障。3、與當場的操作人員充分溝通
Ⅳ 數控車床怎麼維修
數控機床的數控系統在運行一段時間之後,某咋電氣元件難免出現一些報壞成故降現象,數控系統是數控機床的核心.數控系統出現故障對數控機床的形響炸常大.雖然現代數控系統的平均無故障時間非常長,但是如果有好的維護還可以增加加其平均無故障時間,如果維護不好.數控系統就要減少平均無故障時間並且縮短壽命。
因此,做好數控系統的維護是使用好數控機床的一個重要環節。數控機床的操作人員、數控機床維修人員以及管理人員應共問做好維護工作。下面是數控系統維護的主要內容。
(1)嚴格遵守數控機沐喲操作規程
數控系統的編程、操作和維修人員必須經過專門的技術培訓,熟悉所用數控機床的數控系統、強電設備、機械、液壓、氣源等部分及使用環境、加工條件等:能按機床和數控系統使用說明書的要求正確、合理地使用;應盡量避免因操作不當引起故障。
(2)防止數控裝置過熱
定期清理數控裝置的散熱通風系統:應經常檢查數控裝置上冷卻風扇工作是否正常:應重視機床使用環境狀況,每一個季度或侮半年檢查清掃一次。
(3)防止塵埃進入數控裝置
除了進行檢修外,應盡量少開電氣櫃門。因為機床附近空間漂浮的灰塵、油霧和金屬粉末落在印製電路板和電氣接插件上,容易造成元器件之間絕緣電阻下降.從而出現故障甚至使元器件損壞。有些數控機床的主軸控制系統放置在強電櫃中,強電門關得不嚴,是使電氣元器件報壞、
主軸控制失靈的一個原因。有些用戶當夏天氣溫過高時乾脆打開數控櫃門,採用外部電扇向數控櫃中吹風,以降低機內溫度,使機床勉強維持工作。這種方法最終會導致系統加速損壞。
(4)存儲器用後備電池定期檢查和更換
數控系統的加工程序、機床數據等一般存儲在數控裝置的隨機「儲器內,系統斷電時由後備電池供電保持.當電池能量下降到一定數值時,會使數據和程序丟失·如果系統一直通電會產生報替,出現報普後一周之內必須更換電池.但最好經常檢查電池電壓,當電池電壓下降到一定數值時,提早更換,或者為可靠工作,一年更換一次電池.更換、檢查電池電壓時一定要在系統通電的狀態下進行.這樣才不至於丟失機床數據和程序。
(5)經常檢查數控系統的供電電壓
數控系統允許的供電電壓通常為額定值的85%~110%,如果超出這個范圍,輕則使數控系統不能穩定工作,重則會造成一些電子元器件損壞。因此,要注意電網電壓波動。對於電網質量較差的地區.應及時配置數控系統專用的交流穩壓電源裝置,這會使數控系統的故障率明顯降低。
(6)數控系統長期不用時的維護
當數控機床長期閑置不用時,也應定期對數控系統進行維護保養。首先,應經常給數控系統通電,在機床鎖定不動的情況下,讓其空運行.在空氣濕度較大的霉雨季節應該天天通電,利用電器元器件本身發熱驅散數控櫃中的潮氣,以保證電子部件的性能穩定。實踐證明,經常閑置不
用的機床,過了霉雨季節後,一開機往往容易發生各種故障。
Ⅵ 數控車床刀架故障診斷與維修
數控車床刀架故障診斷與維修方法:
1.不換刀。對於這種故障,首先判斷是刀架內部機械問題還是刀架電機故障,換刀時,用手觸摸電機,看有無振動及測量電機電壓來判斷是否為電機故障。如電機正常,那麼就機械問題,一般都為刀架內部機械卡死,把刀架拆下洗干凈重新裝上即可。有時候也可能是內部機械損壞。
2.撞車,導致刀架無法轉動。該現象一般出現在對刀、切削量過大或者G54(零點偏置)設置不正確的情況下。出現這種情況時,刀具與工件(或卡盤)猛烈撞擊,形成悶車現象。
此時,刀架(六工位)內部蝸輪蝸桿脫開,鏈輪空轉,無法執行換刀。該故障屬於機械故障,可拆卸刀架機械部分,將鏈條掛上(蝸桿頭部有鏈輪),手動將蝸桿旋入,使之與蝸輪完全嚙合,檢查嚙合間隙,如無間隙則該故障即可解決。
3.伺服系統故障。根據工作原理和故障現象進行分析,刀架轉動是由伺服電機驅動的,電機一啟動,伺服電機就產生報警,切斷伺服電源,並反饋給NC系統,顯示刀架電機過載報警信息。
檢查機械部分及伺服單元均未發現問題,經測試,刀架電機燒毀,更換伺服電機後,故障排除。
Ⅶ 常用的數控機床維修方法有哪些
常用的數控機床維修方法:數控設備維修是一項很復雜、技術含量很高的一項工作,數控設備與普通設備有較大的差別。
1、利用數控系統的自診斷功能
一般CNC系統都有較為完備的自診斷系統,無論是發那科系統還是西門子系統,數控系統上電初始化時或運行中均能對自
身或介面做出一定范圍的自診斷。維修人員應熟悉系統自診斷各種報警信息。根據說明書進行分析以確定故障范圍,定位故障元器件,對於進口的數控系統一般只能
定位到板級,其片級維修一般可依靠各數控系統的廠家售後維修部門。
2、利用PLC程序的邏輯查找。
現在一般CNC控制系統均帶有PLC控制器,大多為內置式PLC控制。維修人員應根據梯形圖對機床控制電器進行分析,在CRT上直觀地看出CNC系統I/O的狀態。通過PLC程序的邏輯分析,
進口泵方便地檢查出問題存在部位,如FANUC-OT系統中自診斷頁面等。根據圖紙PLC梯圖進行分析,定位機床與CNC系統介面故障,以確定故障部位是機械、電器、液壓還是氣動故障。3、與當場的操作人員充分溝通
Ⅷ 數控機床維修的基本功
數控機床維修的基本功
在我國,隨著現代製造業的發展,數控機床的應用越來越普遍,社會急需數控機床維修高級技能人才。要學好數控機床維修,首先要熟悉數控系統及其介面與連接,這是數控機床維修的基本功。
數控機床根據功能和性能的要求配置不同的數控系統。數控系統是數控機床的核心,包括數控裝置、進給伺服驅動單元、主軸驅動單元、可編程式控制制器、顯示裝置及操作面板、通信裝置和輔助控制裝置。目前,我國數控機床行業占據主導地位的有日本的FANUC(發那科)、德國的SIEMENS(西門子)、我國的華中等公司的數控系統及相關產品。
數控裝置的介面是數控裝置與殲晌數控系統的功能部件(主軸模塊、進給伺服模塊、PLC模塊等)和機床進行信息傳遞、交換和控制的埠。介面在數控系統中佔有重要的位置。不同功能模塊與數控系統相連接,不能直接連接,必須通過介面電路連接起來。無論是哪種數控系統,數控裝置常用介面一般可以分為五大類:電源介面、通信介面、伺服控制介面、主軸控制介面和輸入輸出介面。
本文以FANUC-0i Mate C數控系統和華中HNC-21數控系統為例,結合作者多年的實際維修經驗,介紹數控裝置的常用介面及其應用,以便於讀者掌握典型數控系統的組成及功能連接,為數控系統的維修奠定良好的基礎。
二、FANUC-0i Mate C數控系統介面
自1965年以來,FANUC一直致力於工廠自動化產品CNC的開發。公司採用了先進的開發手段及先進的生產製造設備,為全世界的機械工業提供了高性能、高可靠性的眾多的系列數控產叢改櫻品和智能機械。圖1為FANUC-0i Mate C系統單元介面圖,圖2為FANUC-0i Mate C數控系統連接圖。
(一)電源介面
CP1:系統直流24V.輸入電源接I21,一般與機床側的DC24V穩壓電源連接。
(二)通信介面
JD36A:RS-232-C串列通信介面(0、1通道)。
JD36B:RS-232-C串列通信介面(2通道)。
(三)伺服控制介面
CPl0A:系統伺服高速串列通信FSSB介面(光纜),與伺服放大器的CP10B連接。CA69:伺服檢測板介面,此介面維修時使用。
(四)主軸控制介面
JA7A:串列主軸/主軸位置編碼器信號介面。當主軸為串列主軸時,與主軸放大器的JA7B連接,實現主軸模塊與C C系統的信息傳遞;當主軸為模擬量主軸時,該介面又是主軸位置編碼器的主軸位置反饋信號介面。
JA40:模擬量主軸的速度信號介面,CNC系統輸出的速度信號(0~10V)與變頻器的模擬量頻率設定端相連接。
(五)輸入輸出介面
JD44A:外接的`I/O卡或I/O模塊信號介面(I/O Link控制)。滲叢
CA55:系統MDI鍵盤信號介面。
CN2:系統操作軟鍵信號介面。
三、華中HNC-21數控系統介面
華中世紀星HNC-21系列數控單元(HNC-21T、HNC-21M)採用先進的開放式體系結構,內置嵌入式工業PC機,配置7.5英寸彩色液晶顯示屏和通用工程面板,集成進給軸介面、主軸介面、手持單元介面、內嵌式PIC介面於一體,支持硬碟、電子盤等程序存儲方式以及軟碟機、DNC、乙太網等程序交換功能,具有低價格、高性能、配置靈活、結構緊湊、易於使用、可靠性高的特點,主要應用於小型車、 銑 加工中心。
(一)電源介面
XS1:電源介面。管腳1、5 為AC24V1
AC2472,交流24V 電源,也可用DC24V 電源供電。管腳2、4為+24V、24VG,直流24V 電源。管腳6為PE,安全地。
調試數控機床時,數控系統上電前,調試人員需要測試管腳1、5或管腳2、4的電源電壓,確認是否為DC24V或AC24V。另外,當我們懷疑數控系統輸入電源類故障時,也需要進行此操作。
(二)通信介面
1.XS2:外接PC鍵盤介面。
2.XS3:乙太網介面。
3.XS4:軟碟機介面。
4.XS5:RS232介面。串列數據通信時使用,運用此介面可與PC機進行數據交換,完成參數、PLC、程序等的上傳下載。
(三)伺服控制介面
1.XS30~XS33:模擬式、脈沖式、步進式進給軸控制介面。管腳14、7、15、8分別為CP+、CP-DIR+ 、DIR-
步進式進給軸控制時,CP+、CP-代表輸出指令脈沖,脈沖的頻率和數量控制步進電機的轉速和轉角大小;DIR+、DIR一代表輸出指令方向,控制步進電機的轉向。步進式進給軸控制屬開環系統,無反饋。脈沖式進給軸控制時,脈沖指令介面有3種類型:單脈沖(又稱脈沖+方向)方式、正交脈沖(又稱AB相脈沖)方式和正反向脈沖(又稱雙脈沖)方式,不同工作方式下CP、DIR的含義如表1所示。
單脈沖方式中,CP為脈沖信號,DIR為方向信號;正交脈沖方式中,CP與DIR的相位差為脈沖信號,CP與DIR的相位超前和落後關系決定電動機的旋轉方向;正反向脈沖方式中,CP為正轉脈沖信號,DIR為反轉脈沖信號。
管腳6為OUTA,模擬電壓輸出,用於模擬式進給軸控制。
脈沖式和模擬式進給軸控制屬閉環控制,有反饋,以下是與反饋有關的管腳。
管腳4、5和管腳12、13都是DCSV電源,所不同的是管腳12、13是外圍輸入給數控系統的電源,而管腳4、5是數控系統提供給編碼器的電源。
管腳1、9、2、10、3、11分別為A+、A-、B+、B-、Z+、Z-。管腳1、9和管腳2、10是伺服碼盤A、B相位反饋信號,A、B相位差9O。,用於辨向。管腳3、11是伺服碼盤Z脈沖反饋信號,用於每轉產生一個基準脈沖,又稱零脈沖,它是軸旋轉一周在固定位置上產生的一個脈沖,在伺服碼盤上用於精確確定機床的參考點。
2.XS40~XS43:串列式HSV-l1型伺服軸控制介面。管腳2、3分別為數據接收RXD和數據發送TXD,管腳5為GND地。
(四)主軸控制介面
xS9:主軸控制介面。管腳6、14為主軸模擬量AOUT1、AOUT2,管腳7、8、15為模擬量輸出地GND。AOUT1、GND輸出-10V +1OV 電壓給變頻器,來控制主軸轉速,而AOUT2、GND則輸出0~+10V電壓。我們根據實際所需選取相應的管腳。
管腳4、5和管腳12、13都是DC5V電源,所不同的是管腳12、13是外圍輸入給數控系統的電源,而管腳4、5是數控系統提供給編碼器的電源。管腳1、9、2、10、3、l1分別為SA+、SA-、SB+、SB-、SZ+、SZ-。管腳1、9和管腳2、1O是主軸碼盤A、B相位反饋信號,A、B相位差90,用於辨向。管腳3、11是主軸碼盤z脈沖反饋信號,用於每轉產生一個基準脈沖,在主軸碼盤上用於螺紋加工以及主軸定向等。
(五)輸入輸出介面
1.XSIO、XS11:輸入開關量介面。每個輸入開關量介面有25個管腳。以XS10介面為例,其中管腳3為空,管腳1、2、14、15為24VG,即外部開關量直流24V電源地。管腳13、25、12、24、11、23、10、22、9、21、8、20、7、19、6、18、5、l7、4、16分別為IO~I19,共支持2O個輸入點,分別對應輸入開關量X0.0~X2.3。同樣,XS11介面也支持2O個輸入點,分別對應輸入開關量X2.4~X4.7。
2.XS20、XS21:輸出開關量介面。每個輸出開關量介面有25個管腳。以XS20為例,其中管腳5為空,管腳1、2、14、15為24VG,即外部開關量直流24V電源地。管腳3、l6為OTBS1、OTBS2,連接超程解除按鈕。管腳4、17為ESTOP1、ESTOP2,連接急停按鈕。管腳13、25、12、24、11、23、1O、22、9、21、8、2O、7、19、6、18分別為OO~O15,共支持16個輸出點,分別對應輸出開關量Y0.0~Y1.7。同樣,XS21介面也支持16個輸出點,分別對應輸出開關量X2.0~ X3.7。
可通過測量管腳4、17,來判斷急停按鈕通斷。也可通過測量3、16,來判斷超程解除按鈕的通斷。這在維修中,在處理急停類和超程類故障時是非常有用的方法。
3.XS6:遠程I/O板介面。數控機床結構越復雜、控制功能越多,隨之受控對象越多,所需的外部開關量就越多。當XS10、11、2O、21介面不能滿足我們的需要時,可使用XS6遠程I/O板介面進行擴展。
4.XS8:手持單元介面。手持單元介面共有25個管腳。其中管腳25、13為+5V、5VG,即手搖直流5V 電源。管腳24、12為手搖A相HA和手搖B相HB。這些是手持單元最基本的管腳。
另外,手持單元若帶有手持急停按鈕和坐標軸選擇、增量倍率選擇等功能,其管腳這樣分配的:管腳1、2、14、15為24VG,管腳3、16為+24V,為開關量提供直流24V 電源;管腳4、l7為ESTOP2、ESTOP3,連接手持單元急停按鈕;管腳9、21、8、20、7、19、6、18分別為I32~I39,對應輸入開關量X4.0~X4.7;管腳11、23、1O、22分別為028~O31,對應輸出開關量Y3.4~Y3.7。
需要注意的是,若手持單元中使用了以上輸入、輸出開關量管腳,則XS11、XS21介面中相同的開關量管腳就不再使用,以免重復。另外,若手持單元沒有急停按鈕,則一定要將本介面中的4、17管腳短接,否則系統將處於急停,不能復位。對於數控機床調試、維修人員來說了解並會應用這些都是很重要的。
;Ⅸ 如何進行數控機床的預防性維修
如何進行數控機床的預防性維修
如何進行數控機床的預防性維修?進行數控機床的預防性維修需要注意什麼?下面請隨我一同來了解下吧。
任何一台數控機床要想長期連續可靠地工作,除了機床自身的質量因素以外,還與使用過程中的正確保養、及時排除故障和及時的維修有密切關系。從提高數控機床的有效度來看,維修應包含兩方面的含義:一方面是日常的維護(預防性維修),這是為了延長機床的平均無故障時間MTBF;另一方面是故障維修,其目的是盡量縮短平均修復時間MTTR。做好這兩項工作,是充分發揮設備效能的基本保證。
為充分發揮數控機床的效益,重要的是做好預防性維護,使數控系統少出故障,提高系統的平均無故障工作時間。另外還應隨時做好維修的准備工作,當系統出現故障時能及時修復,以盡量減少停機修理時間。這就要求必須熟悉設備的結構和性能,熟悉數控系統的構成和基本操作,了解系統所用印製線路板上可供維修用的檢測點,掌握其正常電平和波形,以便維修故障時對照、分析。此外,還應妥善保存數控系統和可編程式控制制器(PLC)的技術資料和原始設置參數,常用的典型零件程序。根據實際使用情況,可適當配備一些易損備件,如保險器、電刷以及容易出故障的晶體管模塊和印製電路板等。對於備用電路板,要定期裝在數控系統上通電運行,以免因長期不用而發生故障。
預防性維修的關鍵是加強日常的維護、保養,通常應做到以下幾點:
1、為數控機床配備的數控系統編程、操作和維修人員,應熟悉所用設備的機械結構、數控裝置、強電設備、液壓系統、氣路等各部分的特點,以及規定的使用環境、加工條件等。並嚴格按機床及數控裝置使用說明書的要求正確、合理地使用機床,盡量避免因操作不當而引起故障。
2、很多系統採用紙帶閱讀機作為程序的輸入裝置,系統參數、零件加工程序等紙帶信息,都要通過紙帶閱讀機輸入到數控系統內部。如果紙帶閱讀機的讀帶部分(即閱讀頭的發光和受光部分)有污物,就會使讀入的紙帶信息出現錯誤,所以,對閱讀頭表面、紙帶壓板、紙帶通道表面應經常檢查,及時清除污物。尺芹謹對紙帶閱讀機的運動部件,如主動輪滾軸、導向滾軸壓緊滾軸、張緊臂滾軸等應經常清理,並保證潤滑良好。
3、定期清掃空氣過濾器。當安裝在數控櫃及電器櫃門上的空氣過濾器灰塵較多時會造成櫃內冷卻空氣流通不暢,長時間如此,會引起櫃內溫度升高,使系統不能可靠工作。因此,應根據使用環境定期檢查,至少每半年拆下清掃一次。具體方法是:先卸下緊固螺釘,取出空氣過濾器內芯,用壓縮空氣由里向外吹掉濾芯上的灰塵。如過濾器較臟,也可同時輕輕振動過濾器,用上述方法無法奏效時,可使用中性清潔劑(清潔劑比例5%)沖洗,但不可揉搓,然後將濾芯置於首鏈陰涼通風處晾乾即可。
4、定期進行電池的維護。對於採用CMOS存貯器保存系統參數的數控裝置,為了避免停機斷電時參數丟失,使用蓄電池供電予以保持。當電池電壓低於CMOS保持電壓時,蓄電池可在機床開機時自動充電。通常情況下蓄電池可確保斷電後信息保存1000h以上,當機床長期停機時也應根據說明書的要求定期通電開機,使蓄電池補充電力。這類數控裝置如果在CRT上或者用指示燈顯示出電池故障報警時,表示電壓過低,蓄電池已失效,需要更換新電池。為了保存原有數據,應在接通電源的情況下更換電池,且不可將電池極性接反。
5、直流伺服電機應定期進行檢查和清掃。直流伺服電機帶有電刷,工作時與換向器接觸磨擦而逐漸磨損。電刷過度磨損後,會影響電機的工作性能甚至造成電機的損壞,因此必須定期檢查、更換。對於一般機床如數控車床、數控銑床和加工中心機床等,可每年檢查一次;而對於頻繁進行加減速工作的機床如沖床,則應每兩月檢查一次。檢查時要在斷開數控系統電源,且電機已完全冷卻的狀態下進行,首先拆下電刷蓋,取出電刷,測量其長度,一般情況下。當電刷磨損到原長度的一半時,就不應再繼續使用,必須更換同陵基一型號的新電刷。第二步應仔細檢查電刷與換向器接觸的弧形接觸面是否有深溝或裂痕,以及電刷彈簧有無打火痕跡,如有上述現象,則須仔細檢查換向器的表面。若換向器正常,可更換新電刷,過一個月後再次檢查;如還發生上述現象,則要考慮電機的.工作條件是否過分惡劣造成電機本身故障。裝新電刷前,要用不含金屬粉末和水分的清潔壓縮空氣清理電刷孔,一定要吹凈粘在孔壁上的電刷粉末。如果難以吹凈,可用螺絲刀等工具協助清理,直至孔壁全部干凈為止。但要注意避免螺絲刀尖損傷換向器表面及孔壁。最後,裝入新電刷,擰緊刷蓋,並使伺服電機空運行跑合一段時間,使新電刷表面與換向器相吻合。
6、注意密閉數控櫃門。一般情況下應避免隨意打開數控櫃門,尤其是長期敞門運行。應及時清理空氣過濾器。而決不可用敞開櫃門的方法來散熱,否則是得不償失的。因為車間內的空氣中漂浮有大量灰塵、油霧和金屬粉末等,這些雜物落在印製電路板和電子組件上,易造成元器件絕緣電阻下降而出現故障,甚至使元器件及印製電路板損壞報廢。尤其對於將主軸控制系統安裝在強電櫃中的數控機床,如強電櫃門未關嚴或密封不良,還易造成電器元件的損壞使主軸控制失靈。
7、定期清掃冷卻裝置,加強散熱效果。一些伺服電機或主軸電機在機殼上設有強製冷卻裝置,如果冷卻裝置的保護網或散熱片很臟,影響空氣的流通,必然降低冷卻能力,會因熱損耗而產生故障。因此應定期清掃這些冷卻裝置,具體方法是:若因保護網積塵過多而妨礙通風,可將其取下進行清掃;當散熱片積塵很多時,可用壓縮空氣吹凈,或用細棒等深入散熱片中間將灰塵掃除。但操作時應小心,不要將散熱片擠壓變形,重疊在一起,以免影響散熱效果。上述的清掃周期一般為每半年一次,也可根據具體情況適當縮短。
8、對於長期不用的數控機床,應經常給數控系統通電,在機床鎖住不動的情況下使其空運行。在空氣濕變較大的南方梅雨季節更應每天通電,利用電器元器件自身發出的熱量驅除數控櫃內的潮氣。以保證電路性能的穩定可靠。實踐證明,停置不用的機床經過黃梅天後,往往容易發生各類故障。如果數控機床閑置半年以上,應將直流伺服電機的電刷取出,以免由於化學作用使換向器表面受到腐蝕,換向性能變壞,甚至損壞電機。
9、對於機床上頻繁運動的部件,無論從機械上還是從控制驅動上,都應作為重點定期檢查。如在數控機床上為了保證機床工作的可靠性,採用了很多限制運動位置的行程開關。而這些行程開關的可靠性直接影響著整機的工作可靠性。此外機床上的自動換刀裝置機械和電氣結構都比較復雜,是容易發生故障的地方,所以應經常檢查控制刀庫選刀與定位狀況的電氣系統、檢測機械手運行位置的行程開關的工作狀況,以確保機床能正常運行。
任何一台數控機床經過長期的運行以後都必然會出現磨損與故障,但是延長元器件的工作壽命,延長機床部件的磨損周期,預防意外惡性事故的發生,爭取機床能長時間可靠工作,是日常對機床進行預防性維護和保養的宗旨。一般機床使用說明書均有對維護檢查的具體要求,應嚴格按照規定進行操作。
;Ⅹ 數控機床維修的基本內容是什麼
數控機床維修的基本內容:
數控機床的維修概念不能單純局限於機床發生故障時,如何排除故障和及時修復,這當然是維修很重要的方面。但是另一方面還包括前述的Et常維護。即維修的概念包含兩個方面:一是日常維護,這可以延長平均無故障工作時間,一般由操作者完成;二是預防性維護和故障維修,在出現故障後盡快修復,盡快縮短修理時間,提高機床的有效利用率。
機床數控系統在運行一定時間之後,某些元器件或機械部件難免出現一些損壞或故障現象,問題在於對這種高精度、高效益且又昂貴的設備,如何延長元器件的壽命和零部件的磨損周期,預防各種事故,特別是將惡性事故消滅在萌芽狀態,從而提高系統的平均無故障工作時間和使用壽命。因此,做好預防性維護工作是使用好數控機床的一個重要環節,數控維修人員、操作人員及管理人員應共同做好這項工作。以下是預防性維護工作的主要內容。
①嚴格遵循操作規程。數控系統編程、操作和維修人員必須經過專門的技術培訓,熟悉所用數控機床的機械、數控系統、強電設備、液壓、氣源等部分及使用環境、加工條件等;能按機床和系統使用說明書的要求正確、合理地使用;應盡量避免因操作不當引起的故障。
②防止數控裝置過熱。定期清理數控裝置的散熱通風系統;應經常檢查數控裝置上各冷卻風扇工作是否正常;應視車間環境狀況,每半年或一個季度檢查清掃一次。