⑴ 学习模拟电路之前要会什么基础知识
学习模拟电路之前要掌握的基础知识有:电路基础,信号与系统,复变函数。
⑵ 模拟电路有什么优点啊
对于学生,这是学习的基础,无论基础理论学习还是实验,都能培养空间思维能力,树立起直观的分析技能,揭示电路的根本规律和特征,而数字电路是模拟电路设计的参数设计方向不同而已。在模拟电路的基础设计上,中国的能力十分弱,现在的教师都不能设计出像样的数字电路,这都是相互关联地,是一个先后因果关系。 以上是对学生而言。对于生产企业,用通用集成电路与分立元器件构成的模拟电路,门槛起点低,适于起步,投资少,随时可以收手,船小好调头啊,例如现在中国大量生产的电动自行车充电器合电动自行车控制器(调速器),都有大量的模拟电路,如果全部用数字集成电路,倒还不可能实现呢。 数字电路的功能复杂、稳定性高、扩展性强,主要体现在单片机和各种集成电路上,特别是专用集成电路上,国内在产品上基本上集中在单片机与模拟器件搭配上;如果是采用集成电路,例如各种信息产品,基本上都是进口集成电路的天下,进入门槛低,竞争惨烈;国内设计的专用集成电路的某种形式的代表就是龙芯,其投入大,在国际上技术竞争力低,进入门槛高,要求批量大,容易产生巨额亏损,上去就下不来耶。
⑶ 关于模拟电路
其实基础的模电是很好学的,用的知识大多是不会超过高中的知识点的,初中的反而用得回多
首先,把应试教育答那教科书丢一边,别去管什么等效电路,还那什么霍尔基夫定律的,除非你是想考高分的,如果是想考高分的话,下面的话就不用看了。
买几本老外的书吧,别老是RC,RE,RB的,一天到晚都是那几个代号,学个几年,一个三极管的放大电路都设计不出来
用到知识大多是以初中和高中的为主的,别把模电基础看得太高深
说几个要点给你吧:
电流经过电阻产生的电压,电阻的分压定律,这两个是很重要的,你会用到很多的
分析电路,能用电压去分析的,尽量不用电流分析,功率电路除外
二极管的三个最常用的特性:1:单向导电,:导通之后两头的电压(学名:压降)不会变化,3:稳压二极管
三极管:别把它当成两个二极管头对头的接,你会理解不电流是怎么从C流到E极的!它就是一个三极管而已!不用去管它的材质原理,就是那什么空穴,原子之类的,知道它怎么使用就可以了。
时间太晚了,只能写那么多了,有什么问题可以HI我,相互学习一下
⑷ 模拟电路基础知识
一、半导体器件
包括半导体特性,半导体二极管,双极结性三极管,场效应三极管等。
导电性介于良导电体与绝缘体之间,利用半导体材料特殊电特性来完成特定功能的电子器件。
二、放大电路的基本原理和分析方法:1.原理:单管共发射极放大电路;双极性三极管的三组态---共射 共基 共集;场效应管放大电路--共源极放大。分压自偏压式共 源极放大,共漏极放大,多级放大,2方法 直流通路与交流通路;静态工作点的分析;微变等效电路法;图解法等等。
三、放大电路的频率响应
单管共射放大电路的频响--下限频率,上限频率和通频带频率失真波特图多级放大电路的频响
四、功率放大
互补对称功率放大电路—— OTL(省去输出变压器),OCL(实用电路)
五、集成放大电路
放大电路(amplification circuit)能够将一个微弱的交流小信号(叠加在直流工作点上),通过一个装置(核心为三极管、场效应管),得到一个波形相似(不失真),但幅值却大很多的交流大信号的输出。实际的放大电路通常是由信号源、晶体三极管构成的放大器及负载组成。
偏置电路,差分放大电路,中间级,输出级。
六、放大电路的反馈
正反馈和负反馈
负反馈:四组态——电压串联,电压并联,电流串联,电流并联负反馈。(注意输出电阻和输入电阻的改变)
负反馈的分析:Af=1/F(深度负反馈时)
七、模拟信号运算电路
理想运放的特点(虚短虚地);
比例运放(反向比例运放,同向比例运放,差分比例运放);
求和电路(反向输入求和,同向输入求和)
积分电路,微分电路;
对数电路,指数电路;
乘法电路,除法电路。
八、信号处理电路
有源滤波器( 低通LPF,高通HPF。带通BPF,带阻BEF)
电压比较器(过零比较器,单限比较器,滞回比较器,双限比较器)
九、波形发生电路
正弦波振荡电路(条件,组成,分析步骤)
RC正弦波振荡电路(RC串并联网络选频特性)
LC 正弦波振荡电路 (LC并联网络选频特性电感三点式电容三点式)
石英晶体振荡器
非正弦波振荡器(矩形波,三角波,锯齿形发生器)
十、直流电路
单相整流电路
滤波电路(电容滤波,电感滤波 ,复式滤波)
倍压整流电路(二倍压整流电路,多倍压整压电路)
串联型直流稳压电路
是涉及连续函数形式模拟信号的电子电路,与之相对的是数字电路,后者通常只关注0和1两个逻辑电平。“模拟”二字主要指电压(或电流)对于真实信号成比例的再现,它最初来源于希腊语词汇ανάλογος,意思是“成比例的。
⑸ 常用模拟电路的主要技术参数
模拟电路参数种类众多
1 数据采集器
实践表明,采用机内测试技术能较大程度提高设备的可靠性和可维修性。
目前,一些有高可靠性要求的模拟电路也开始采用BIT技术。由于数据采集器中包含大量模拟电路和数字电路,使得在这类设备上采用BIT技术具有一定的难度。以边界扫描BS(Boundary-Scan)为主的BIT设计技术在数字电路的检测方面已经非常成熟,但其模拟电路的测试还不是很完善,因为模拟电路故障诊断存在以下一些难题:
(1) 模拟电路参数种类众多,而且元件参数存在容差,使得许多诊断方法失去了准确性和稳定性。
(2) 模拟电路的多样性以及电参数模拟困难造成模拟的模型适应性有限。
(3) 为保证模拟电路的精度,通常只有少量可及端口和节点可以测量,故障诊断的信息量不够,造成故障定位的不确定性和模糊性。
(4) 模拟电路故障种类众多,原因复杂,易出现新类型未记录的故障。
数据采集器的模拟电路在检测过程中除了需要考虑上述的因素外,还要关注其放大器的增益精度、输入噪声水平、零点飘移、共模抑制比、建起时间、频率响应等采集器的性能参数。
2 数据采集器模拟部分自检测原理
2.1 数据采集器模拟部分的结构和易发故障分析
数据采集器是对多路模拟电压信号进行测量、转换的电子设备,是模拟、数字电路的混合产品。其模拟部分的基本组成可分为:多路开关、可编程放大器(PGA)、共模抑制电路、低通滤波电路和A/D转换等几个部分。其中可编程放大器容易出现的故障有零点漂移、增益误差、共模抑制比下降等。随着时间和工作环境的变化,电路元件自身的一些特性也会发生变化,可能导致上述故障的出现,而这些故障对数据采集器的测量精度会造成很大影响。
滤波器的元件参数变化会导致滤波器频率特性发生变化,同时在时域上也会对电路的建起时间产生不利的影响,从而影响了数据采集器的精度。因此为了保证测量数据的精度应及时对这些故障进行检测。
下面对典型数据采集器中用到的PGA、共模抑制电路和低通滤波器进行分析,按功能模块提出了测量原理和测量方案。为了减少对被测电路的影响,测试向量在多路开关输入端注入。由于多故障情况较为复杂,本文只讨论单故障情形。图2为典型的数据采集器模拟部分的原理图。
⑹ 怎样学好模拟电路
模拟电子技术又称“魔电”,是大学专业基础课中最难学的课程,不过内也有小窍门,其要求归纳容起来4个字-看、算、选、干。
看:多看书、线路及原理分析,慢慢培养兴趣,怎么也要混一个“眼熟”。
算:按照书本介绍、老师讲解认真做专业,计算各种参数,通过计算体会模电参数真谛。
选:在理解各种参数的基础上,学会选择线路、元件。
干:认真做实验,最好再动手制作一些电子小制作,化书本图纸为显示产品,在制作中学会调试各种参数。
通过以上这些锻炼,模电可以学的如火纯青。
⑺ 为什么模电怎么难学
因为在高等教育体系中,模电是涉及半导体方向的第一门工程类课程,是一门技术类的启蒙教材。他不同于电路(Circuit),电路是基于普通物理基础的电气入门课程,诞生于第二次工业革命.
从摩擦起电到伏特电池、奥斯特、法拉第、安培麦克斯韦等一大批物理学家构建了物理的一个全新分支:电磁学,与传统的牛顿力学和开尔文热力学并肩存在。
所以电路很大程度上是物理学的延申,学起来逻辑性强,有数学定理可以依靠。高中都设置有物理课程,所以到了大学学电路就很容易。
模拟电子学是一门纯技术类学科,是伴随半导体技术而诞生的。其中的已知电路,拓扑,应用手段都是纯技术,更多的是一种工作笔记汇总。
其中记录的是20世纪这100年中被人类发明的一系列的模拟电子技术成果。很显然,作为半导体方向的启蒙读物,模电教材是不合格的。在没有介绍学科发展,技术背景,应用场景的情况下,直接罗列技术成果基本上就是让学生去背下来所有内容。
(7)模拟电路关注扩展阅读:
很多学生学习模电时感觉很难,模电之所以难,是因为模拟电路形式多种多样,千变万化,而且很多参数计算分析复杂。
当然,难和易是相对的,只要自己努力、用心去学,我相信都可以学得好。模电入门阶段一定要弄清楚PN结的结构原理,以及电流形成过程,三极管的电流走向与分配关系等,入门理顺了,后面的学习相对会轻松一些。
后面章节的集成运放、比较器也是必须要掌握的,运放和比较器在电路设计中很常用,一定要熟悉最基本的几种运放电路模型(反相比例放大、同相比例放大、加法器、减法器、差分放大等),会应用运放“虚断”与“虚短”两个重要特性分析运放电路。
学习模电要多看、多思考,课后最好到图书馆结合基本参考书认真复习。课余时间最好多动手实践,多参加一些电子项目设计。
比如电子设计竞赛,那是非常锻炼人的竞赛项目,参加电子设计竞赛,特别锻炼人,可以从中学到很多东西。
⑻ 模拟电路对于电路研究的重要性
主要由于存储器和微处理器市场的带动,集成电路技术也广泛采用了模拟设计来满足使用分立电路不能实现的高复杂,速度和精准度的要求。现在,使用数以万计的元件的模拟和数字模拟混合的集成电路消费产品非常非常多,我们也不用在利用分立元件样机的方法来预测现代模拟电路的行为和性能和功能了,由于集成电路重一些复杂高精准度的要求是单一靠数字电路无法完成的,这也就是的模拟电路在未来集成电路中无法被取代,所以研究模拟集成电路非常重要,模拟集成电路能更好的完成电路设计要求不可被取而代之。
⑼ 什么是模拟电路
模拟电路处理的信号变化是连续的,数字电路处理的信号是高电平和低电平而已内。
“模拟信容号”可以简单的说,信号的幅度(比如:电压、电流、场强等)随着时间连续变化的即为模拟信号,即信号在时间上没有突变。这一点有别于脉冲信号、数字信号。
处理模拟信号的电路就是模拟电路。
什么是模拟电路?
电路中的元件(器件)动作方式属于线性变化的电路。通常著重的是放大倍率,
讯杂比,
工作频率等问题。常见如:变压电路,
放大器电路,
都是属于仿真电路。亦称为类比电路。
⑽ 模拟电路的特点
1、函数的取值为无限多个;
2、当图像信息和声音信息改变时,信号的波形也改变,即模拟信号待传播的信息包含在它的波形之中(信息变化规律直接反映在模拟信号的幅度、频率和相位的变化上)。
3.初级模拟电路主要解决两个大的方面:1放大、2信号源。
4、模拟信号具有连续性。