❶ 什么叫数字电路什么叫模拟电路他们的区别是什么
1、特点不同
模拟电路的特点:
(1)函数的取值为无限多个;
(2)当图像信息和声音信息发生变化时,信号的波形也发生变化,即模拟信号所传输的信息包含在其波形中(信息变化的规律直接反映在振幅、频率和相位的变化中)。模拟信号)。
(3)一次模拟电路主要解决两个方面:1个放大和2个信号源。
(4)模拟信号具有连续性。
数字电路的特点:
(1)同时具有算术运算和逻辑运算功能。
数字电路是基于二进制逻辑代数的。它利用二进制数字信号,既能进行算术运算又能方便地进行逻辑运算(与、或、非、判断、比较、处理等),非常适合于运算、比较、存储、传输、控制、决策等应用。
(2)实现简单,系统可靠。
基于二进制系统的数字逻辑电路具有较高的可靠性。电源电压的小波动对其没有影响,温度和工艺偏差对其可靠性的影响比模拟电路小得多。
(3)集成度高,功能实现容易。
集成度高、体积小、功耗低是数字电路的突出优点。电路的设计、维护和维护灵活方便。随着集成电路技术的飞速发展,数字逻辑电路的集成度越来越高。集成电路块的功能随着小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)、超大规模集成电路(VLSI)。
开发也从组件级、设备级、组件级、板级上升到系统级。电路的设计和组成只需要通过一些标准的集成电路块单元进行连接。对于非标准专用电路,可编程逻辑阵列电路也可以通过编程实现任意逻辑功能。
2、分类不同
模拟电路可分为标准模拟电路和专用模拟电路两大类。
(1)标准模拟电路包括放大器接口电路、数据转换器、比较器、稳压器和基准电路等。
(2)专用模拟电路市场是指在消费类电子产品、计算机、通信、汽车和工业其它部门应用的电路。
数字电路分类:
(1)组合逻辑电路
组合电路,由最基本的逻辑门电路组成。其特点是输出值仅与当时的输入值有关,即输出值仅由当时的输入值决定。电路无记忆功能,输出状态随输入状态变化,类似于电阻电路,如加法器、解码器、编码器、数据选择器等。
(2)时序逻辑电路
顺序电路是由最基本的逻辑门电路和反馈逻辑电路(输出到输入)或器件组成的,它与组合电路有着本质上的区别,因为它具有记忆功能。时序电路的特点是输出不仅取决于当时的输入值,还取决于电路的过去状态。
它类似于含有储能元件的电感或电容电路,如触发器、锁存器、计数器、移位寄存器、存储器等电路都是时序电路的典型组成部分。
(1)数字电路原理扩展阅读:
模拟电路功能:
(1)放大电路:用于信号的电压、电流或功率放大。
(2)滤波电路:用于信号的提取、变换或抗干扰。
(3)运算电路:完成信号的比例、加、减、乘、除、积分、微分、对数、指数等运算。
(4)信号转换电路:用于将电流信号转换成电压信号或将电压信号转换为电流信号、将直流信号转换为交流信号或将交流信号转换为直流信号、将直流电压转换成与之成正比的频率……
(5)信号发生电路:用于产生正弦波、矩形波、三角波、锯齿波。
(6)直流电源:将220V、50Hz交流电转换成不同输出电压和电流的直流电,作为各种电子线路的供电电源。
❷ 数字电路原理
这个问得有点广:
数字电路原理:
1、首先得知道什么是数字信号
2、如何产生数字信号
3、数字信号有哪些应用
4、如何转换、存储数字信号
数字电路是针对数字化的电信号进行分析和处理,而广义的数字信号可用数学表达式形容与具体电路无关。
你要想针对电路来学习数字信号原理,就得从基本的电路原理分析、以及模拟和数字电路的具体元器件进行学习。
买几本经典的入门教材去理解吧!
具体参考流程可以是—电路分析基础-模拟电路-数字电路,相关教材就不介绍了。
❸ 一个电路图(数字电路)的工作原理
请问 图呢?
❹ 数字电路的原理是什么
数字电路是由基本的门电路(与门、非门、或门、异或门、与非门)搭建的完成一定逻辑关系的电路。数字电路的器件一般工作在饱和区和截止区,而模拟电路器件工作在线性区。
❺ 数字电路的基本工作原理是什么
0和1,二进制运算
❻ 原理图法设计数字电路的优缺点有哪些
原理图是设计数字电路最基本的方法。也是数字电路设计人员必须熟练掌握的基本技能。
原理图是数字电路设计的基础,它反映了数字电路的基本工作原理,能够最直接地反映系统内部构成的各个细节,反映各部分之间的联系和系统组成关系。因此,我们从原理图的安排中(也包括绘图技巧)常常可以看出设计者的水平和偏好,甚至也包括审计沉郁、时序不当、板块接续匹配度、组合电路和时序电路之间的占比关系等系统特征。
原理图法是数字电路设计的起源,它奠定了数字电路理论设计的基础,为促进数字电路理论分析的发展起到重要作用。
但是,随着科学的发展,电路系统也迅速发展到十分庞大。人们不得不用原理框图替代原理图,从而使得原理图退居次要地位。
不仅如此,技术的发展终究要进入软件渗入硬件,于是硬件软化技术迅速发展,这进一步削弱了原理图设计法的权威性。
如今单一逻辑系统的原理图法设计的数字电路只能看做是学生作业。一个比较好的现代化数字系统必然是用混合逻辑设计、应用硬件软化和软件硬化优化技巧、结构紧凑快速高效的数字系统。而且往往备有纠错系统、应急系统、自适应系统。这也就使得原理图法设计望尘莫及了。
❼ 求数字电路功放原理图
数字功放和DC-DC开关型逆变电路类似。输入的音频模拟信号经过PWM电路调制处理后,形成占空比同输入信号成一定比例的脉冲链,经过开关电路放大后,由低通滤波器滤除高频成分,还原出已放大的输入信号波形,由扬声器放音。下图为D类放大器的典型电路,采用场效应管H-桥式连接。众所周知,从上述场效应管H-桥式电路输出的脉冲波是不便直接驱动扬声器发声的。为了重现放大的音频信号,输出波形必须恢复到原来的正弦波。前几年D类放大器的设计,大都采用低通滤波器来解决。由于音频的频带范围为20Hz~20kHz,而载波频率通常是它的5倍以上,因此,滤除载波频率的过程相当简单,就是在扬声器前面接一个截止频率约为25kHz左右的低通滤波器。而在运用到重低音功放时,由于处理的是低频,低通的截止频率可以降低到5kHz左右。滤波器可根据性能要求采用Chebyshev、Butterworth或Bessel等电路。滤波器的设计要求较高,弄得不好会引起射频干扰。为降低功耗,一般采用被动元件。
❽ 数字电路的基本工作原理
模拟电路处理的信号电压变化是连续的,比如正弦波信号。数字电路处理的信号只有高电平和低电平,是数字脉冲信号。一般用高电平代表“1” ,低电平代表“0”,用二进制数字的运算来表示各种逻辑关系。
❾ 数字电路中分频器的工作原理
数字电路中分频器的工作原理:
从电路结构来看,分频器本质上是由电容器和电感线圈构成的LC滤波网络,高音通道是高通滤波器,它只让高频信号通过而阻止低频信号;低音通道正好相反,它只让低音通过而阻止高频信号;
中音通道则是一个带通滤波器,除了一低一高两个分频点之间的频率可以通过,高频成份和低频成份都将被阻止。
在实际的分频器中,有时为了平衡高、低音单元之间的灵敏度差异,还要加入衰减电阻;另外,有些分频器中还加入了由电阻、电容构成的阻抗补偿网络,其目的是使音箱的阻抗曲线心理平坦一些,以便于功放驱动。
位于功率放大器之后,设置在音箱内,通过LC滤波网络,将功率放大器输出的功率音频信号分为低音,中音和高音,分别送至各自扬声器。
连接简单,使用方便,但消耗功率,出现音频谷点,产生交叉失真,它的参数与扬声器阻抗有的直接关系,而扬声器的阻抗又是频率的函数,与标称值偏离较大,因此误差也较大,不利于调整。
将音频弱信号进行分频的设备,位于功率放大器前,分频后再用各自独立的功率放大器,把每一个音频频段信号给予放大,然后分别送到相应的扬声器单元。
因电流较小故可用较小功率的电子有源滤波器实现,调整较容易,减少功率损耗,及扬声器单元之间的干扰。使得信号损失小,音质好。但此方式每路要用独立的功率放大器,成本高,电路结构复杂,运用于专业扩声系统。
分频器的作用:
1、基本分频
不管什么类型电子分频器的主要功能和任务当然还是分频。由于现在音箱的种类很多,系统中要采用什么功病能的、几分频的电子分频器还是要灵活配置的,现在通常用的电子频器有2分频、3分频、4分频等区分,超过4分频就显得太复杂和无实际意义了。
分频器可以合理地进行各单元功率分配,使各单元之间具有恰当的相位关系以减少各单元在工作中出现的声干涉失真。
2、保护音箱
不同扬声器的工作频率是不一样的,一般来说口径越大的扬声器其低频特性也越好,频率下潜也越低。电子分频器可以提供不同扬声器各自需要的最佳工作频率,弥补单元在某频段里的声缺陷,让各种扬声器更合理、更安全的工作。
因此,电子分频器除了分频任务外,正常的使用它更重要的功能还有:保护音箱设备。
3、增加声音层次感
如果一个 音响系统中有很多只不同种类的音箱,而且没有使用电子分频器,那不同音箱之间就会有很多频率叠加、重复的部分,声干涉也会变得很严重,声音就会变得模糊不清。
若音响系统中使用了电子分频器进行合理的分频,让不同音箱处在最佳工作状态下,这样不同音箱之间发出的声音频率范围几乎不会重复,同时减少了声波互相干涉的现象,声音就会变得格外清晰,音色也会更好、更具有层次感。