A. 电路的原理
如果你是学电气专业的话,电路原理是最基础最重要的一门课。学不好它,后面的模电、电机、电力系统分析、高压简直没办法学。
对于这门课,你要想真正的领悟和掌握,奥秘就在于不能停止思考。而且我觉得这是最重要的一点。我以江辑光的《电路原理》为例(这本书编的相当不错)解释为何不能停止思考。
电路几乎是第一本开始培养你工程师思维的书,它不同于数学物理,很多可以理论推导。而电路更多的是你的思考和不断累积的经验。
在江的书中,前面用了四章讲解了电阻电路的基本知识,包括参考方向问题、替代定理,支路法、节点电压、回路电流、戴维南、特勒根、互易定理。这些基本内容都要掌握到烂熟于心才能在之后的章节里灵活的用。怎样才能烂熟于心?我时刻提醒自己要不停思考。这套教材的课后习题就是最好的激发你大脑思考能力的宝库。可以说里面的每一道题都极具针对性,题目并不难。
一个合格的工程师应该把更多的时间留给思考如何最合理地解决问题,而不是花大把时间计算,电路的计算量是非常大的,一个节点电压方程组有可能是四元方程,显然这些东西留给计算器算就好了。为了学好电路你应该买一个卡西欧991,节省那些不必要浪费的时间留下来思考问题本身。
前四章的基础一定要打得极为扎实,不是停留在只是会用就行了,那样学不好电路。你要认真研究到每个定理是怎么来的,最好自己可以随手证明,你要知道戴维宁是有叠加推出来的,而叠加定理又是在电阻电路是线性时不变得来的,互易定理是由特勒根得来的。这一切知识都是靠细水长流一点点积累出来的,刚开始看到他们你会觉得迷糊,但你要相信这是一个过程,渐渐地你会觉得电路很美妙甚至会爱上它。当你发现用一页纸才能解出来的答案,你只用五六行就可以将其解决,那时候你就会感觉电路好像是从身体中流淌出来一般。这就是一直要追求的境界。
后面就是非线性,这一章很多学校要求都不高,而且考起来也不难,最为兴趣的话研究起来很有意思。
接着后面是一阶二阶动态电路,这里如果你高数的微分方程学得不错的话,高中电路知识都极本可以解了。这一部分的本质就是求解微分方程。
说白了,你根据电路列出微分方程是需要用到电路知识的,剩下来怎么解就看你的数学功底了。但是电路老师们为了给我们减轻压力有把一阶电路单独拿出来做了一个专题,并将一切关于它上面的各支路电流或者电压用一个简单的结论进行了总结,即三要素法。
学了三要素一阶电路连方程也不用列了。只要知道电路初始状态、末状态和时间常数就可以得到结果。如果你愿意思考,其实二阶电路也可以类比它的,在二阶电路中你只要求出时间常数,初值和末值,同样也可以求通解。
在这部分的最后,介绍了一种美妙的积分——卷积。很多人会被他的名字唬住,提起来就很高科技的样子。其实它的确很高科技,但只要你掌握它的精髓,能够很好的用它,对你的电路思维有极大的提升,关于卷积在知乎和网络上都有很多很好的解释和生动的例子,我也是从他们那里汲取经验的。我在这里只能提醒你,不要因为老师不做重点就忽略卷积,否则这将无异于丢了一把锐利的宝剑。记得我在学习杜阿美尔积分(卷积的一种)的时候,感觉如获至宝,虽然书上对它的描述只有一句话。但为了那一句我的心情竟久久无法平静,因为实在太好用了。
接下来是正弦电路,这里主要是要理解电路从时域域的转化,这里是电路的第一次升华,伟大的人类用自己的智慧把交流量头上打个点,然后一切又归于平静了,接下来还是前四章的知识。我想他用的就是以不变应万变的道理吧,所有量都以一个频率在变,其效果就更想对静止差不多了吧,但是他们对电容和电感产生了新的影响,因为他们的电流电压之间有微分和积分的关系。在新的思路下你可以将电感变成jwl,将电容变成1/jwc,接下来你又改思考为什么可以这样变。
这是在极坐标下的电流电压关系可以推导出来的。你要再追根溯源说,为什么可以用复数来代替正弦?那是因为欧拉公式将正弦转化成了复数表达。你还问欧拉公式又是什么?它是迈克劳林(泰勒)公式得到的。你必须不断地思考,不断地提问才能明白这一起是怎么回事。
不过这都是基础,在正弦稳态这里精髓在于画向量图,能正确地画出向量图你才能说真正理解了它。向量图不是乱画的,不是你随便找个支路放水平之后就可以得到正确的图,有时候走错了路得不到正确答案不说,反而可能陷入思维漩涡。做向量图一般要以电阻支路或者含有电阻的支路为水平向量,接下来根据它的电流电压来一步步推。而且很多难题都是把很多信息隐藏在图里面,不画得一幅好图你是解不出来的。这也需要自己揣摩。
跟着张飞老师一起学习
1(功率因素校正)如何设计
2如何快速去理解一个陌生的组件的data sheet
3详细讲解NCP1654 PFC控制芯片内部的电路设计
4D触发组、RS触发组、与门、或门的详细讲解
5NCP芯片内部各种保护(OUP、BO、UVLO、OPL、UVP、OCP)电路和实现方式的详细讲解
6如何用数字电路,通过逻辑控制,实现软起功能,关于软起作用的深度讲解
7V/I转换、I/V转换、V/F转换、F/V转换的讲解
8三极管如何工作在放大区,如何精准控制电流
9如何设计镜像电流源,如何让电流间接控制,如何用N管和P管做镜像恒流源
10PFC电阻采样电流如何做到全周期采样,既不管在MOSFET ON和OFF之间,都能实现电流采样。为什么要采样负极电源?
后面是互感,我相信很多人被同名端折磨的死去活来。其实,电感是描述,线圈建立磁场能力的量,电感大了,产生磁场越大。所以同名端的意思就是:从同名端流入的电流,磁场相加,表现在方程上为电感相加。只要牢记这一点,列含有互感的方程式就不会错了。你不要胡思乱想,有时候你会被电流方向弄糊涂,别管它,图上画的是参考方向,就算你假设的方向与实际方向反了,对真确结果依然没有丝毫影响。这里其实是考察你对参考方向的理解。
然后是谐振,这是很有趣也很有用的一节,无论是电气,通信,模电还是高压都离不开它。这是在一种美妙的状态下,电厂能量和立场能量达到完美的交替。通过谐振可以实现滤波、升压等具有实际意义的电路。但就电路内容来说这里并不难,总结一下就是,阻抗虚部为零则串联谐振,导纳虚部为零为并联谐振。在求解谐振频率时有时候用导纳求解会比较方便,这在于多做题开阔思路。
接下来是三相电路。要我来说,三相电路是最简单的部分。很多人觉得它难(当然一开始我也觉得它让人头晕),完全是因为我们总是害怕恐惧本身。其实你看它有三个地但一点也不难。这要你头脑清晰别被他的表面吓住了。三相电路跟普通电路没有任何区别。做到五个六个电源也不会害怕,因为你知道,一个所有元件都告知的电路,用节点电压或回路电流肯定是可以求的出来的。为什么到了三相你就被吓得魂不守舍了。你是不明白线电压和相电流的关系,还是一相断线对中线电流的影响?你管那些干嘛?什么相啊线呀都只是个代号而已。你把它看成一个普通电路解,它就是一个普通电路而已。很多同学总是喜欢在线和相的关系上纠结。其实一句话就可以概括的:线量都是向量的根3倍。其实这些都不用记,需要的时候画个图就来了。最重要的是你要明白三相只不过是个有三个电源的普通电路而已。你只要会节点电压法,不学三相的知识都可以解答的很好。当你以一个正常电路看它的时候,三相就已经学得差不多了。三相唯一的难点在计算,只要你是个细心的人,平时多找几个题算算,以后三相想错都难。
后面是拉普拉斯变换。这里是电路思维的又一次飞跃。人们发现高阶电路真的不好求解,而且如果电源改变的话除了卷积,找不到更好的办法。所以为了方便的使用卷积,前辈们把拉氏变换引入电路。如果说前面正弦稳态时域到频域是由泰勒公式一步步推来的。那这里就是高数的最后一章——傅立叶变换推倒的。关于傅立叶知乎也有许多精彩的讲解,自己找吧。傅立叶变换有两种形式,一种是时域形态,一种是频域形态。而拉普拉斯变换就是将由频域形态的傅立叶变换,推广到复频域形态。其基本变换公式也是由傅立叶变换公式推广得到的。这一章的学习,你要从变换公式入手,自己把基本的几个变换推导出来。还要理解终值定理和初值定理,这两个定理是检验结果正确与否的有力证据。学电路只知道思路是一回事,能做对是另外一回事。只有在学习中不断培养自己开阔的视野和强大的计算能力才可以学好这门课,学电路是要靠硬功夫的,你看着老师解题的时候感觉信手拈来,自己却百思不得其解。那是功夫没下到位。我考研时看了电路大概一百天,新书都翻烂了,自己的旧书都快散架了,各种习题不计重复的做了至少1500道以上。当我做电路的时候,我会觉得时间停止了,根本感受不到自习室里还有别人。那种你在冥思苦想后终于解决一个问题所带来的足以让你笑出声来的快乐,是陪伴着我的最好的药。每天走在月光下,我都会想,如果当不了科学家,那就干点别的吧。
所以说啊,要学好电路,还是要发自内心的爱上它。
1芯片内部是如何做到低功耗的
2NCP1654内部是如何用数字电路实现电压和电流相位跟踪的
3电压源对电容充电与电流源对电容充电的区别和波形有何不同
4单周期控制电压公式的详细推论
5如何进行有效的公式推导,推导公式的原则和方法?如何在公式推导中引入检流电阻?
6当我们公式推导结束后,如何将公式转化为电路。如何自己搭建电路,实现公式推导的结果?这也是本部视频讲解的核心。
7如何用分立组件搭建OCC单周期控制的PFC
8基于NCP1654搭建PFC电路
9详细讲解PFC PCB板调试完整过程。包括:用示波器测试波形、分析波形、优化波形,最终把PFC功率板调试出来
B. 电路原理!
电路原理是电子信息类专业的必修课,是以分析电路中的电磁现象,研究版电路的基本规权律及电路的分析方法为主要内容,而且电路分析是在电路给定参数已知的条件下,通过求解电路中的电压、电流而了解电网络具有的特性。无论是强电专业还是弱电专业,大量的问题都涉及电路理论知识,电路理论为研究和解决这些问题提供了重要的理论和方法。 "电路分析"是与电力及电信等专业有关的一门基础学科。它的任务是在给定电路模型的情况下计算电路中各部分的电流i和(或)电压v。电路模型包括电路的拓扑结构,无源元件电阻R,储能元件电容C及电感L的大小,激励源(电流源或电压源)的大小及变化形式,如直流,单一频率的正弦波,周期性交流等。电路分析分为稳态分析和暂态分析两大部分。电路模型的状态始终不变(在-∞
C. 电路原理
基本包括::简单电阻电路,线性电阻电路的分析方法和电路定理,非线性电阻电路版,一阶电路,二阶电权路,阶跃响应,冲激响应,卷积积分,相量法,阻抗与导纳,频率响应,滤波器,谐振,有互感的电路,变压器和三相电路等。
D. 电路工作原理
电路板的工作原理是利用板基绝缘材料隔离开表面铜箔导电层,使得电流沿着预先设计好的路线在各种元器件中流动完成诸如做功、放大、衰减、调制、解调、编码等功能。
电路板主要由焊盘、过孔、安装孔、导线、元器件、接插件、填充、电气边界等组成。常见的板层结构包括单层板(Single Layer PCB)、双层板(Double Layer PCB)和多层板(Multi Layer PCB)三种。各组成部分的主要功能如下:
焊盘:用于焊接元器件引脚的金属孔。
过孔:有金属过孔和非金属过孔,其中金属过孔用于连接各层之间元器件引脚。
安装孔:用于固定电路板。
导线:用于连接元器件引脚的电气网络铜膜。
接插件:用于电路板之间连接的元器件。
填充:用于地线网络的敷铜,可以有效的减小阻抗。
电气边界:用于确定电路板的尺寸,所有电路板上的元器件都不能超过该边界。
E. 怎么能看懂电路图,明白电路工作原理
无论阅读电路图或者根据电路故障查找,首要的是看懂电路图,而所谓看懂;是版指弄清电路由那权部分组成,它们之间的联系和总的功能,因为电路中各个单元电路的工作原理及功能是分析电路的基础也是改进电路性能的依据。
读图的思路及步骤
电路的主要任务是对输入信号进行处理及执行动作,因此读图时应将电路分为三部分来分析,具体步骤可归纳为1:了解用途,找出通路。2,化整为零,分析功能。3,统观整体
说明:
第一, 了解用途,通过元器件的功能来了解电路的运行。
第二,找出通路,俗话“顺藤摸瓜 ”假想电路得以通电,在沿着线路,找出分支,这样通路就可以大致找出。
第三, 化整为零,将主电路,控制电路,及PCB程序,将电路分为若干部分,这样好处在于(便于阅读,查找故障)
第四, 分析功能,将分好的若干电路,一个一个把他们的功能分析出来
第五, 统观整体,把你的分析结果全部联系起来,这样就可以把整体的电路都弄清楚了
希望我的回答对你有帮助
F. 电路的基本原理
电路:由金属导线和电气、电子部件组成的导电回路,称为电路。在电路输入端加上电源使输入端产生电势差,电路即可工作。有些直观上可以看到一些现象,如电压表或电流表偏转、灯泡发光等;有些可能需要测量仪器知道是否在正常工作。按照流过的电流性质,一般分为两种。直流电通过的电路称为“直流电路”,交流电通过的电路称为“交流电路”。
电路的作用是进行电能与其它形式的能量之间的相互转换。因此,用一些物理量来表示电路的状态及各部分之间能量转换的相互关系。
电路图电流在实用上有两个含义:第一,电流表示一种物理现象,即电荷有规则的运动就形成电流。第二,本来,电流的大小用电流强度来表示,而电流强度是指在单位时间内通过导体截面积的电荷量,其单位是安培(库/秒),简称安,用大写字母A表示。但电流强度平时人们多简称电流。所以电流又代表一个物理量,这是电流的第二个含义。
电流的真实方向和正方向是两个不同的概念,不能混淆。
习惯上总是把正电荷运动的方向,作为电流的方向,这就是电流的实际方向或真实方向,它是客观存在,不能任意选择,在简单电路中,电流的实际方向能通过电源或电压的极性很容易地确定下来。
但是,在复杂直流电路中,某一段电路里的电流真实方向很难预先确定,在交流电路中,电流的大小和方向都是随时间变化的。这时,为了分析和计算电路的需要,引入了电流参考方向的概念,参考方向又叫假定正方向,简称正方向。
所谓正方向,就是在一段电路里,在电流两种可能的真实方向中,任意选择一个作为参考方向(即假定正方向)。当实际的电流方向与假定的正方向相同时,电流是正值;当实际的电流方向与假定正方向相反时,电流就是负值。
换一个角度看,对于同一电路,可以因选取的正方向不同而有不同的表示,它可能是正值或者是负值。要特别指出的是,电路中电流的正方向一经确定,在整个分析与计算的过程中必须以此为准,不允许再更改。
从数值上看,AB两点之间的电压是电场力把单位正电荷从A点移动到B点时所做的功;而电场中某点的电位等于电场力将单位正电荷自该点移动到参考点所做的功。比较电压和电位的概念可以看出,电场中某点的电位就是该点到参考点之间的电压,电位是电压的一个特殊形式。对于电位来说,参考点是至关重要的。在同一电路中,当选定不同的参考点,同一点的电位数值是不同的。
原则上说,参考点可以任意选定。在电工领域,通常选电路里的接地点为参考点,在电子电路里,常取机壳为参考点。
在实际应用时,仅知道两点间的电压往往不够,还要求知道这两点中哪一点电位高,哪一点电位低。例如,对于半导体二极管来说,还有其阳极电位高于阴极电位时才导通;对于直流电动机来说,绕组两端的电位高低不同,电动机的转动方向可能是不同的。由于实际使用的需要,要求我们引入电压的极性,即方向问题。
电路中因其他形式的能量转换为电能所引起的电位差,叫做电动势。用字母E表示,单位是伏特。在电路中,电动势常用符号δ表示。
在物理学中,用电功率表示消耗电能的快慢.电功率用P表示,它的单位是瓦特,简称瓦,符号是W.电流在单位时间内做的功叫做电功率 以灯泡为例,电功率越大,灯泡越亮。灯泡的亮暗由实际电功率决定,不用所通过的电流、电压、电能、电阻决定!
在电路中:如果指定流过元件的电流参考方向是从标以电压的正极性的一端指向负极性的一端,即两者的参
(Ohm's Law):在同一电路中,导体中的电流跟导体两端的电压成正比,跟导体的电阻阻值成反比,基本公式是I=U/R(电流=电压/电阻)
诺顿定理:任何由电压源与电阻构成的两端网络, 总可以等效为一个理想电流源与一个电阻的并联网络。
戴维宁定理:任何由电压源与电阻构成的两端网络, 总可以等效为一个理想电压源与一个电阻的串联网络。
分析包含非线性器件的电路,则需要一些更复杂的定律。实际电路设计中,电路分析更多的通过计算机分析模拟来完成。
它是线性元件的一个重要定理。在线性电阻中,某处电压或电流都是电路中各个独立电源单独作用时,在该处分别产生的电压或电流的叠加。
对于一个具有n个结点和b条支路的电路,假设各条支路电流和支路电压取关联参考方向,并令(i1,i2,···,ib)、(u1,u2,···,ub)分别为b条支路的电流和电压,则对于任何时间t,有i1*u1+i2*u2+···+ib*ub=0。
在对偶电路中,某些元素之间的关系(或方程)可以通过对偶元素的互换而相互转换。对偶的内容包括:电路的拓扑结构、电路变量、电路元件、一些电路的公式(或方程)甚至定理。
所有的电路在工作时,每一个元件或线路都会有能量的工作运用,即电能运用,而所有电路里的电能工作运用即称为电路功率。
电路或电路元件的功率定义为:【功率=电压*电流(P=I*V)】。
自然界里能量不会消灭,固有一定律【能量不灭定律】。
电路总功率=电路功率+各电路元件功率。例如:【电源(I*V)=电路(I*V)+ 各元件(I*V)】
在电路中的能量有时会变为热能或辐射能…等其他能量到空气中,这就是电路或电路元件会发热的原因,不会全部形成电能于电路中,根据【总能量=电能+热能+辐射能+其他能量】。
本文引自网络。
不懂欢迎追问,
G. 电路的工作原理是什么
这是典型的互补多谐振荡器电路,
1接通电源瞬间电容上的电压为零G1r基极被箝为低电位,G1截止。2,R1对电容充电,当电位高于G1导通电位时G1开始导通,随后开始正反馈过程,G1导通-G2导通-G2射极电位上升,G1G2饱和。3,C向G1 放电,电位逐步下降。基极电流减少,G1退出饱合,随后又是正反馈过程。G1 电流减少- G2电流减少-身射极电位下降-通过C使G1 基极电流进一步减少至G1G2截止。
H. 电路的基本原理是什么
电路是由用电设备(称为负载)、元器件、供电设备(称为电源)通过导线连接而构成的提供给电荷流动的通路。电路是电场的种特殊形式,当电场被束缚在电荷流动的路径周围很小的范围时,即形成电踪。
为电路工作提供能量的电源,完成放大,滤波、移相等功能的元器件;用电设备(负载),连接电源、元器件和用电设备的导线;控制电源接入的开关等
客观上电路提供电荷流动的通路,电荷携带着电能在电路中流动,从电源带走电能,而在用电元器件中又释放电能,因此电路的工作伴随着能量的运动
电路主要有下列作用
能量传输将电源的电能传输给用电设备(负载)
能量转换将传输到负载的电能根据需要转换成其它形式的能量,如光、声、热、机械能等
I. 怎么从电路板上知道电路原理
从电路板知道电路原理,板上有元器件,你要能看清元器件的名,你先把元器件的原理图画出来.一般来说,细线是信号线或数据线,粗线是电源线或有大电流功率的线.整片出现的多个大片,一般这些大片都有线连成一体,这些大片可接中性点,或地,能起导线抗干扰作用.细线是各元器件之间的连线,你有了元器件原理图,用眼看,用表量元件之间电阻,把各元件连线画出来,原理图就出来了.一般来说,单面板或双面板原理图相对来说好画,多层板画出原理图挺难.一条铜箔是一条线,双面板的过孔金属化了,也是连线.用表量,电阻基本为零时,都在一条线上,有电阻,就不在一条线上.
J. 电路工作原理100字
电路:由金属导线和电气、电子部件组成的导电回路,称为电路。在电路输入端加上电源使输入端产生
电势差
,电路即可工作。有些直观上可以看到一些现象,如
电压表
或
电流表
偏转、灯泡发光等;有些可能需要
测量仪器
知道是否在正常工作。按照流过的电流性质,一般分为两种。直流电通过的电路称为“
直流电路
”,交流电通过的电路称为“
交流电路
”。在直流电路中,电流从电源正极通过导线和
电子元器件
流到负极,这就构成了一个电路.
在电压的作用下,就会形成电流,电流的方向规定为
正电荷
移动方向.所以都会说电流从正极流到负极.
实际在电路中是带有
负电荷
的电子从电源的负极流到正极.
电路的工作原理是和电路中元器件有直接关系的.
电子元器件有,电阻,电容,电感,称为
线性器件
,二极管,三极管,
可控硅
,等称为非线性器件,集成电路等.
电路中直有一个电阻的情况下,对直流和交流电一样的待遇,阻碍电流流过.
电容就
不一样了
,通交隔直.交流可以通过,直流不可以通过.
电感与电容相反,通直隔交,直流可以通过,交流部可以通过.
二极管有正负之分,正向导通,反响截至.
三极管有三个脚,b.c.e.
有两种,pnp和npn
be加一个小电压,ce加一个大电压.这样be小电压的变化.ce就会跟着变化.如果be电压有10毫伏
电压变化
,三极管放大倍数为100.那么ce就是1000毫伏的变化.
集成电路就是把成千上万个电阻,二极管和三极管等集中在一起.
电子元件
按照不同的方式
连接在一起
,就构成了不同功能的电路.
整流电路
,
滤波电路
,
放大电路
等.
每一种电路的功能和原理也不一样.
整流电路就是利用二极管,
单向导电性
,交流电通过二极管只有正或负一方通过.交流电就变成
脉动直流电
,在经过滤波整形就变成直流了,在经过稳压就可以给其他电路作为电源了.
放大电路就是对微小的电信号进行放大,用三极管的放大特性,就像我们听得音响,把小的声音放大.
电路又分为
模拟电路
和
数字电路
.
了