导航:首页 > 电器电路 > 电瓶车充电器电路图

电瓶车充电器电路图

发布时间:2020-12-30 11:03:47

『壹』 48伏电瓶车充电器原理图

目前,应用最广的、也是最早的可直接驱动MOS FET开关管的单端驱动器为MC3842。MC3842在稳定输出电压的同时,还具有负载电流控制功能,因而常称其为电流控制型开关电源驱动器,无疑用于充电器此功能具有独特的优势,只用极少的外围元件即可实现恒压输出,同时还能控制充电电流。尤其是MC3842可直接驱动MOS FET管的特点,可以使充电器的可靠性大幅提高。由于MC3842的应用极广,本文只介绍其特点。

MC3842为双列8脚单端输出的它激式开关电源驱动集成电路,其内部功能包括:基准电压稳压器、误差放大器、脉冲宽度比较器、锁存器、振荡器、脉宽调制器(PWM)、脉冲输出驱动级等等。MC3842的同类产品较多,其中可互换的有UC3842、IR3842N、SG3842、CM3842(国产)、LM3842等。MC3842内部方框图见图1。其特点如下:

单端PWM脉冲输出,输出驱动电流为200mA,峰值电流可达1A。

启动电压大于16V,启动电流仅1mA即可进入工作状态。进入工作状态后,工作电压在10~34V之间,负载电流为15mA。超过正常工作电压,开关电源进入欠电压或过电压保护状态,此时集成电路无驱动脉冲输出。

内设5V/50mA基准电压源,经2:1分压作为取样基准电压。

输出的驱动脉冲既可驱动双极型晶体管,也可驱动MOS场效应管。若驱动双极型晶体管,宜在开关管的基极接入RC截止加速电路,同时将振荡器的频率限制在40kHz以下。若驱动MOS场效应管,振荡频率由外接RC电路设定,工作频率最高可达500kHz。

内设过流保护输入(第3脚)和误差放大输入(第1脚)两个脉冲调制(PWM)控制端。误差放大器输入端构成主脉宽调制(PWM)控制系统,过流检测输入可对脉冲进行逐个控制,直接控制每个周期的脉宽,使输出电压调整率达到0.01%/V。如果第3脚电压大于1V或第1脚电压小于1V,脉宽调制比较器输出高电平使锁存器复位,直到下一个脉冲到来时才重新置位。如果利用第1、3脚的电平关系,在外电路控制锁存器的开/闭,使锁存器每个周期只输出一次触发脉冲,无疑使电路的抗干扰性增强,开关管不会误触发,可靠性将得以提高。

内部振荡器的频率由第4、8脚外接电阻和电容器设定。同时,内部基准电压通过第4脚引入外同步。第4、8脚外接电阻、电容器构成定时电路,电容器的充/放电过程构成一个振荡周期。当电阻的设定值大于5kΩ时,电容器的充电时间远大于放电时间,其振荡频率可根据公式近似得出:f=1/Tc=1/0.55RC=1.8/RC。
由MC3842组成的输出功率可达120W的铅酸蓄电池充电器如图2所示。该充电器中只有开关频率部分为热地,MC3842组成的驱动控制系统和开关电源输出充电部分均为冷地,两种接地电路由输入、输出变压器进行隔离,变压器不仅结构简单,而且很容易实现初次级交流2000V的抗电强度。该充电器输出端电压设定为43V/1.8A,如有需要可将电流调定为3A,用于对容量较大的铅酸蓄电池充电(如用于对容量为30AH的蓄电池充电)。

市电输入经桥式整流后,形成约300V直流电压,因而对此整流滤波电路的要求与通常有所不同。对蓄电池充电器来说,桥式整流的100Hz脉动电流没必要滤除干净,严格说100Hz的脉动电流对蓄电池充电不仅无害,反而有利,在一定程度上可起到脉冲充电的效果,使充电过程中蓄电池的化学反应有缓冲的机会,防止连续大电流充电形成的极板硫化现象。虽然1.8A的初始充电电流大于蓄电池额定容量C的1/10,间歇的大电流也使蓄电池的温升得以缓解。因此,该滤波电路的C905选用47μF/400V的电解电容器,其作用不足以使整流器120W的负载中纹波滤除干净,而只降低整流电源的输出阻抗,以减小开关电路脉冲在供电电路中的损耗。C905的容量减小,使得该整流器在满负载时输出电压降低为280V左右。

U903按MC3842的典型应用电路作为单端输出驱动器,其各引脚作用及外围元件选择原则如下(参见图1、图2)。

第1脚为内部误差放大器输出端。误差电压在IC内部经D1、D2电平移位,R1、R2分压后,送入电流控制比较器的反向输入端,控制PWM锁存器。当1脚为低电平时,锁存器复位,关闭驱动脉冲输出,直到下一个振荡周期开始才重新置位,恢复脉冲输出。外电路接入R913(10kΩ)、C913(0.1μF),用以校正放大器频率和相位特性。

第2脚内部误差放大器反相输入端。充电器正常充电时,最高输出电压为43V。外电路由R934(16kΩ)、VR902(470Ω)、R904(1kΩ)分压后,得到2.5V的取样电压,与误差放大器同相输入端的2.5V基准电压比较,检出差值,通过输出脉冲占空比的控制使输出电压限定在43V。在调整此电压时,可使充电器空载。调整VR902,可使正负输出端电压为43V。

第3脚为充电电流控制端。在第2脚设定的输出电压范围内,通过R902对充电电流进行控制,第3脚的动作阈值为1V,在R902压降1V以内,通过内部比较器控制输出电压变化,实现恒流充电。恒流值为1.8A,R902选用0.56Ω/3W。在充电电压被限定为43V时,可通过输出电压调整充电电流为恒定的1.75A~1.8A。蓄电池充满电,端电压≥43V,隔离二极管D908截止,R902中无电流,第3脚电压为0V,恒流控制无效,由第2脚取样电压控制充电电压不超过43V。此时若充满电,在未断电的情况下,将形成43V电压的涓流充电,使蓄电池电压保持在43V。为了防止过充电,36V铅酸蓄电池的此电压上限不宜使电池单元电压超过2.38V。该电路虽为蓄电池取样,实际上也限制了输出电压,如输出电压超过蓄电池电压0.6V,蓄电池电压也随之升高,送入电压取样电路使之降低。

第4脚外接振荡器定时元件,CT为2200pF,RT为27kΩ,R911为10Ω。该例中考虑到高频磁芯购买困难,将频率设定为30kHz左右。R911用于外同步,该电路中可不用。

第5脚为共地端。

第6脚为驱动脉冲输出端。为了实现与市电隔离,由T902驱动开关管。T902可用5×5mm磁芯,初次级绕组各用0.21mm漆包线绕20匝,绕组间用2×0.05mm聚脂薄膜绝缘。R909为100Ω,R907为10kΩ。如果Q901内部栅源极无保护二极管,可在外电路并入一只10~15V稳压管。

第7脚为供电端。为了省去独立供电电路,该电路中由蓄电池端电压降压供电,供电电压为18V。当待充蓄电池接入时,最低电压在32.4V~35V之间,接入18V稳压管均可得到18V的稳定电压。滤波电容器C909为100μF。

第8脚为5V基准电压输出端,同时在IC内部经R3、R4分压为2.5V,作为误差检测基准电压。

充电器的脉冲变压器T901可用市售芯柱圆形、直径 12mm的磁芯(芯柱对接处已设有1mm的气隙)。初级绕组用0.64mm高强度漆包线绕82匝,次级绕组用0.64mm高强度漆包线双线并绕50匝。初次级之间需垫入3层聚脂薄膜。

该充电器的控制驱动系统和次级充电系统均与市电隔离,且MC3842由待充蓄电池电压供电,无产生超压、过流的可能,而T901次级仅有的几只元器件,只要选择合格,击穿的可能性也几乎为零,因此其可靠性极高。此部分的二极管D911可选择共阴或共阳极,将肖特基二极管并联应用。D908可选用额定电流5A的普通二极管。次级整流电路滤波电容器选用220μF已足够,以使初始充电电流较大时具有一定的纹波,而起到脉冲充电的作用。

该充电器电路极为简单,然而可靠性却较高,其原因是:MC3842属逐周控制振荡器,在开关管的每个导通周期进行电压和电流的控制,一旦负载过流,D911漏电击穿;若蓄电池端子短路,第3脚电压必将高于1V,驱动脉冲将立即停止输出;若第2脚取样电压由于输出电压升高超过2.5V,则使第1脚电压低于1V,驱动脉冲也将被关断。多年来,MC3942被广泛用于电脑显示器开关电源驱动器,无论任何情况下(其本身损坏或外围元件故障),都不会引起输出电压升高,只是无输出或输出电压降低,此特点使开关电源的负载电路极其安全。在该充电器中MC3842及其外电路都与市电输入部分无关,加之用蓄电池电压经降压、稳压后对其供电,使其故障率几乎为零。

该充电器中唯一与市电输入有关的电路是T901初级和T902次级之间的开关电路,常见开关管损坏的原因无非两方面:一是采用双极型开关管时,由于温度升高导致热击穿。这点对Q901的负温度系数特性来说是不存在的,场效应管的漏源极导通的电阻特性本身具有平衡其导通电流的能力。此外,由于开关管的反压过高,当开关管截止时,反向脉冲的尖峰极易击穿开关管。为此,该电路中通过减小C905的容量,以在开关管导通的大电流状态下适当降低整流电压。二是采用中心柱为圆型的铁氧体磁芯,其漏感相对小于矩形截面磁芯,而且气隙预留于中心柱,而不在两侧旁柱上,进一步减小了漏感。在此条件下选用VDS较高的开关管是比较安全的。图2中Q901为2SK1539,其VDS为900V,IDS为10A,功率为150W。也可以用规格近似的其它型号MOS FET管代用。如果担心尖峰脉冲击穿开关管,可以在T901的初级接入通常的C、D、R吸收回路。由于该充电器的初始充电电流、最高充电电压设计均在较低值,且充满电后涓流充电电流极小,基本可以认为是定时充电。如一只12A时的铅酸蓄电池,7小时即可充满电,且充满电后,是否断电对蓄电池、充电器影响均极小。试用中,晚上8点接入电源充电,第二天早7点断电,手摸蓄电池、充电器的外壳温度均未超过室温。

『贰』 求助制作电瓶车充电器检测仪的电路图及方法。

你找个新的或保证没坏的充电器对4块以放完电的电池充电并记下版它的电流(牢记)后,找权2或3跟电炉丝先接一起来代替原4块电池(不用) 在充电器的2跟输出线和万用表之间串联 通电从电炉丝的前端开始逐渐大致分段往后测 此时观察电流要求和前面一样大,(这时分段测你会发现有点点火花 没事 注意下手 别烫着 ,还会发现电流是不一样的 开始的一段电流大 电阻小 越往后电阻越大 电流越小 直到测小到和前面的牢记电流一样时剪断就好)我量了一下我剪后的电炉丝是30欧的,你用20W10欧的碳膜电阻外加一个电位器 我没有试过 估计不好用 因为过电流时会产生内部火花还发热 好虚坏的,关于充电器的灯就是不转换,始终是亮绿灯,不亮红灯还不是充电状态 我记得正常时红 充电 绿充满.充电器的好与坏判断就2点 看它的电压和电流正常就好!(当输出电压太高或电流大的充电器容易把电池充古包 失水,当输出电压低或电流小的充电器会使电池充不满电现象) 36v和48v12(AH)及48v20(AH)空载电压55.2v到56v之间.36v和48v12(AH)电流1.8到1.6,48v20(AH)2.0到3.0之间

『叁』 48V电动车充电器线路图

充电器一根接电原线一根接三轮车插头,这两根线分别怎样接充电器,谢谢

『肆』 求48v电动车充电器的电路图。

电路图:

『伍』 电瓶车充电器工作原理

1、恒流电路是通过采样电阻(0.1欧)、358A及其周边电路构成。按照图纸提供的数据,该充电器为2.4A的电流,当充电电流下降到0.55A时,转灯。
2、12V稳压管稳定的12V电压,进过R17、R33//R34分压后,在358A的Pin2得到0.24V的电压。当充电器开始给电池充电时,充电电流开始产生并迅速增大,并在采样电阻R1上形成压降。当电流上升到2.4A的时候,在R1上压降达到0.24V,258A的Pin3电压也为0.24V,达到358A的临界状态。流继续增大超过2.4A,358A的Pin3电压也高过0.24V,此时358A的Pin1输出高电平信号,该信号通过光耦4N35使得3842停止震荡工作。当3842停止工作时,充电器输出电压开始下降,充电电流开始下降,R1电阻的采样电压开始下降,358A的Pin3电压开始下降。当358A的Pin3电压下降到小于0.24V的电压时,358APin1输出低电平,3842开始震荡工作,充电器输出电压开始升高,充电电流开始增大……如此在2.4A附近不停变化
3、如果想改变充电器的最大充电电流数值,可以调整R1、R17、R33//R34电阻的数值。不过由于R1电阻过小,很难调整。所以可以通过调整R17、R33//R34来实现。增大R17电阻,可以降低充电电流;减小R17,可提高充电电流。增大R33//R34电阻,可以提高充电电流;减小R33//R34,可降低充电电流。
4、计算方法,358A的Pin2电压
240mV
除以
采样电阻R1的阻值
0.1欧
即为:2.4A

『陆』 电瓶车电瓶与充电器线路连接示意图

1、
购买的电动车,由于出厂、运输、存放需要一定时间,可能使电池的电量不足,请先充电再使用。
2、
检查充电的额定输入电压与电源电压是否一致。
3、
电池可以直接在车上充电,但必须关闭电源开关,也可以卸下来带到室内等合适的地方充电。
4、
请先将充电电器的输出端插头与电池的充电插孔连接妥当后(见图),再将充电器的插头接通220v交流电源。(注意:不得将充电器输出端正负极连接)
5、
此时充电器上的电源和充电指示红灯点亮,表示电源已接通。
6、
一次充电时间约需5-10小时。当充电指示灯由红灯转为绿灯时,表示电池电量已充满,此时若时间允许,最好再继续充电(浮充)1-1.5小时左右,以使电池获得更多的能量。但持续充电时间不能超过12小时,否则易造成电池变形损坏。过充造成电池损坏,不属保修范围。
7、
充电完毕后应先拔掉交流电源上的插头,再拔掉与电池连接的插头。
8、
禁止在不充电的情况下,长时间将充电器连接在交流电源上。
9、
每一至两周做一次蓄电池保养,即充电器绿灯亮后,再继续充电(浮充)1-1.5小时,以延长畜电池使用寿命。
10、
请使用随车配备的专用充电器。不得使用其它充电器为本车充电。
11、
充电时,应在通风干燥处进行,充电器与电池上面不能覆盖任何物品。
12、
充电场所要远离孩童,插拨插头时,手必须干燥。

『柒』 电瓶车充电器工作原理

220V交流电经LF1双向滤波.VD1-VD4整流为脉动直流电压,再经C3滤波后形成约300V的直流电压,300V直流电压经过启动电阻R4为脉宽调制集成电路IC1的7脚提供启动电压,IC1的7脚得到启动电压后,(7脚电压高于14V时,集成电路开始工作),6脚输出PWM脉冲,驱动电源开关管(场效应管)VT7工作在开关状态,电流通过VT1的S极-D极-R7-接地端。

拓展:

1、简介:

电瓶车我们又称为"电动车",它是由蓄电池(电瓶)提供电能,由电动机(直流、交流,串励、他励)驱动的纯电动机动车辆。近年来,在我国得到了非常广泛的普及。目前国内的电瓶车主要用于观光载客、治安巡逻、搬运货物之用,电动观光车的主要用途是在公园、景区、休闲度假村、大学、医院、高尔夫球场、房地产公司等场所用作载客,电动巡逻车主要用途是在车站广场、人流密集场所进行治安巡逻,电动搬运车的主要用途是在工厂、港口码头、物流库房等。电动环卫车主要用途是用于清理场地、清洗路面、转运垃圾等使用。电瓶车使用寿命一般为8至12年,其蓄电池使用寿命一般为1-4年(视使用维护情况)。

2、发展简史

电瓶车发展历史:源于19世纪80年代,用作私人轿车、载重卡车和城市公共交电动观光车通车。电瓶车的低速度、充电里程有限并不是缺点,而其无噪音、维修费低等优点使其得以普及。1920年之前,电瓶车一直在和汽油车竞争,后来电瓶车开始减少,因为电动启动器使汽油动力车变得更具吸引力,加上大量生产使汽油车成本降低。在欧洲,电动车一直被用作短程货运车。从70年代开始,各国又重新对电动车产生兴趣,尤其是受到不应依赖外国石油和环境问题影响,导致一再改进电瓶车速度和行驶距离。随着汽车能源与污染问题不断受到人们关注,电瓶车技术的不断改进、用途的不断扩展,未来电瓶车发展前景光明。

『捌』 电动车充电器原理图


电动车充电器是专门为电动自行车的电瓶配置的一个充电设备!充电器的分类: 用有内、无工频(容50赫兹)变压器区分,可分为两大类。货运三轮充电器一般使用带工频变压器的充电机,体积大、重量大、费电,但是可靠,便宜;电动自行车和电摩则使用所谓开关电源式充电器,省电,效率高,但是易坏。

开关电源式充电器的正确操作是:充电时,先插电池,后加市电;充足后,先切断市电,后拔电池插头。如果在充电时先拔电池插头,特别是充电电流大(红灯)时,非常容易损坏充电器。

常用的开关电源式充电器又分半桥式和单激式两大类,单激类又分为正激式和反激式两类。半桥式成本高,性能好,常用于带负脉冲的充电器;单激式成本低,市场占有率高。

『玖』 电瓶车充电器电路图...

U903按MC3842的典型应用电路作为单端输出驱动器,其各引脚作用及外围元件选择原则如下(参见图1、图2)。

第1脚为内部误差放大器输出端。误差电压在IC内部经D1、D2电平移位,R1、R2分压后,送入电流控制比较器的反向输入端,控制PWM锁存器。当1脚为低电平时,锁存器复位,关闭驱动脉冲输出,直到下一个振荡周期开始才重新置位,恢复脉冲输出。外电路接入R913(10kΩ)、C913(0.1μF),用以校正放大器频率和相位特性。

第2脚内部误差放大器反相输入端。充电器正常充电时,最高输出电压为43V。外电路由R934(16kΩ)、VR902(470Ω)、R904(1kΩ)分压后,得到2.5V的取样电压,与误差放大器同相输入端的2.5V基准电压比较,检出差值,通过输出脉冲占空比的控制使输出电压限定在43V。在调整此电压时,可使充电器空载。调整VR902,可使正负输出端电压为43V。

第3脚为充电电流控制端。在第2脚设定的输出电压范围内,通过R902对充电电流进行控制,第3脚的动作阈值为1V,在R902压降1V以内,通过内部比较器控制输出电压变化,实现恒流充电。恒流值为1.8A,R902选用0.56Ω/3W。在充电电压被限定为43V时,可通过输出电压调整充电电流为恒定的1.75A~1.8A。蓄电池充满电,端电压≥43V,隔离二极管D908截止,R902中无电流,第3脚电压为0V,恒流控制无效,由第2脚取样电压控制充电电压不超过43V。此时若充满电,在未断电的情况下,将形成43V电压的涓流充电,使蓄电池电压保持在43V。为了防止过充电,36V铅酸蓄电池的此电压上限不宜使电池单元电压超过2.38V。该电路虽为蓄电池取样,实际上也限制了输出电压,如输出电压超过蓄电池电压0.6V,蓄电池电压也随之升高,送入电压取样电路使之降低。

第4脚外接振荡器定时元件,CT为2200pF,RT为27kΩ,R911为10Ω。该例中考虑到高频磁芯购买困难,将频率设定为30kHz左右。R911用于外同步,该电路中可不用。

第5脚为共地端。

第6脚为驱动脉冲输出端。为了实现与市电隔离,由T902驱动开关管。T902可用5×5mm磁芯,初次级绕组各用0.21mm漆包线绕20匝,绕组间用2×0.05mm聚脂薄膜绝缘。R909为100Ω,R907为10kΩ。如果Q901内部栅源极无保护二极管,可在外电路并入一只10~15V稳压管。

第7脚为供电端。为了省去独立供电电路,该电路中由蓄电池端电压降压供电,供电电压为18V。当待充蓄电池接入时,最低电压在32.4V~35V之间,接入18V稳压管均可得到18V的稳定电压。滤波电容器C909为100μF。

第8脚为5V基准电压输出端,同时在IC内部经R3、R4分压为2.5V,作为误差检测基准电压。

充电器的脉冲变压器T901可用市售芯柱圆形、直径12mm的磁芯(芯柱对接处已设有1mm的气隙)。初级绕组用0.64mm高强度漆包线绕82匝,次级绕组用0.64mm高强度漆包线双线并绕50匝。初次级之间需垫入3层聚脂薄膜。

该充电器的控制驱动系统和次级充电系统均与市电隔离,且MC3842由待充蓄电池电压供电,无产生超压、过流的可能,而T901次级仅有的几只元器件,只要选择合格,击穿的可能性也几乎为零,因此其可靠性极高。此部分的二极管D911可选择共阴或共阳极,将肖特基二极管并联应用。D908可选用额定电流5A的普通二极管。次级整流电路滤波电容器选用220μF已足够,以使初始充电电流较大时具有一定的纹波,而起到脉冲充电的作用。

该充电器电路极为简单,然而可靠性却较高,其原因是:MC3842属逐周控制振荡器,在开关管的每个导通周期进行电压和电流的控制,一旦负载过流,D911漏电击穿;若蓄电池端子短路,第3脚电压必将高于1V,驱动脉冲将立即停止输出;若第2脚取样电压由于输出电压升高超过2.5V,则使第1脚电压低于1V,驱动脉冲也将被关断。多年来,MC3942被广泛用于电脑显示器开关电源驱动器,无论任何情况下(其本身损坏或外围元件故障),都不会引起输出电压升高,只是无输出或输出电压降低,此特点使开关电源的负载电路极其安全。在该充电器中MC3842及其外电路都与市电输入部分无关,加之用蓄电池电压经降压、稳压后对其供电,使其故障率几乎为零。

该充电器中唯一与市电输入有关的电路是T901初级和T902次级之间的开关电路,常见开关管损坏的原因无非两方面:一是采用双极型开关管时,由于温度升高导致热击穿。这点对Q901的负温度系数特性来说是不存在的,场效应管的漏源极导通的电阻特性本身具有平衡其导通电流的能力。此外,由于开关管的反压过高,当开关管截止时,反向脉冲的尖峰极易击穿开关管。为此,该电路中通过减小C905的容量,以在开关管导通的大电流状态下适当降低整流电压。二是采用中心柱为圆型的铁氧体磁芯,其漏感相对小于矩形截面磁芯,而且气隙预留于中心柱,而不在两侧旁柱上,进一步减小了漏感。在此条件下选用VDS较高的开关管是比较安全的。图2中Q901为2SK1539,其VDS为900V,IDS为10A,功率为150W。也可以用规格近似的其它型号MOSFET管代用。如果担心尖峰脉冲击穿开关管,可以在T901的初级接入通常的C、D、R吸收回路。由于该充电器的初始充电电流、最高充电电压设计均在较低值,且充满电后涓流充电电流极小,基本可以认为是定时充电。如一只12A时的铅酸蓄电池,7小时即可充满电,且充满电后,是否断电对蓄电池、充电器影响均极小。试用中,晚上8点接入电源充电,第二天早7点断电,手摸蓄电池、充电器的外壳温度均未超过室温。

『拾』 电动车充电器电路图

见附图:电动自行车充电器有多种,需要根据蓄电池的电压来选择,常见的24V、36V、48V、60V,还有汽车的充电桩。可以上网搜索。


阅读全文

与电瓶车充电器电路图相关的资料

热点内容
厨房小家电哪些需要16A 浏览:906
大润发售后如何 浏览:45
恩施市家电维修点 浏览:950
恒力检维修干什么的 浏览:801
厚本家具 浏览:646
南昌苹果授权维修售后 浏览:608
石家庄电脑商家电话号码是多少钱 浏览:138
打靶电路图 浏览:464
圆桌家具多少钱 浏览:897
做家电维修怎么自学 浏览:234
怎么看维修店有没有更换你的电脑 浏览:134
天津市宝坻区三星维修点 浏览:565
延时1s电路 浏览:242
网吧维修一下要多久 浏览:381
卫生间墙壁外侧为什么要做防水 浏览:775
朵唯开不了机拿去售后服务要多少钱 浏览:233
西单大悦城维修电话多少 浏览:426
柳州手机维修哪里便宜 浏览:717
在乡镇做五金百货小家电怎么选址 浏览:942
如何处理珠宝售后 浏览:707