导航:首页 > 电器电路 > 电路大报告

电路大报告

发布时间:2022-03-16 15:33:09

『壹』 数字电路设计实验报告(5选1即可)

目录
1 设计目的 3
2 设计要求指标 3
2.1 基本功能 3
2.2 扩展功能 4
3.方案论证与比较 4
4 总体框图设计 4
5 电路原理分析 4
5.1数字钟的构成 4
5.1.1 分频器电路 5
5.1.2 时间计数器电路 5
5.1.3分频器电路 6
5.1.4振荡器电路 6
5.1.5数字时钟的计数显示电路 6
5.2 校时电路 7
5.3 整点报时电路 8
6系统仿真与调试 8
7.结论 8
参考文献 9
实验作品附图 10

数字钟

摘要:
数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。
数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。目前,数字钟的功能越来越强,并且有多种专门的大规模集成电路可供选择。
从有利于学习的角度考虑,这里主要介绍以中小规模集成电路设计数字钟的方法。
经过了数字电路设计这门课程的系统学习,特别经过了关于组合逻辑电路与时序逻辑电路部分的学习,我们已经具备了设计小规模集成电路的能力,借由本次设计的机会,充分将所学的知识运用到实际中去。
本次课程设计要求设计一个数字钟,基本要求为数字钟的时间周期为24小时,数字钟显示时、分、秒,数字钟的时间基准一秒对应现实生活中的时钟的一秒。供扩展的方面涉及到定时自动报警、按时自动打铃、定时广播、定时启闭路灯等。因此,研究数字钟及扩大其应用,有着非常现实的意义。
1 设计目的
1.掌握数字钟的设计、组装与调试方法。
2.熟悉集成元器件的选择和集成电路芯片的逻辑功能及使用方法。
3.掌握面包板结构及其接线方法
4.熟悉仿真软件的使用。
2 设计要求及指标
2.1基本功能
1)时钟显示功能,能够正确显示“时”、“分”、“秒”。
2)具有快速校准时、分、秒的功能。
3)用555定时器与RC组成的多谐振荡器产生一个标准频率(1Hz)的方波脉冲信号。
2.2扩展功能
1)用晶体振荡器产生一个标准频率(1Hz)的脉冲信号。
2)具有整点报时的功能。
3)具有闹钟的功能。
4)……

3、方案论证与比较
本设计方案使用555多谐振荡器来产生1HZ的信号。通过改变相应的电阻电容值可使频率微调,不必使用分频器来对高频信号进行分频使电路繁复。虽然此振荡器没有石英晶体稳定度和精确性高,由于设计方便,操作简单,成为了设计时的首选,但是由于与实验中使用的555芯片产生的脉冲相比较,利用晶振产生的脉冲信号更加的稳定,同过电压表的测量能很好的观察到这一点,同时在显示上能够更加接进预定的值,受外界环境的干扰较少,一定程度上优于使用555芯片产生信号方式。我们组依然同时设计了555和晶振两个信号产生电路。(本实验报告中着重按照原方案设计的555电路进行说明)
4、 系统设计框图
数字式计时器一般由振荡器、分频器、计数器、译码器、显示器等几部分组成。在本设计中555振荡器及其相应外部电路组成标准秒信号发生器,由不同进制的计数器、译码器和显示器组成计时系统。秒信号送入计数器进行计数,把累计的结果以‘时’、‘分’、‘秒’的数字显示出来。‘时’显示由二十四进制计数器、译码器、显示器构成,‘分’、‘秒’显示分别由六十进制计数器、译码器、显示器构成。其原理框图如图1.1所示。

5、电路原理分析

5.1数字钟的构成
数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路.由于计数的起始时间不可能与标准时间一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定.在此使用555振荡器组成1Hz的信号。

数字钟原理框图(1.1)

5.1.1振荡器电路
555定时器组成的振荡器电路给数字钟提供一个频率为1Hz的方波信号。其中OUT为输出。

5.1.2时间计数器电路
时间计数电路由秒个位和秒十位计数器,分个位和分十位计数器及时个位和时十位计数器电路构成,其中秒个位和秒十位计数器、分个位和分十位计数器为60进制计数器,而根据设计要求,时个位和时十位计数器为24进制计数器.

5.1.3分频器电路
通常,数字钟的晶体振荡器输出频率较高,为了得到1Hz的秒信号输入,需要对振荡器的输出信号进行分频。
通常实现分频器的电路是计数器电路,一般采用多级2进制计数器来实现。例如,将32768Hz的振荡信号分频为1HZ的分频倍数为32768( ),即实现该分频功能的计数器相当于15级2进制计数器。

5.1.4振荡器电路
利用555定时器组成的多谐振荡器接通电源后,电容C1被充电,当电压上升到一定数值时里面集成的三极管导通,然后通过电阻和三极管放电,不断的充放电从而产生一定周期的脉冲,通过改变电路上器件的值可以微调脉冲周期。

5.1.5数字时钟的计数显示控制
在设计中,我们使用的是74**160十进制计数器,来实现计数的功能,实验中主要用到了160的置数清零功能(特点:消耗一个时钟脉冲),清零功能(特点:不耗时钟脉冲),在上级160控制下级160时候通过组合电路(主要利用与非门)实现,在连接电路的时候要注意并且强调使能端的连接,其将影响到整一个电路的是否工作。

电路的控制原理如下:
秒钟由个位向十位进位:0000—0001—0010—0011—0100—0101—0110—0111—1000—1001实现个位的计数,采用的是置数的方式(利用RCO端口),当电路计数到1001的时候采用一个二输入与非门接上级输入的高位和低位输出作为下级的信号,实现了秒区的个位和十位的显示与控制。设计中注意到接的是一个与非门而不是与门,目标在产生一个时钟脉冲。实现正确的显示。
由秒区向分区的显示控制:
基本原理同上,在秒区十位向时区个位显示的时:0000—0001—0010—0011—0100—0101产生了六个脉冲的时候向下级输出一个时钟脉冲,利用的还是与非门,目标仍是实现正确的计时显示。
分区的显示及整体电路反馈清零:
当数值显示达到:23:59的时候要实现清零的工作,采用CLR清零的方式反馈清零。具体设计接出控制端的9,5,3,2用十六进制表示后高电平对应引脚接与非,将非门输出信号的值反馈给各个160芯片的清零端(CLR)既可以实现清零了。

5.2 校时功能的实现
当重新接通电源或走时出现误差时都需要对时间进行校正.通常,校正时间的方法是:首先截断正常的计数通路,然后再进行人工出触发计数或将频率较高的方波信号加到需要校正的计数单元的输入端,校正好后,再转入正常计时状态即可.
根据要求,数字钟应具有分校正功能,因此,应截断分个位的直接计数通路,并采用正常计时信号与校正信号可以随时切换的电路接入其中.
在实验实现过程中使用的是通过开关(普通开关)来实现高低电平的切换,手动赋予需要的高低电平来实现脉冲的供给,将脉冲提供到所需要的输入(CLK)端口,实现校时,仿真过程中能够正常校时并且在校时的时候达到了预定的效果;而在我们进入实际电路连接的时候,利用开关(手控导线点触实现)来实现校时再不像仿真那样的精确了,原因分析是由于使用的是普通的开关同时利用的是手动的对CLK端口赋予脉冲信号,在实现手动生成脉冲信号的过程中产生了扰动,即相当于产生了多个的脉冲信号对需要的数码管进行校时,如此,并没有达到仿真的精确效果,但是在实验中通过改进电路的校时方式,不是用手触开关产生脉冲信号(如若需用手触则需要使用一个锁存器实现去抖动,才能够在脉冲生成时候不产生干扰的脉冲,实现正常的校时),而是使用信号发生器实现信号的提供,对需要校时的数码管在相对应的CLK端口提供脉冲信号实现校时,利用此方式实现校时则比手触开关方式效果要好。

5.3 报时的实现
报时功能的实现原理较为简单,即对所需要报时的输出量进行控制,并对控制产生的信号作为LED显示的信号源,电路连接中要注意到的是在实现LED显示的时候最好连接上一个保护电阻对LED灯器到保护的作用。例如我们的校时时间是 23:59,0010—0011—0101—1001;利用相应的门电路实现满足端口输出是上述条件的时候进行报时即可。

6、系统仿真与调试

7、结论
学贵以致用,通过几天的数字钟设计过程,将从书本上学到的知识应用于实践,学会了初步的电子电路仿真设计,虽然过程中遇到了一些困难,但是在解决这些问题的过程无疑也是对自己自身专业素质的一种提高。当最终调试成功的时候也是对自己的一种肯定。在当前金融危机大的社会背景下,能够增加自身砝码的不仅仅是一纸文凭证书,更为重要的是毕业生是否能够适应社会大潮流的需要,契合企业的要求即又较硬的动手操作及设计能力。此次的设计作业不仅增强了自己在专业设计方面的信心,鼓舞了自己,更是一次兴趣的培养,为自己以后的学习方向的明确了重点。
另外在这次实验中我们遇到了不少的问题针对不同的问题我们采取不同的解决方法,最终一一解决设计中遇到的问题。还有在实验设计中我们曾遇到多块芯片以及数码管损坏的情况造成了数字钟的显示没有达到预期的效果,或是根本不显示,通过错误排除最终确认是元件问题,并向老师咨询跟换元件最终的到解决。在我们曾经遇到不懂的问题时,利用网上的资源,搜索查找得到需要的信息。

62

『贰』 电子电路课程设计报告怎么写

先写设计要求,再写方案,再写实现方法,再软硬件模块,再写当中的问题及解决办法,再体会总结,再参考文献

『叁』 电路实验报告怎么写

单相交流电路的实验报告 目标:开发交流传动实验系统,能够对交流传动产品进行包括供电装置(如变压器、高压柜等)在内的主变流器、异步电动机及其控制系统的综合试验。附图1:交流传动电力机车牵引系统原理图。系统采用交流牵引电机背靠背的方式取代直流电机作为陪试机,用变流器取代原直流发电机—同步机组,直接向接触网,在达到试验目的的前提下大大减小能源消耗。附图2:原交流传动试验系统原理电路图。附图3:能量反馈型交流传动试验系统原理电路图。系统主要由主电路部分、控制部分和测试部分组成,分别要求完成以下内容:2、设计内容与要求1)试验系统主电路的设计和部件选型① 主电路结构的设计,基本部件的确定;② 陪试牵引变压器的选型;③ 陪试变流器的选型;④ 陪试交流牵引电机选型;2)试验系统控制部分的设计① 主电路工作原理分析;② 控制电路工作原理分析;③ 保护电路工作原理分析;④ 控制系统的总体结构设计;⑤ PLC的选型、硬件配置、控制协议的确定;⑥ PLC程序流程的编写。3)试验系统测试部分的设计① 测试系统的工作原理分析;② 测试传感器的选型;③ 工控机、信号调理装置、PCI采集板卡等的选型;④ 电路监测和保护的设计;⑤ LABVIEW程序流程的编写。4)系统设计要求:① 试验系统主要由10kV电网,单相交流供电的综合试验电源系统,被试变流器,交流牵引电机,陪试变流器,反馈变压器,控制电源,三相AC380V动力电源,测试和控制系统等组成。② 根据试验系统总体电路,计算10kV、50Hz电网单相、三相所需的的容量,计算三相电压不平衡度及对三相电网的影响。③ 单相交流供电的综合试验电源系统参数要求:? 单相升压变压器(10kV/25kV)实现单相25kV/50Hz电源,容量4000kVA,在输入电压允许变化范围内保证输出电压变化范围17.5~31kV。? 牵引变压器的牵引绕组的短路阻抗设计为25%,同时通过配备可调的电抗器来调节支路短路阻抗以实现不同综合试验的需求。? 电源系统的保护至少应包括:高压警示、电流速断保护、电流过流保护、变压器保护(温升保护、压力保护、瓦斯保护等)等。④ 通用陪试变流器参数要求:? 输出三相对称的电压,输出电压范围0~2200V RMS;? 输出电流范围0~1300A RMS,输出频率范围0~200Hz;? 输出的最大功率≥3200kVA。⑤ 平台负载系统要求:? 采用交流牵引电机背靠背的方式作为陪试机,通过陪试牵引变流器和牵引变压器直接向接触网反馈能量;? 被试变流器的最大功率按照2800kW设计,被试异步牵引电动机的最大功率按照1250kW设计;? 平台电机负载的保护应包括:高压警示、电流速断保护、过流保护、过压保护、电机温升保护、电机超速保护、短路保护、接地保护、缺相保护、陪试变流器保护(过流保护、过压保护、接地保护、超温保护、低温保护、失压保护、水位保护等)、陪试变压器保护(温升保护、压力保护、瓦斯保护等)等。⑥ 测试系统的准确度满足:交直流电流、电压基波、有效值的测量准确度不低于±0.5%,转速测量准确度不低于±0.1%或±1r/min,转矩测量准确度不低于±1%,功率测量准确度不低于±1%。⑦ 其他性能要求:☆ 可靠性要求:系统能满足长时间、间断稳定运行。☆ 安全性:系统应保证人身、设备安全。☆ 易操作性:系统应提供友好人机界面,操作简单。⑧ 系统设计完成后的资料整理扩声电路实验报告怎么写 一、直观检查法 直观检查法是断开电源后立即进行。不用仪器、仪表,凭直观的感觉,调动视觉、听觉、嗅觉、触觉等4种感觉特性,进行判断。这种检查方法虽然准确性较差些,但速度快,直观检查法尤其对电源故障检查很有用。 一看观察机器或部件及其外部结构。看按键开关、接口、指示灯有无松动,线路板接绪有无脱落,有无虚焊、变色、裂痕、爆裂等现象,保险丝有无烧断、打火、冒烟、变形、未卡住等问题,采用眼睛,直接识别和判断。 二听轻轻翻动机器或部件,摇摆摇摆,听听有无零件散落或螺丝钉脱落情况,是否有碰击声。作连续翻转有无不正常的“吱吱”声或“啪啪”的打火声(通电时)。如果有这些现象,故障可能出现在这些地方。 三闻用鼻子闻闻有无烧焦气味,找到气味来源,故障可能出一放出异味的地方。 四摸用手摸摸变压器外壳(断电后进行),不要触及接线端子,因为有时因充电电容存在,电压甚高,危及安全。感觉一下,是否超过正常温度、发烫,无法触摸。功率管有无过热或冰凉现象。调整管有无过热或冰凉不热现象。如果有这些现象,问题可能出现在这些地方。 二、试探法 试探法是针对怀疑部分的电路采用比较、分割、替代、模拟等试探手段,寻找故障所在,然后排除。具体方法如下: 1、比较找一台与故障机完全相同型号的机器,在专业设备中利用同一台机器的左、右声道部件,测量相对应部分的电压、电阻、电流数量,再加以比较,找到故障所在。 2、分割将某部分电路与其他部分脱开,接上外加电源,注入信号,进行判断。 3、替代用好的元件替代怀疑元件,或将左、右声道部件对换,尤其对于集成电路块可以这样进行。如果部件对换之后,机器恢复正常,则说明该部件存在问题或损坏。 4、模拟温度模拟,采用电吹风加热,或用酒精降温,进行温度性能检查,振动模拟是使用细的塑料绝缘棒轻击某些部件,看看电路工作状况,可以发现某些虚焊现象,检查故障所在。这种方法一般由技术熟练者进行,否则,容易出现故障加重现象。 三、静态参数测量法 静态参数的测量必须持有厂家生产设备的维修手册,注明各个元器件端点静态工作电流、或电压,利用万用表测量电路各个部分的电流、电压或电阻值,看是否与标称值相符合。 1、电阻测量 用万用表的欧姆档×100或×1K档,不要使用R×10K档,因为这档上电表内接22.5伏电池,对晶体管测量不合适,容易损坏晶体管。在断电的情况下测量,若有充电电容存在,必须用绝缘的螺丝起锥充分放电后进行。测量线路中电阻必须焊开一端,否则测量不准确。 2、电压测量 在作此测量过程中要考虑万用表内阻对测量值的影响。静态测量值与动态测量值(加入信号时)不相同,这一点应当注意。测量静态时各晶体管管脚,电阻、电容端电压是否与标称值一致,晶体管脚相对电压能判断管子是否损坏。 3、电流测量 采用直接测量时,将电流表串入电路中,检查电流大小。采用间接测量时,测量两端电压,用电阻值去除电压值,便得到电流值大小。 除静态参数测量外,还可使用动态检查法,利用信号源和示波器,注入信号直接检查,对电路进行判断。这种方法直接、准确,并且不容易损坏元器件,还可对电路和机械结构进行调整和校对。

『肆』 电路实验报告,要求交流电路的等效参数,请各位高手帮帮忙︾诲iv>

L的运算阻抗为ZL=jwL (w为角频率、j为虚数) C的运算阻抗为ZC=1/jwC Z=(ZL+ZC)/(ZL*ZC)

『伍』 求一份模拟电路实验报告

借鉴下别人的,然后自己自由发挥,升级

『陆』 断线报警器电路报告

在检测线的最外端有一个电阻,大约几十欧姆的几千欧姆,在室内的电路中,外接电阻是电桥中的一个电桥。
无论断线或短路,室内检测电桥平衡的电压比较器动作,报警。

『柒』 关于电路分析实验报告

戴维南定理及功率传输最大条件
一、实验目的
1、用实验方法验证戴维南定理的正确性。
2、学习线性含源一端口网络等效电路参数的测量方法。
3、验证功率传输最大条件。
二、原理及说明
1、戴维南定理
任何一个线性含源一端口网络,对外部电路而言,总可以用一个理想电压源和电阻相串联的有源支路来代替,如图3-1所示。理想电压源的电压等于原网络端口的开路电压UOC,其电阻等于原网络中所有独立电源为零时入端等效电阻R0 。

2、等效电阻R0
对于已知的线性含源一端口网络,其入端等效电阻R0可以从原网络计算得出,也可以通过实验手段测出。下面介绍几种测量方法。
方法1:由戴维南定理和诺顿定理可知:

因此,只要测出含源一端口网络的开路电压UOC和短路电流ISC, R0就可得出,这种方法最简便。但是,对于不允许将外部电路直接短路的网络(例如有可能因短路电流过大而损坏网络内部的器件时),不能采用此法。
方法2:测出含源一端口网络的开路电压UOC以后,在端口处接一负载电阻RL,然后再测出负载电阻的端电压URL ,因为:

则入端等效电阻为:

方法3:令有源一端口网络中的所有独立电源置零,然后在端口处加一给定电压U,测得流入端口的电流I (如图3-2a所示),则:

也可以在端口处接入电流源I′,测得端口电压U′(如图3-2b所示),则:

3、功率传输最大条件
一个含有内阻ro的电源给RL供电,其功率为:

为求得RL从电源中获得最大功率的最佳值,我们可以将功率P对RL求导,并令其导数等于零:

解得: RL=r0
得最大功率:

即:负载电阻RL从电源中获得最大功率条件是负载电阻RL等于电源内阻r0 。
三、仪器设备
电工实验装置 :DG011 、 DY031 、 DG053
四、实验内容
1、线性含源一端口网络的外特性
按图3-3接线,改变电阻RL值,测量对应的电流和电压值,数据填在表3-1内。根据测量结果,求出对应于戴维南等效参数Uoc,Isc。

表3-1 线性含源一端口网络的外特性
RL(Ω) 0短路 100 200 300 500 700 800 ∞开路
I(mA)
U( V )

2、求等效电阻Ro
利用原理及说明2中介绍的3种方法求R。,并将结果填入表3-2中,方法(1)和方法(2)数据在表3-1中取,方法(3)实验线路如图3-4所示。

表3-2 等效电阻R0
方法 1 2 3
R0(KΩ)
R0的平均值

3、戴维南等效电路
利用图3-4构成戴维南等效电路如图3-5所示,其中U0= R0= 。
测量其外特性U=f(I)。将数据填在表3-3中。

表3-3 戴维南等效电路
RL(Ω) 0短路 100 200 300 500 700 800 ∞开路
I(mA)
U( V )

4、最大功率传输条件
1.根据表3-3中数据计算并绘制功率随RL变化的曲线:P=f(RL) 。
2.观察P=f(RL)曲线,验证最大功率传输条件是否正确。

六、报告要求
1、 根据实验1和3测量结果,在同一张座标纸上做它们的外特性曲线U=f(I),并分析比较。
2、 完成实验内容2的要求。

『捌』 急求三极管基本放大电路实验报告

一.实验目的
1.对晶体三极管(3DG6、9013)、场效应管(3DJ6G)进行实物识别,了解它们的命名方法和主要技术指标。
2.学习用数字万用表、模拟万用表对三极管进行测试的方法。
3.用图3-10提供的电路,对三极管的β值进行测试。
4.学习共射、共集电极(*)、共基极放大电路静态工作点的测量与调整,以及参数选取方法,研究静态工作点对放大电路动态性能的影响。
5.学习放大电路动态参数(电压放大倍数、输入电阻、输出电阻、最大不失真输出电压)的测量方法。
6. 调节CE电路相关参数,用示波器观测输出波形,对饱和失真和截止失真的情况进行研究。
7.用Multisim软件完成对共射极、共集电极、共基极放大电路性能的分析,学习放大电路静态工作点的测试及调整方法,观察测定电路参数变化对放大电路的静态工作点、电压放大倍数及输出电压波形的影响。加深对共射极、共集电极、共基极基本放大电路放大特性的理解。
二.知识要点
1.半导体三极管
半导体三极管是组成放大电路的核心器件,是集成电路的组成元件,在电路中主要用于电流放大、开关控制或与其他元器件组成特殊电路等。
半导体三极管的种类较多,按制造材料不同有硅管、锗管、砷化镓管、磷化镓管等;按极性不同有NPN型和PNP型;按工作频率不同有低频管、高频管及超高频管等;按用途不同有普通管、高频管、开关管、复合管等。其功耗大于1W的属于大功率管,小于1W的属于小功率管。
半导体三极管的参数主要有电流放大倍数β、极间反向电流ICEO、极限参数(如最高工作电压VCEM、集电极最大工作电流ICM、最高结温TjM、集电极最大功耗PCM)以及频率特性参数等。有关三极管命名、类型以及参数等可查阅相关器件手册。
下面给出几种常用三极管的参数举例如表3-01所示:
表3-01 几种常用三极管的参数
参数 PCM(mW) ICM(mA) VBRCBO(V) ICBO(μA hFE fT(MHz) 极性
3DG100D 100 20 40 1 4 0.01 NPN
3DG200A 100 20 15 0.1 25~270 0.01 NPN
CS9013H 400 500 25 0.5 144 150 NPN
CS9012H 600 500 25 0.5 144 150 PNP
参数 VP(V) IDSS gm(mA/V) PDM(mW) rGS(Ω) fM
3DJ6G -9 3~6.5 1 100 108 30 N沟道
2.半导体三极管的识别与检测
半导体三极管的类型有NPN型和PNP型两种。可根据管子外壳标注的型号来判别是NPN型,还是PNP型。在半导体三极管型号命名中,第二部分字母A、C表示PNP型管;B、D表示NPN型管;而A、B表示锗材料;C、D表示硅材料。另外,目前市场上广泛使用的9011~9018系列高频小功率9012、9015为PNP型,其余为NPN型。半导体三极管的型号和命名方法,与半导体二极管的型号及命名方法相同,详见康华光第四版P44页附录或者参考有关手册。
(1)三极管的电极和类型判别
1) 直观辨识法。
半导体三极管有基极(B)、集电极(C)和发射极(E)三个电极,如图3-11所示,常用三极管电极排列有E-B-C、
B-C-E、C-B-E、E-C-B等多种形式。
2) 特征辨识法。如图3-01所示,有些三极管用结构特征标识来表示某一电极。如高频小功率管3DGl2、3DG6的外壳有一小凸起标识,该凸起标识旁引脚为发射极;金属封装低频大功率管3DD301、3AD6C的外壳为集电极等。

图3-11 三极管结构特征标识极性
3) 万用表欧姆档判别法
如图3-12所示,选用指针式万用表欧姆档R×lkΩ档。首先判定基极b方法:用万用表黑表笔碰触某一极,再用红表笔依次碰触另外两个电极,并测得两电极间阻值。若两次测得电阻均很小(为PN结正向电阻值),则
黑表笔对应为基极且此管为NPN型;或
者两次测得电阻值均很大(为PN结反向
电阻值),但交换表笔后再用黑笔去碰触
另两极,也测量两次,若两次阻值也很小,
则原黑表笔对应为管子基极,且此管为
PNP型。注意:指针式万用表欧姆档时,
黑表笔则为正极,红表笔为负极;这与 (a) (b)
数字式万用表不同。 图3-12 万用表欧姆档判别法
其次,判别集电极和发射极。其基本原理是把三极管接成基本放大电路,利用测量管子的电流放大倍数值β的大小,来判定集电极和发射极。
以NPN管为例说明,如图3-12b所示,基极确定后,不管基极,用万用表两表笔分别接另两电极,用100kΩ的电阻一端接基极,电阻的另一端接万用表黑表笔,若表针偏转角度较大,则黑表笔对应为集电极,红表笔对应为发射极。也可用手捏住基极与黑表笔(但不能使两者相碰),以人体电阻代替l00kΩ电阻的作用(对于PNP型,手捏红表笔与基极)。
上面这种方法,实质上是把三极管接成了正向偏置状态,若极性正确,则集电极有较大电流。
(2)硅管、锗管的判别 根据硅材料PN结正向电阻较锗材料大的特点,可用万用表欧姆R×1kΩ档测定,若测得PN结正向阻值约为3~l0kΩ,则为硅材料管;若测得正向阻值约为50~1kΩ,则为锗材料管。或测量发射结(集电结)反向电阻值,若测得反向阻值约为500kΩ,则为硅材料管;若测得反向阻值约为100kΩ,则为锗材料管。
3.三极管场效应管放大电路
共射极放大电路既有电流放大作用,又有电压放大作用,故常用于小信号的放大。改变电路的静态工作点,可调节电路的电压放大倍数。而电路工作点的调整,主要是通过改变电路参数(Rb、Rc)来实现。(负载电阻RL的变化不影响电路的静态工作点,只改变电路的电压放大倍数。)该电路信号从基极输入,从集电极输出。输入电阻与相同材料的二极管正向偏置电阻相当,输出电阻较高,适用于多级放大电路的中间级。
共集电极放大电路信号由晶体管基极输入,发射极输出。由于其电压放大倍数Av接近于l,输出电压具有随输入电压变化的特性,故又称为射极跟随器。该电路输入电阻高,输出电阻低,适用于多级放大电路的输入级、输出级,还可以作为中间阻抗变换级。
共基极放大电路信号由晶体管发射极输入,集电极输出。其电流放大倍数Ai接近于1但恒小于1,(又叫电流跟随器),电压放大倍数Av共射极放大器相同,且输入电压与输出电压同相。其输入电阻低,只有共射放大电路的l/(1+β)倍,输出电阻高,输入端与输出端之间没有密勒电容,电路频率特性好,适用于宽带放大电路。
下面以图3-13基本共射放大电路为例进行说明。
(1)放大电路静态工作点的测量和调试
由于电子元件性能的分散性很大,在
制作晶体三极管放大电路时,离不开测量
和调试技术。在完成设计和装配之后,还
必须测量和调试放大电路的静态工作点及
各项指标。一个优质的放大电路,一个最
终的产品,一定是理论计算与实验调试相
结合的产物。因此,除了熟悉放大电路的
理论设计外,还必须掌握必要的测量和调
试技术。
放大电路的测量和调试主要包括放大
电路静态工作点的测量和调试、放大电路 图3-13 基本共射放大电路(固定偏置式)
各项动态指标的测量和调试、消除放大电路的干扰和自激等。在进行测试之前,务必先检查
三极管的好坏,并确定具体的β值。
1)静态工作点Q的测量
放大电路静态工作点的测量是在不加输入信号(即VI=0)的情况下进行的。
静态工作点的测量是指三极管直流电压VBEQ、VCEQ和电流I CQ的测量。应选用合适的直流电压表和直流毫安表,分别测量三极管直流电压VBEQ、VCEQ和I CQ。为了避免更改接线,采用电压测量法来换算电流。例如,只要测出实际的Rb、RC的阻值,即可由 ; ;(或 )
提示:在测量各电极的电位时最好选用内阻较高的万用表,否则必须考虑到万用表内阻对被测电路的影响。
2)静态工作点的调整
测量静态工作点I CQ和VCEQ的目的是了解静态工作点的设置是否合适。若测出VCEQ <0.5 V,则说明三极管已进入饱和状态;如果VCE≈VCC,则说明三极管工作在截止状态。对于一个放大双极性信号(交流信号)的放大电路来说,这两种情况下的静态偏置都不能使电路正常工作,需要对静态工作点进行调整。如果是出现测量值与选定的静态工作点不一致,也需要对静态工作点进行调整。否则,放大后的信号将出现严重的非线性失真和错误。
通常,VCC 、Rc都已事先选定,当需要调整工作点时,一般都是通过改变偏置电阻Rb来实现。应当注意的是.如果偏置电阻Rb选用的是电位器,在调整静态工作点时,若不慎将电位器阻值调整过小(或过大),则会使IC过大而烧坏管子,所以应该用一只固定电阻与电位器串联使用。图3-18电路中是用Rb1和电位器Rb2串联构成Rb。
2.放大电路的动态指标测试
放大电路的主要指标有电压放大倍数Av、输入电阻Ri、输出电阻Ro,以及最大不失真输出电压VO(max)等。在进行动态测试时,各电子仪器与被测电路的连接如图3-14所示。实验电路则如后面的图3-18所示。

图3-14 实验电路与各测试仪器的连接
提示:为防止干扰,各仪器的公共接地端与被测电路的公共接地端应连在一起。同时,信号源、毫伏表和示波器的信号线通常都采用屏蔽线,而直流电源VCC的正、负电源线可只需普通导线即可。
(1)电压放大倍数Av的测量
输入信号选用1KHz、约5 mV的正弦交流信号,用示波器观察放大电路输出电压VO的波形,在输出信号没有明显失真的情况下,用毫伏表测得VO和VI,于是可得 。
(2)最大不失真输出电压的测量
放大电路的线性工作范围与三极管的静态工作点位置有关。当I CQ偏小时,放大电路容易产生截止失真;而I CQ偏大时,则容易产生饱和失真。需要指出的是,当I CQ增大时,VO波形的饱和失真比较明显,
波形下端出现“削底”,如
图3-15a所示。而当I CQ
减小时,VO波形将出现截
止失真,如图3-15b所
示,波形上端出现“削顶”。 (a) (b) (c)
当放大电路的静态工作点调 图3-15 静态工作点对输出电压Vo波形的影响
整在三极管线性工作范围的 (a) VO易出现饱和失真 (b)VO易出现截止失真
中心位置时,若输入信号 (c) VO波形上下半周同时出现失真
VI过大,VO的波形也会出现失真,上下同时出现“削顶”和“削顶”失真,如图3-15(c)所示。此时,用毫伏表测出VO的幅度,即为放大电路的最大不失真输出电压Vo(max)。
(3)输入电阻Ri的测量
输入电阻的测量电路如图3-16所示。

图3-16 测量输入电阻的电路
放大电路的输入电阻:
在放大电路的输入端串联一只阻值已知的电阻RS(可取510Ω),见图3-16所示,通过毫伏表分别测出RS两端对地电压,求得RS上的压降(Vs-Vi),则:
所以有
通过测量VS和Vi来间接地求出RS上的压降,是因为RS两端没有电路的公共接地点。若用一端接地的毫伏表测量,会引入干扰信号,以致造成测量误差。
(4)输出电阻的测量
放大电路的输出端可看成有源二端网络。如图3-17所示。

图3-17 测量输出电阻的电路
用毫伏表测出不接RL时的空载电压Vo’和接负载RL后的输出电压Vo,即可间接地推算RO的大小: 。
(5)放大电路频率特性的测量
放大电路频率特性是指放大电路的电压放大倍数Av,与输入信号频率之间的关系。Av随输入信号频率变化下降到0.707Av。时所对应的频率定义为下限频率 和上限频率 ,通频带为 。
上、下限频率可用以下方法测量:先调节输入信号Vi使Vi频率为1kHz;调节Vi幅度,使输出电压Vo幅度为1V。保持Vi幅度不变,增大信号Vi的频率,Vo幅度随着下降,当Vo下降到0.707 V时,对应的信号额率为上限频率 ;保持Vi幅度不变,降低Vi频率,同样使Vo幅度下降到0.707 V时,
对应的信号频率为下限频率 。
(6)观察截止失真、饱和失
真两种失真现象
测量电路如图3-18所示,
在ICQ=3.0 mA,RL=∞情况下,
增大输入信号,使输出电压保
持没有失真,然后调节电位器
Rb2阻值,改变电路的静态工
作点,使电路分别产生较为明
显的截止失真与饱和失真,测
出产生失真后相应的集电极静
态电流。做好相应的实验记录。 图3-18 共射放大电路举例

图3-19 共射放大电路对应的三个仿真电路图

图3-20 共集电极放大电路举例
三.实验内容
1.查阅手册并测试晶体三极管(3DG100D、CS9013)、场效应管(3DJ6G)的参数,记录所查和所测数据。
2.用晶体三极管3DG100D或CS9013组成如图3-21所示单管共射极放大电路,通过改变电位器R2,使得VCE为4V,测量此时VCEQ、VBEQ、Rb的值,计算放大电路的静态工作点Q对应的三个参数值。

3.在下列两种情况下,测
量放大电路的电压放大倍数和
最大Av不失真输出电压VOMAX。
(1)RL=R4=∞(开路)②RL=R4=
10kΩ。
建议:最初使用1KHz、5mV的正
弦信号作为输入信号进行测试;
然后改变输入信号的幅值,使用
双踪显示方式同时显示VI与
VO,进行监视,尽量选择较大幅
度的正弦信号作为放大器的VI,
在保证VO波形不失真的条件下 图3-21 单管共射极放大电路
进行测量。(若VO波形失真,所测动态参数就毫无意义)。
表3-09 静态数据记录表
实测值 实测计算值
VCE(V) VBE(V) Rb(KΩ) VCEQ(V) IBQ(μA) ICQ(mA)

表3-10 测AV的记录表
实测值 理论估算值 实测计算值
Vi(mV) Vo(mV) AV AV

4. 观察饱和失真和截止失真,并测出相应的集电极静态电流。
5. 测量放大电路的输入电阻Ri和输出电阻Ro。
*6.按照图3-10设计BJT的β测试电路,确定电路中所有元器件和输入电压的参数值,并对测试结果进行比较和误差分析。

图3-10 BJT的β值测试电路图
*7.测量图3-18放大电路带负载时的上限频率 和下限频率 。
*8.实验电路如图3-20 所示,要求仿真并实物实现电路,计算并实测电路的输入电阻和输出电阻。
四.思考题
1.Rb为什么要由一个电位器和一个固定电阻串联组成?
2.电解电容两端的静态电压方向与它的极性应该有何关系?
3.如果仪器和实验线路不共地会出现什么情况?通过实验说明。
五.实验报告
1.按照实验准备的要求完成设计作业一份,并估算放大电路的性能指标。
2.记录实验中测得的有关静态工作点和电路的Au、Vo(max)、Ri和Ro的数据。
3.认真记录和整理测试数据,按要求填入表格并画出输入、输出对应的波形图。
4.对测试结果进行理论分析,找出产生误差的原因。
5.详细记录组装、调试过程中发生的故障或问题,进行故障分析,并说明排除故障的过程和方法。
6.写出对本次实验的心得体会,以及改进实验方法的建议。

提示:
1.组装电路时,不要弯曲三极管的三个电极,应当将它们垂直地插入面包板孔内。
2.先分别组装好电路,经检查无误后,再打开电源开关。
3.测试静态工作点时,应关闭信号源。
4.本实验接点多,元器件多,组装时一定要确保接触良好,否则,会因接触不良,出现错误或造成电路故障。

阅读全文

与电路大报告相关的资料

热点内容
秋山木工家具 浏览:741
石材和外墙接触面如何防水 浏览:482
21克手机北京维修点 浏览:563
三星手机邢台售后维修点在哪里 浏览:890
武汉友谊家居广场 浏览:108
长城风骏5保修期 浏览:731
神舟青岛售后服务点 浏览:193
日照苹果售后维修点 浏览:140
济宁九龙家电海尔售后电话是多少 浏览:252
大赢家电影说什么 浏览:668
大灯电镀灯碗怎么翻新 浏览:298
立家电车多少钱 浏览:466
偏置电路有 浏览:588
电路缠线 浏览:920
创维电视售后维修价格 浏览:626
苹果7P碎屏维修要多久 浏览:90
中服富胜家居用品 浏览:147
国家电网河南工资待遇怎么样 浏览:496
九阳豆浆机维修点查询沈阳 浏览:363
厨宝电路板 浏览:303