导航:首页 > 电器电路 > 激光器电路

激光器电路

发布时间:2022-03-20 23:44:15

Ⅰ 半导体激光器驱动电路

三极管也是射极输出,没有电压放大,有电流放大作用;

通过负反馈使得版运放输出电压稳定,从权而三极管输出电流稳定,属于可控恒流源的一种形式;

U3=U2 - Ube;U3=2(U+U');U4=U3 - Ic*R5;

Ⅱ 那个知道激光器驱动电路分析与检查方法

激光器驱动电路包括激光束发生器和调制电路、光学调制装置、扫描电机控制与驱动电路,这几部分电路和装置被装在一个黑色塑料盒内,一般称为激光器。其作用是通过视频接口传送来的视频信号,产生激光二极管驱动信号,再经过扫描电机带动的扫描镜(两面、四面或六面棱镜)调制后发射到感光鼓上生成二维的静电潜像。激光器驱动电路出现故障时主要表现在以下三个方面:
①激光束发生器(激光头)故障。检查方法是打开机器,取出激光器,再将激光器的盖板打开,用万用表直接测量激光二极管的直流电阻值(有三个引脚)。检查聚焦透镜表面的镀膜是否老化、有无灰尘或斑点。
② 扫描电机控制与驱动电路故障。当扫描电机的转速异常出现时,就不能对激光束进行正常调制,致使打印页面出现扭曲,若该电机不转,则打印机不打印,面板上出现故障信息(如 HP 6LPR()打印机上会出现三个指示灯全亮现象)。这种故障的检查方法是打开机器,取出激光器,再将激光器的盖板打开,用手转动扫描镜(注意手勿碰到镜面),观察一下扫描镜是否旋转自如、其轴有无发涩或卡住的感觉。
③激光束传输通道故障。检查方法是打开机器,取出激光器,再将激光器的盖板打开,检查里面的光学器件上有无墨粉、灰尘等。另外有的激光打印机如HP 4LC、HP 5P/6P等,除了激光器里面装有反射镜外,在其机架上(正对着感光鼓组件)还装有一面反射镜,此时也应将该反射镜拆下检查。

Ⅲ 激光器的工作原理

能发射激光的装置。1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年A.L.肖洛和C.H.汤斯把微波量子放大器原理推广应用到光频范围,并指出了产生激光的方法。1960年T.H.梅曼等人制成了第一台红宝石激光器。1961年A.贾文等人制成了氦氖激光器。1962年R.N.霍耳等人创制了砷化镓半导体激光器。以后,激光器的种类就越来越多。按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。近来还发展了自由电子激光器,其工作介质是在周期性磁场中运动的高速电子束,激光波长可覆盖从微波到X射线的广阔波段。按工作方式分,有连续式、脉冲式、调Q和超短脉冲式等几类。大功率激光器通常都是脉冲式输出。各种不同种类的激光器所发射的激光波长已达数千种,最长的波长为微波波段的0.7毫米,最短波长为远紫外区的210埃,X射线波段的激光器也正在研究中。

除自由电子激光器外,各种激光器的基本工作原理均相同,装置的必不可少的组成部分包括激励(或抽运)、具有亚稳态能级的工作介质和谐振腔( 见光学谐振腔)3部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的定向性和相干性。

激光工作物质 是指用来实现粒子数反转并产生光的受激辐射放大作用的物质体系,有时也称为激光增益媒质,它们可以是固体(晶体、玻璃)、气体(原子气体、离子气体、分子气体)、半导体和液体等媒质。对激光工作物质的主要要求,是尽可能在其工作粒子的特定能级间实现较大程度的粒子数反转,并使这种反转在整个激光发射作用过程中尽可能有效地保持下去;为此,要求工作物质具有合适的能级结构和跃迁特性。

激励(泵浦)系统 是指为使激光工作物质实现并维持粒子数反转而提供能量来源的机构或装置。根据工作物质和激光器运转条件的不同,可以采取不同的激励方式和激励装置,常见的有以下四种。①光学激励(光泵)。是利用外界光源发出的光来辐照工作物质以实现粒子数反转的,整个激励装置,通常是由气体放电光源(如氙灯、氪灯)和聚光器组成。②气体放电激励。是利用在气体工作物质内发生的气体放电过程来实现粒子数反转的,整个激励装置通常由放电电极和放电电源组成。③化学激励。是利用在工作物质内部发生的化学反应过程来实现粒子数反转的,通常要求有适当的化学反应物和相应的引发措施。④核能激励。是利用小型核裂变反应所产生的裂变碎片、高能粒子或放射线来激励工作物质并实现粒子数反转的。

光学共振腔 通常是由具有一定几何形状和光学反射特性的两块反射镜按特定的方式组合而成。作用为:①提供光学反馈能力,使受激辐射光子在腔内多次往返以形成相干的持续振荡。②对腔内往返振荡光束的方向和频率进行限制,以保证输出激光具有一定的定向性和单色性。共振腔作用①,是由通常组成腔的两个反射镜的几何形状(反射面曲率半径)和相对组合方式所决定;而作用②,则是由给定共振腔型对腔内不同行进方向和不同频率的光,具有不同的选择性损耗特性所决定的。

分类 激光器的种类是很多的。下面,将分别从激光工作物质、激励方式、运转方式、输出波长范围等几个方面进行分类介绍。

按工作物质分类 根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体(晶体和玻璃)激光器,这类激光器所采用的工作物质,是通过把能够产生受激辐射作用的金属离子掺入晶体或玻璃基质中构成发光中心而制成的;②气体激光器,它们所采用的工作物质是气体,并且根据气体中真正产生受激发射作用之工作粒子性质的不同,而进一步区分为原子气体激光器、离子气体激光器、分子气体激光器、准分子气体激光器等;③液体激光器,这类激光器所采用的工作物质主要包括两类,一类是有机荧光染料溶液,另一类是含有稀土金属离子的无机化合物溶液,其中金属离子(如Nd)起工作粒子作用,而无机化合物液体(如SeOCl)则起基质的作用;④半导体激光器,这类激光器是以一定的半导体材料作工作物质而产生受激发射作用,其原理是通过一定的激励方式(电注入、光泵或高能电子束注入),在半导体物质的能带之间或能带与杂质能级之间,通过激发非平衡载流子而实现粒子数反转,从而产生光的受激发射作用;⑤自由电子激光器,这是一种特殊类型的新型激光器,工作物质为在空间周期变化磁场中高速运动的定向自由电子束,只要改变自由电子束的速度就可产生可调谐的相干电磁辐射,原则上其相干辐射谱可从X射线波段过渡到微波区域,因此具有很诱人的前景。

按激励方式分类 ①光泵式激光器。指以光泵方式激励的激光器,包括几乎是全部的固体激光器和液体激光器,以及少数气体激光器和半导体激光器。②电激励式激光器。大部分气体激光器均是采用气体放电(直流放电、交流放电、脉冲放电、电子束注入)方式进行激励,而一般常见的半导体激光器多是采用结电流注入方式进行激励,某些半导体激光器亦可采用高能电子束注入方式激励。③化学激光器。这是专门指利用化学反应释放的能量对工作物质进行激励的激光器,反希望产生的化学反应可分别采用光照引发、放电引发、化学引发。④核泵浦激光器。指专门利用小型核裂变反应所释放出的能量来激励工作物质的一类特种激光器,如核泵浦氦氩激光器等。

按运转方式分类 由于激光器所采用的工作物质、激励方式以及应用目的的不同,其运转方式和工作状态亦相应有所不同,从而可区分为以下几种主要的类型。①连续激光器,其工作特点是工作物质的激励和相应的激光输出,可以在一段较长的时间范围内以连续方式持续进行,以连续光源激励的固体激光器和以连续电激励方式工作的气体激光器及半导体激光器,均属此类。由于连续运转过程中往往不可避免地产生器件的过热效应,因此多数需采取适当的冷却措施。②单次脉冲激光器,对这类激光器而言,工作物质的激励和相应的激光发射,从时间上来说均是一个单次脉冲过程,一般的固体激光器、液体激光器以及某些特殊的气体激光器,均采用此方式运转,此时器件的热效应可以忽略,故可以不采取特殊的冷却措施。③重复脉冲激光器,这类器件的特点是其输出为一系列的重复激光脉冲,为此,器件可相应以重复脉冲的方式激励,或以连续方式进行激励但以一定方式调制激光振荡过程,以获得重复脉冲激光输出,通常亦要求对器件采取有效的冷却措施。④调激光器,这是专门指采用一定的 开关技术以获得较高输出功率的脉冲激光器,其工作原理是在工作物质的粒子数反转状态形成后并不使其产生激光振荡 (开关处于关闭状态),待粒子数积累到足够高的程度后,突然瞬时打开 开关,从而可在较短的时间内(例如10~10秒)形成十分强的激光振荡和高功率脉冲激光输出(见技术'" class=link>激光调 技术)。⑤锁模激光器,这是一类采用锁模技术的特殊类型激光器,其工作特点是由共振腔内不同纵向模式之间有确定的相位关系,因此可获得一系列在时间上来看是等间隔的激光超短脉冲(脉宽10~10秒)序列,若进一步采用特殊的快速光开关技术,还可以从上述脉冲序列中选择出单一的超短激光脉冲(见激光锁模技术)。⑥单模和稳频激光器,单模激光器是指在采用一定的限模技术后处于单横模或单纵模状态运转的激光器,稳频激光器是指采用一定的自动控制措施使激光器输出波长或频率稳定在一定精度范围内的特殊激光器件,在某些情况下,还可以制成既是单模运转又具有频率自动稳定控制能力的特种激光器件(见激光稳频技术)。⑦可调谐激光器,在一般情况下,激光器的输出波长是固定不变的,但采用特殊的调谐技术后,使得某些激光器的输出激光波长,可在一定的范围内连续可控地发生变化,这一类激光器称为可调谐激光器(见激光调谐技术)。

按输出波段范围分类 根据输出激光波长范围之不同,可将各类激光器区分为以下几种。①远红外激光器,输出波长范围处于25~1000微米之间, 某些分子气体激光器以及自由电子激光器的激光输出即落入这一区域。②中红外激光器,指输出激光波长处于中红外区(2.5~25微米)的激光器件,代表者为CO分子气体激光器(10.6微米)、 CO分子气体激光器(5~6微米)。③近红外激光器,指输出激光波长处于近红外区(0.75~2.5微米)的激光器件,代表者为掺钕固体激光器(1.06微米)、CaAs半导体二极管激光器(约 0.8微米)和某些气体激光器等。④可见激光器,指输出激光波长处于可见光谱区(4000~7000埃或0.4~0.7微米)的一类激光器件,代表者为红宝石激光器 (6943埃)、 氦氖激光器(6328埃)、氩离子激光器(4880埃、5145埃)、氪离子激光器(4762埃、5208埃、5682埃、6471埃)以及一些可调谐染料激光器等。⑤近紫外激光器,其输出激光波长范围处于近紫外光谱区(2000~4000埃),代表者为氮分子激光器(3371埃)氟化氙(XeF)准分子激光器(3511埃、3531埃)、 氟化氪(KrF)准分子激光器(2490埃)以及某些可调谐染料激光器等⑥真空紫外激光器,其输出激光波长范围处于真空紫外光谱区(50~2000埃)代表者为(H)分子激光器 (1644~1098埃)、氙(Xe)准分子激光器(1730埃)等。⑦X射线激光器, 指输出波长处于X射线谱区(0.01~50埃)的激光器系统,目前软X 射线已研制成功,但仍处于探索阶段

Ⅳ 四种激光器的工作原理分别是什么

激光器是能发射激光的装置。1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年A.L.肖洛和C.H.汤斯把微波量子放大器原理推广应用到光频范围,并指出了产生激光的方法。1960年T.H.梅曼等人制成了第一台红宝石激光器。1961年A.贾文等人制成了氦氖激光器。1962年R.N.霍耳等人创制了砷化镓半导体激光器。以后,激光器的种类就越来越多。按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。近来还发展了自由电子激光器,其工作介质是在周期性磁场中运动的高速电子束,激光波长可覆盖从微波到X射线的广阔波段。按工作方式分,有连续式、脉冲式、调Q和超短脉冲式等几类。大功率激光器通常都是脉冲式输出。各种不同种类的激光器所发射的激光波长已达数千种,最长的波长为微波波段的0.7毫米,最短波长为远紫外区的210埃,X射线波段的激光器也正在研究中。

激光工作物质 是指用来实现粒子数反转并产生光的受激辐射放大作用的物质体系,有时也称为激光增益媒质,它们可以是固体(晶体、玻璃)、气体(原子气体、离子气体、分子气体)、半导体和液体等媒质。对激光工作物质的主要要求,是尽可能在其工作粒子的特定能级间实现较大程度的粒子数反转,并使这种反转在整个激光发射作用过程中尽可能有效地保持下去;为此,要求工作物质具有合适的能级结构和跃迁特性。

除自由电子激光器外,各种激光器的基本工作原理均相同,装置的必不可少的组成部分包括激励(或抽运)、具有亚稳态能级的工作介质和谐振腔( 见光学谐振腔)3部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的定向性和相干性。

激励(泵浦)系统 是指为使激光工作物质实现并维持粒子数反转而提供能量来源的机构或装置。根据工作物质和激光器运转条件的不同,可以采取不同的激励方式和激励装置,常见的有以下四种。①光学激励(光泵)。是利用外界光源发出的光来辐照工作物质以实现粒子数反转的,整个激励装置,通常是由气体放电光源(如氙灯、氪灯)和聚光器组成。②气体放电激励。是利用在气体工作物质内发生的气体放电过程来实现粒子数反转的,整个激励装置通常由放电电极和放电电源组成。③化学激励。是利用在工作物质内部发生的化学反应过程来实现粒子数反转的,通常要求有适当的化学反应物和相应的引发措施。④核能激励。是利用小型核裂变反应所产生的裂变碎片、高能粒子或放射线来激励工作物质并实现粒子数反转的。

光学共振腔 通常是由具有一定几何形状和光学反射特性的两块反射镜按特定的方式组合而成。作用为:①提供光学反馈能力,使受激辐射光子在腔内多次往返以形成相干的持续振荡。②对腔内往返振荡光束的方向和频率进行限制,以保证输出激光具有一定的定向性和单色性。共振腔作用①,是由通常组成腔的两个反射镜的几何形状(反射面曲率半径)和相对组合方式所决定;而作用②,则是由给定共振腔型对腔内不同行进方向和不同频率的光,具有不同的选择性损耗特性所决定的。

几种常见激光器及其用途介绍如下:

Nd:YAG激光器,1064nm,固体激光器,连续激光器的最大输出功率1000W,可用于激光切割金属。

Ho:YAG,固体激光器,可产生对人眼安全的2097nm和2091nm激光,适用于雷达和医学应用。

He-Ne激光器,632.8nm,气体激光器,功率为几mW,用于准直,定位,全息照相等。

CO2激光器,气体激光器,输出波长10.6um,广泛用于激光加工,医疗,大气通信及其他军事应用。

N2分子激光器,气体激光器,输出紫外光,峰值功率可达数十兆瓦,脉宽小于10ns,重复频率为数十至数千赫,作可调谐燃料激光器的泵浦源,也可用于荧光分析,检测污染等方面。

Ⅳ 飞秒激光器的工作原理及原理图

飞秒激光产生后,人类能够在原子和电子的层面上观察到它们超快运动版的过程并加以利用。权在高强度飞秒激光的作用下,气态、液态、固态物质会在瞬息间变成等离子体。高功率飞秒激光与电子束碰撞,能够产生X射线飞秒激光、射线激光以及正负电子对。

此外,利用飞秒激光能够有效地加速电子,使加速器的规模得到上千倍的压缩。高功率飞秒激光与物质相互作用,能够产生足够数量的中子,实现激光受控核聚变的快速点火。

(5)激光器电路扩展阅读

飞秒激光器为一种脉冲激光器。飞秒指的脉冲持续时间,这和脉冲的频率不一样。脉冲的频率是指1s内,激光器发出的脉冲数目。

飞秒激光器对时间的分辨率远远高于影视器材,经计算,飞秒激光器获得了人类在实验室中所能获得的世界上最短的脉冲,通过它,可以看到更快速、更微妙的运动,例如绿色植物的光合作用过程、细胞的分裂过程、电子围绕原子运动的过程等等。

Ⅵ 激光器的原理

除自由电子激光器外,各种激光器的基本工作原理均相同。产生激光的必不可少的条件是粒子数反转和增益大于损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。激光器中常见的组成部分还有谐振腔,但谐振腔( 见光学谐振腔)并非必不可少的组成部分,谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的方向性和相干性。而且,它可以很好地缩短工作物质的长度,还能通过改变谐振腔长度来调节所产生激光的模式(即选模),所以一般激光器都具有谐振腔。 通常是由具有一定几何形状和光学反射特性的两块反射镜按特定的方式组合而成。作用为:①提供光学反馈能力,使受激辐射光子在腔内多次往返以形成相干的持续振荡。②对腔内往返振荡光束的方向和频率进行限制,以保证输出激光具有一定的定向性和单色性。共振腔作用①,是由通常组成腔的两个反射镜的几何形状(反射面曲率半径)和相对组合方式所决定;而作用②,则是由给定共振腔型对腔内不同行进方向和不同频率的光,具有不同的选择性损耗特性所决定的。 分类
激光器的种类是很多的。下面,将分别从激光工作物质、激励方式、运转方式、输出波长范围等几个方面进行分类介绍。

Ⅶ 红光激光器的原理

以红宝石激光器为例,工作物质是一根红宝石棒。红宝石是掺入少许3价铬离子的三氧化二铝晶体。实际是掺入质量比约为0.05%的氧化铬。由于铬离子吸收白光中的绿光和蓝光,所以宝石呈粉红色。1960年梅曼发明的激光器所产用的红宝石是一根直径0.8cm、长约8cm的圆棒。两端面是一对平行平面镜,一端镀上全反射膜,一端有10%的透射率,可让激光透出。

红宝石激光器中,用高压氙灯作“泵浦”,利用氙灯所发出的强光激发铬离子到达激发态E3,被抽运到E3上的电子很快(~10-8s)通过无辐射跃迁到E2。E2是亚稳态能级,E2到E1的自发辐射几率很小,寿命长达10-3s,即允许粒子停留较长时间。于是,粒子就在E2上积聚起来,实现E2和E1两能级上的粒子数反转。从E2到E1受激发射的波长是694.3nm的红色激光。由脉冲氙灯得到的是脉冲激光,每一个光脉冲的持续时间不到1ms,每个光脉冲能量在10J以上;也就是说,每个脉冲激光的功率可超过10kW的数量级。注意到上述铬离子从激发到发出激光的过程中涉及到三条能级,故称为三能级系统。由于在三能级系统中,下能级E1是基态,通常情况下积聚大量原子,所以要达到粒子数反转,要有相当强的激励才行。

Ⅷ 做了一个激光器驱动电路,接上激光器就把激光器烧坏了,请问为什么

恒流加软启动,激光管可是很娇的

Ⅸ 激光二极管的三个个管脚是怎样连接到电路上的

激光二极管有三个管脚: LD 发射端, PD接收端, LD-N公共端

1、区分LD和PD。用万表的R×1k挡分别测出激光二极管三个引脚两两之间的阻值,总有一次两脚间的阻值大约在几千欧姆左右,这时黑表笔所接的一端是PD阳极端,红表笔所接的引脚为公共端,剩下的一个引脚为LD阴极端,这样就区分出了PD部分(图中的bc部分)和LD部分(图中的ab部分)。

2、检测PD部分。激光二极管的PD部分实质上是一个光敏二极管,用万用表检测方法如下:用R×1k挡测其阻值,若正向电阻为几千欧姆,反向电阻为无穷大,初步表明PD部分是好的;若正向电阻为0或为无穷大,则表明PD部分已坏。若反向电阻不是无穷大,说明PD部分已反向漏电,管子质量变差。

3、检测LD部分。用万用表的R×1k挡测LD部分的正向阻值,即黑表笔接公共端b,红表笔接a脚,正向阻值应在10kΩ~30kΩ之间,反向阻值应为无穷大。若测得的正向阻值大于55kΩ,反向阻值在100kΩ以下,表明LD部分已严重老化,使用效果会变差。

(9)激光器电路扩展阅读

1、激光二极管发射的激光有可能对人眼造成伤害。二极管工作时,严禁直接注视其端面,不能透过镜片直视激光,也不能透过反视镜观察激光。

2、器件需要合适的驱动电源,瞬时反向电流不能超过2uA,反向电压不得超过3V,否则会损坏器件。驱动电源子在电源通断时,要防止浪涌电流的措施。用示波器测试驱动电路时,要先断开电源再连接示波器探头,若在通电情况下测试探头,可能引用浪涌电流损坏器件。

3、器件应存放或工作于干净的环境中。

4、在较高温度下工作,会增大阀值电流,较低转化频率,加速器件的老化。在调整光输入量时,要用光功率表检测,防止超过大额定输出。

5、输出功率高于指定参数工作,会加速元件老化。

6、机器需要充分散热或在制冷条件下使用,激光二极管的温度严格控制在20度以下,保证寿命。

7、二极管属于静电敏感器件,在人体有良好的情况下才可以拿取,防静电可以采用防静电手镯的方法。

8、激光器的输出波长受工作电流与散热的影响,要保持良好的散热条件,降低工作时管芯的温度。加散热器防止激光二极管在工作中温升过高。

参考资料来源:中国科学院半导体研究所 激光二极管

Ⅹ 纳米激光器原理

纳米激光器,是指由纳米线等纳米材料作为谐振腔,在光激发或电激发下能够出射激光的微纳器件。这种激光器的尺寸往往只有数百微米甚至几十微米,直径更是达到纳米量级,是未来薄膜显示、集成光学等领域中的重要组成部分。

阅读全文

与激光器电路相关的资料

热点内容
电路图L21 浏览:531
林志颖家智能家居 浏览:187
大庆市让胡路区小米售后维修点 浏览:773
防水盒插座怎么打开 浏览:404
公共电话坏了哪个部门维修 浏览:269
门框维修视频 浏览:821
韩国第一锅炉售后服务 浏览:548
如何分辨家具是不是翻新 浏览:745
全国家电维修派单微信群 浏览:377
安装电梯电路 浏览:562
0pp0手机售后服务 浏览:715
影驰gts450显卡维修视频 浏览:872
维修基金如何转名 浏览:134
联想710s保修 浏览:614
河北顾家家居招聘信息 浏览:184
浅胡桃木家具配什么地板 浏览:41
浪琴家具圣美佳 浏览:414
防水涂料下雨管怎么处理 浏览:761
解放售后服务电话 浏览:705
户外防冻用什么防水 浏览:278