Ⅰ 遗传算法是否可以通过硬件电路实现
虽然我不知道遗传算法的公式,但是我可以告诉你硬件电路可以完成非常复杂的公式运算,模拟电路中的集成运放建各种运算电路,数字电路也可以,用verilog描述自动生成复杂的电路图。
Ⅱ 悬赏100分了啊!!!各位大大给我推荐本好书啊,有关遗传算法的matlab编程(电力系统方面)
个人意见:如果你搞清楚了遗传算法,那你所谓的电力系统方面就不是问题,因为仅仅是换了个系统方程,别的没有什么实质的改变。所以建议你先看看遗传算法的内容,尝试编写个很简单的例子,然后套用到你电力系统方面就ok了。
Ⅲ 遗传算法都能干啥啊
遗传算法的应用有很多,一般用于解决工程优化问题。像选址问题、排班问题、路线优化、参数优化、函数求极值等等
Ⅳ 求一个遗传算法进行电力系统优化调度 代码
发一份自编的MATLAB遗传算法代码,用简单遗传算法(Simple Genetic Algorithm or Standard Genetic Algorithm ,SGA)求取函数最大值,初版编写于7年前上学期间,当时是MATLAB 5.x,在算法运行效率方面做了修改,主要是采用矩阵操作减少了循环。
遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。
优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码,因为优化后要进行评价,所以要返回问题空间,故要进行解码。SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;解码时应注意将染色体解码到问题可行域内。
遗传算法模拟“适者生存,优胜劣汰”的进化机制,染色体适应生存环境的能力用适应度函数衡量。对于优化问题,适应度函数由目标函数变换而来。一般遗传算法求解最大值问题,如果是最小值问题,则通过取倒数或者加负号处理。SGA要求适应度函数>0,对于<0的问题,要通过加一个足够大的正数来解决。这样,适应度函数值大的染色体生存能力强。
遗传算法有三个进化算子:选择(复制)、交叉和变异。
SGA中,选择采用轮盘赌方法,也就是将染色体分布在一个圆盘上,每个染色体占据一定的扇形区域,扇形区域的面积大小和染色体的适应度大小成正比。如果轮盘中心装一个可以转动的指针的话,旋转指针,指针停下来时会指向某一个区域,则该区域对应的染色体被选中。显然适应度高的染色体由于所占的扇形区域大,因此被选中的几率高,可能被选中多次,而适应度低的可能一次也选不中,从而被淘汰。算法实现时采用随机数方法,先将每个染色体的适应度除以所有染色体适应度的和,再累加,使他们根据适应度的大小分布于0-1之间,适应度大的占的区域大,然后随机生成一个0-1之间的随机数,随机数落到哪个区域,对应的染色体就被选中。重复操作,选出群体规模规定数目的染色体。这个操作就是“优胜劣汰,适者生存”,但没有产生新个体。
交叉模拟有性繁殖,由两个染色体共同作用产生后代,SGA采用单点交叉。由于SGA为二进制编码,所以染色体为二进制位串,随机生成一个小于位串长度的随机整数,交换两个染色体该点后的那部分位串。参与交叉的染色体是轮盘赌选出来的个体,并且还要根据选择概率来确定是否进行交叉(生成0-1之间随机数,看随机数是否小于规定的交叉概率),否则直接进入变异操作。这个操作是产生新个体的主要方法,不过基因都来自父辈个体。
变异采用位点变异,对于二进制位串,0变为1,1变为0就是变异。采用概率确定变异位,对每一位生成一个0-1之间的随机数,看是否小于规定的变异概率,小于的变异,否则保持原状。这个操作能够使个体不同于父辈而具有自己独立的特征基因,主要用于跳出局部极值。
遗传算法认为生物由低级到高级进化,后代比前一代强,但实际操作中可能有退化现象,所以采用最佳个体保留法,也就是曾经出现的最好个体,一定要保证生存下来,使后代至少不差于前一代。大致有两种类型,一种是把出现的最优个体单独保存,最后输出,不影响原来的进化过程;一种是将最优个体保存入子群,也进行选择、交叉、变异,这样能充分利用模式,但也可能导致过早收敛。
由于是基本遗传算法,所以优化能力一般,解决简单问题尚可,高维、复杂问题就需要进行改进了。
下面为代码。函数最大值为3905.9262,此时两个参数均为-2.0480,有时会出现局部极值,此时一个参数为-2.0480,一个为2.0480。算法中变异概率pm=0.05,交叉概率pc=0.8。如果不采用最优模式保留,结果会更丰富些,也就是算法最后不一定收敛于极值点,当然局部收敛现象也会有所减少,但最终寻得的解不一定是本次执行中曾找到过的最好解。
(注:一位网名为mosquitee的朋友提醒我:原代码的变异点位置有问题。检验后发现是将最初的循环实现方法改为矩阵实现方法时为了最优去掉mm的第N行所致,导致变异点位置发生了变化,现做了修改,修改部分加了颜色标记,非常感谢mosquitee,2010-4-22)
% Optimizing a function using Simple Genetic Algorithm with elitist preserved
%Max f(x1,x2)=100*(x1*x1-x2).^2+(1-x1).^2; -2.0480<=x1,x2<=2.0480
% Author: Wang Yonglin ([email protected])
clc;clear all;
format long;%设定数据显示格式
%初始化参数
T=100;%仿真代数
N=80;% 群体规模
pm=0.05;pc=0.8;%交叉变异概率
umax=2.048;umin=-2.048;%参数取值范围
L=10;%单个参数字串长度,总编码长度2L
bval=round(rand(N,2*L));%初始种群
bestv=-inf;%最优适应度初值
%迭代开始
for ii=1:T
%解码,计算适应度
for i=1:N
y1=0;y2=0;
for j=1:1:L
y1=y1+bval(i,L-j+1)*2^(j-1);
end
x1=(umax-umin)*y1/(2^L-1)+umin;
for j=1:1:L
y2=y2+bval(i,2*L-j+1)*2^(j-1);
end
x2=(umax-umin)*y2/(2^L-1)+umin;
obj(i)=100*(x1*x1-x2).^2+(1-x1).^2; %目标函数
xx(i,:)=[x1,x2];
end
func=obj;%目标函数转换为适应度函数
p=func./sum(func);
q=cumsum(p);%累加
[fmax,indmax]=max(func);%求当代最佳个体
if fmax>=bestv
bestv=fmax;%到目前为止最优适应度值
bvalxx=bval(indmax,:);%到目前为止最佳位串
optxx=xx(indmax,:);%到目前为止最优参数
end
Bfit1(ii)=bestv; % 存储每代的最优适应度
%%%%遗传操作开始
%轮盘赌选择
for i=1:(N-1)
r=rand;
tmp=find(r<=q);
newbval(i,:)=bval(tmp(1),:);
end
newbval(N,:)=bvalxx;%最优保留
bval=newbval;
%单点交叉
for i=1:2:(N-1)
cc=rand;
if cc<pc
point=ceil(rand*(2*L-1));%取得一个1到2L-1的整数
ch=bval(i,:);
bval(i,point+1:2*L)=bval(i+1,point+1:2*L);
bval(i+1,point+1:2*L)=ch(1,point+1:2*L);
end
end
bval(N,:)=bvalxx;%最优保留
%位点变异
mm=rand(N,2*L)<pm;%N行
mm(N,:)=zeros(1,2*L);%最后一行不变异,强制赋0
bval(mm)=1-bval(mm);
end
%输出
plot(Bfit1);% 绘制最优适应度进化曲线
bestv %输出最优适应度值
optxx %输出最优参数
Ⅳ 什么是遗传算法
遗传算法 网络名片
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。
遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。 对于一个求函数最大值的优化问题(求函数最小值也类同),一般可以描述为下列数学规划模型:遗传算法 式中为决策变量,为目标函数式,式2-2、2-3为约束条件,U是基本空间,R是U的子集。满足约束条件的解X称为可行解,集合R表示所有满足约束条件的解所组成的集合,称为可行解集合。 遗传算法的基本运算过程如下: a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。 b)个体评价:计算群体P(t)中各个个体的适应度。 c)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。 d)交叉运算;将交叉算子作用于群体。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。遗传算法中起核心作用的就是交叉算子。 e)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。 群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t 1)。 f)终止条件判断:若tT,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。
[编辑本段]遗传算法定义
遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(indivial)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
Ⅵ 电力系统中关于遗传算法的应用
可以直接将X设为一个母体,每个母体由X1,X2,X3,X4组成。每一组解为一个母体。
种群大小就是你取的母体(X)的个数。
约束条件在函数中可以用if等语句实现。
我也只是用遗传算法做了一下毕业设计,没有深究,够用就行了
欢迎LL单Q我讨论.....
Ⅶ 遗传算法实践当中真的能用吗
找注册信息不适合用遗传算法,我觉得凭日常经验写一个函数判断信息的相似程度就可以了。判断相似可以用神经网络算法,但不能用遗传
现实中01背包问题和旅行商问题最好的算法就是遗传算法,一些集成电路内部的布线就是用遗传算法设计的
Ⅷ 遗传算法婚姻法
遗传算法的应用领域:
计算机自动设计 (N700列车“气动双翼”的独特空气动力造型车鼻;是遗传算法运算结果)
工业工程与运作管理
物流系统设计
生产调度
制造系统控制
系统优化设计
汽车设计,包括材料选择、多目标汽车组件设计、减轻重量等。
机电系统设计。
分布计算机网络的拓扑结构。
电路设计,此类用途的遗传算法叫做进化电路。
电子游戏设计,例如计算平衡解决方案。
机器智能设计和机器人学习。
模糊控制系统的训练。
移动通讯优化结构。
时间表安排,例如为一个大学安排不冲突的课程时间表。
旅行推销员问题。
神经网络的训练,也叫做神经进化。
有什么不懂的可以继续提问。
Ⅸ 遗传算法优化电力系统无功问题
GA程序流程:
0、初始化GA参数:种群数N、控制变量数M、选择概率、交叉概率、变异概率;
1、设置控制变量初值, i=1;
2、计算第i个粒子的潮流;
3、根据潮流结果计算网损,计算第i个粒子的目标函数及适应度函数并保存,i++;
4、i是否大于M,若否,则转步骤2,若是,则转下一步;
5、得到最优粒子及其适应度,判断适应度变化是否小于某阀值,若小,则转步骤8,否则继续下一步;
6、选择操作;交叉操作;变异操作;
7、i=1,转步骤2;
8、输出最优粒子及其适应度。