❶ 震荡电路原理
振荡电流是一种大小和方向都随 周期发生变化的 电流,能产生振荡电流的电路就叫做振荡电路。其中最简单的振荡电路叫LC回路。
原理
充电完毕(放电开始): 电场能达到最大, 磁场能为零,回路中感应电流i=0。
放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。
充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。
放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。
在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的磁场和电场都发生周期性变化,这种现象叫电磁振荡。
技术应用
正弦波振荡器在量测、自动控制、无线电通讯及遥控等许多领域有着广泛的应用。例如调整放大器时,我们用一个"正弦波信号发生器"和生一个频率和振幅均可以调整的正弦信号,作为放大器的输入电压,以便观察放大器输出电压的波形有没有失真,并且量测放大器的电压放大倍数和频率特性。这种正弦信号发生器就是一个正弦波振荡器。它在各种放大电路的调整测试中是一种基本的实验仪器。在无线电的发送和接收机中,经常用高频正弦信号作为音频信号的"载波",对信号进行"调制"变换,以便于进行远距离的传输。高频振荡还可以直接作为加工的能源,例如焊接半导体器件引脚时使用的"超声波压焊机",就是利用60KHz左右的正弦波(即超声波)作为焊接的"能源"。
那么一个正弦波振荡器为什么能够自己产生一个正弦波的振荡呢?它产生的正弦振荡又怎么能够满足我们所提出来一定频率和振幅的要求呢?最后,这个正弦振荡在外界干扰之下又怎么能够维持其确定的振荡频率和振幅呢?这些就是下面我们要讨论的基本问题。放大电路是典型的两端口网络,振荡电路是一个典型的单端口网络,只有一个射频信号的输出端口。从能量转化的角度来看射频放大电路和射频振荡电路都是直流电的能量转换到特定频率射频信号的能量。两者的区别就在于振荡电路没有射频信号的输入而放大电路必须有射频信号的输入。振荡电路的技术指标包括:出射频信号频率的准确度和稳定度;②输出射频信号振幅的准确性和稳定度;③输出射频信号的波形失真度;④射频信号输出端口的阻抗和最大输出功率。对于射频振荡电路的设计都需要按照上述技术指标进行。通常在射频信号源的参数中也可以找到上述技术指标。
振荡器通常可以分为反馈型振荡电路和负阻型振荡电路。
反馈型振荡电路是由含有两端口的射频晶体管两端口网络和一个反馈网络构成。如使用双极型晶体管或者场效应管构成的振荡电路采用在射频放大电路中引入正反馈网络和频率选择网络形成振荡电路。
负阻型振荡电路由射频负阻有源器件和频率选择网络构成,如使用雪崩二极管﹑隧道二极管﹑耿氏二极管等构成射频信号源。在负阻型振荡电路中通常不出现反馈网络,而反馈型振荡电路必须包含正反馈网络。因此,反馈网络是区分两种类型振荡电路的标志。通常反馈型振荡电路的工作频率为射频的中低端频段,负阻振荡电路的工作频率为射频的高端频段。负阻振荡电路更适合于工作在微波﹑毫米波等频率更高的频段。
❷ 什么是高频振荡电流
你好,您说的对复,交变电流每秒制变换的次数叫频率,此时变化越快的就是频率越高,反之就越低。
交变电流的变化频率达到某个程度时就会不沿着导线方向流动,它会产生趋肤效应(或者叫集肤效应),就是贴着导线的最外金属层传递,此时导线可以做成空心的,以节约成本。一般的频率在几百兆以上会产生这样的现象。我们目前一般的家用电器没有这么高的频率。请你参考
❸ 高频振荡电路是高频电路中应用最广泛的无源网络,主要在电路中完成哪些功能
高频振荡电路肯定是有源的,没有电源供给有源器件提供增益,单靠无源的选频部件肯定是不可能产生振荡的。
高频振荡电路在电路中大多作为信号源、载波、本振等作用。
至于无源的选频部件例如LC谐振回路、晶体谐振器等,在振荡电路中负责确定振荡频率,在放大电路中用来选频、滤波等。
❹ 什么是震荡电路起什么作用
问友:振荡电路是将电源的直流电能,转变成一定频率的交流信号的电路内。作用是产生交流容电振荡,作为信号源。
振荡电路可以是LC回路,也可以是RC回路。
一般中、高频振荡器用LC振荡电路,频率高,LC元件值比较小,体积也小,有良好的选频特性,输出波形比较纯。
在低频振荡电路中,频率低,所用的LC元件值很大。这时用的电感线圈体积很大,铁芯线圈的性能也差,用RC振荡电路就比较合适。
振荡器电路,就是在放大器上加上正反馈电路组成。
在要求频率很稳定的振荡电路中,就要用石英晶体振荡器,这在电脑、电子表……使用已极普遍。
❺ 高频振荡电路
其中的rc振荡电路是由电阻与电容所形成的调谐电路,因此,无法产生高谐波,不适合高频振荡电路。高频振荡电路一般使用lc振荡电路,也即固态振荡电路。
❻ 震荡电路是什么作用怎么组成
电路总结起来有三种:LC振荡,RC振荡,RL振荡
其作用是提供一个周期信号供其他电路使用,其用途非常广:给单片机提供时钟,给警报器提供音频信号,给手机发射提供基频,家里用的交流电就是一种50HZ的信号,收音机的接收信号,无线充电器发射的信号,电视遥控发射的信号......可以这么说:99%的电子线路里有它的身影!
❼ 怎样制作一个简单的高频振荡电路
高频信号发生器主要用来向各种电子设备和电路提供高频能量或高频标准信号,以便测试各种电子设备和电路的电气特性。例如,测试各类高频接收机的工作特性,便是高频信号发生器一个重要的用途。在电路结构上,高频信号发生器和高频发射机很相似。
1、设计达到的主要技术指标有:
(1)电源电压:4.5V;
(2)输出正弦波功率:0.2W;
(3)调制方式:普通调幅;
(4)工作频率范围
3档:465kHz~1.5MHz;4MHz~15MHz;25MHz~49MHz;
每档频率要连续可调。 电路结构采用分立元件实现。
2、要求完成的设计工作主要有: (1)收集资料、消化资料;
(2)选择原理电路,分析并计算电路参数;
(3)绘制电路原理图一张(用A4图纸);
(4)绘制元件明细表一张(用A4图纸);
(5)设计印制电路板底图一张;
一、设计方案
一般高频信号发生器由主振级、调制级、输出级、缓冲级等几大部分组成,如图
❽ 振荡电路的作用,
振荡电路的作用是产生信号电压,包含有正弦波振荡器和其他波形振荡器。其结构特点是没有对外的电路输入端,晶体管或集成运放的输出端与输入端之间有一个具有选频功能的正反馈网络,将输出信号的一部分正反馈到输入端以形成振荡。
例如调整放大器时,用一个"正弦波信号发生器"和生一个频率和振幅均可以调整的正弦信号,作为放大器的输入电压,以便观察放大器输出电压的波形有没有失真,并且量测放大器的电压放大倍数和频率特性。
这种正弦信号发生器就是一个正弦波振荡器。它在各种放大电路的调整测试中是一种基本的实验仪器。在无线电的发送和接收机中,经常用高频正弦信号作为音频信号的"载波",对信号进行"调制"变换,以便于进行远距离的传输。
高频振荡还可以直接作为加工的能源,例如焊接半导体器件引脚时使用的"超声波压焊机",就是利用60KHz左右的正弦波(即超声波)作为焊接的"能源"。
(8)高频震荡电路扩展阅读
振荡电路一般由电阻、电感、电容等元件和电子器件所组成。由电感线圈l和电容器c相连而成的lc电路是最简单的一种振荡电路,其固有频率为f=[sx(]1[]2πlc。
一种不用外加激励就能自行产生交流信号输出的电路。它在电子科学技术领域中得到广泛地应用,如通信系统中发射机的载波振荡器、接收机中的本机振荡器、医疗仪器以及测量仪器中的信号源等。
振荡器的种类很多,按信号的波形来分,可分为正弦波振荡器和非正弦波振荡器。正弦波振荡器产生的波形非常接近于正弦波或余弦波,且振荡频率比较稳定;非正弦波振荡器产生的波形是非正弦的脉冲波形,如方波、矩形波、锯齿波等。非正弦振荡器的频率稳定度不高。
在正弦波振荡器中,主要有LC振荡电路、石英晶体振荡电路和RC振荡电路等几种。这几种电路,以石英晶体振荡器的频率最稳定,LC电路次之,RC电路最差。
RC振荡器的工作频率较低,频率稳定度不高,但电路简单,频率变化范围大,常在低频段中应用。 在通信、电视等设备中,振荡器正逐步实现集成化,这些集成化正弦波振荡器的工作原理、电路分析等原则上与分立元件振荡电路相一致。
❾ 高频电路的振荡回路
高频电路中的无源组件或无源网络主要有高频振荡(谐振)回路、高频变压器、谐振器与滤波器等,它们完成信号的传输、频率选择及阻抗变换等功能。
高频振荡回路是高频电路中应用最广的无源网络,也是构成高频放大器、振荡器以及各种滤波器的主要部件,在电路中完成阻抗变换、信号选择等任务,并可直接作为负载使用。
振荡回路是由电感和电容组成。只有一个回路的振荡回路称为简单振荡回路或单振荡回路,分为串联谐振回路或并联谐振回路。 图1—4串联震荡回路及其特性
若在串联振荡回路两端加一恒压信号,则发生串联谐振时因阻抗最小,流过电路的电流最大,称为谐振电流,其值为:
在任意频率下的回路电流与谐振电流之比为:
其模为:
其中,
称为回路的品质因数,它是振荡回路的另一个重要参数。根据式(1—6)画出相应的曲线如图1—5所示,称为谐振曲线。
图1—5串联谐振回路的谐振曲线:
图1—6串联回路在谐振时的电流、电压关系:
在实际应用中,外加信号的频率ω与回路谐振频率ω0之差Δω=ω-ω0表示频率偏离谐振的程度,称为失谐。当ω与ω0很接近时,
令ξ为广义失谐,则式(1—5)可写成
当保持外加信号的幅值不变而改变其频率时,将回路电流值下降为谐振值的时对应的频率范围称为回路的通频带,也称回路带宽,通常用B来表示。令式(1—9)等于,则可推得ξ=±1,从而可得带宽为 串联谐振回路适用于电源内阻为低内阻(如恒压源)的情况或低阻抗的电路(如微波电路)。
图1—7并联谐振回路及其等效电路、阻抗特性和辐角特性:
(a)并联谐振回路;(b)等效电路;(c)阻抗特性;(d)辐角特性
并联谐振回路的并联阻抗为:
定义使感抗与容抗相等的频率为并联谐振频率ω0,令Zp的虚部为零,求解方程的根就是ω0,可得
式中,Q为回路的品质因数,有
当时,。回路在谐振时的阻抗最大,为一电阻R0
因为:
并联回路通常用于窄带系统,此时ω与ω0相差不大,式(1—13)可进一步简化为
式中,Δω=ω-ω0。对应的阻抗模值与幅角分别为
图1—8表示了并联振荡回路中谐振时的电流、电压关系。
例1设一放大器以简单并联振荡回路为负载,信号中心频率fs=10MHz,回路电容C=50pF,
(1)试计算所需的线圈电感值。
(2)若线圈品质因数为Q=100,试计算回路谐振电阻及回路带宽。
(3)若放大器所需的带宽B=0.5MHz,则应在回路上并联多大电阻才能满足放大器所需带宽要求?
解
(1)计算L值。由式(1—2),可得
将f0以兆赫兹(MHz)为单位,C以皮法(pF)为单位,L以微亨(μH)为单位,上式可变为一实用计算公式:
将f0=fs=10MHz代入,得
(2)回路谐振电阻和带宽。由式(1—12)
回路带宽为
(3)求满足0.5MHz带宽的并联电阻。设回路上并联电阻为R1,并联后的总电阻为R1∥R0,总的回路有载品质因数为QL。由带宽公式,有
此时要求的带宽B=0.5MHz,故
回路总电阻为
需要在回路上并联7.97kΩ的电阻。 图1—9几种常见抽头振荡回路
对于图1—9(b)的电路,其接入系数p可以直接用电容比值表示为
图1—10电流源的折合谐振时的回路电流IL和IC与I的比值要小些,而不再是Q倍。由
例2如图1—11,抽头回路由电流源激励,忽略回路本身的固有损耗,试求回路两端电压u(t)的表示式及回路带宽。
图1—11例2的抽头回路解:由于忽略了回路本身的固有损耗,因此可以认为Q→∞。由图可知,回路电容为
谐振角频率为电阻R1的接入系数等效到回路两端的电阻为
回路两端电压u(t)与i(t)同相,电压振幅U=IR=2V,故
回路有载品质因数
回路带宽 在高频电路中,有时用到两个互相耦合的振荡回路,也称为双调谐回路。把接有激励信号源的回路称为初级回路,把与负载相接的回路称为次级回路或负载回路。图1—12是两种常见的耦合回路。图1—12(a)是互感耦合电路,图1—12(b)是电容耦合回路图1—12两种常见的耦合回路及其等效电路
对于图1—12(b)电路,耦合系数为
初次级串联阻抗可分别表示为
耦合阻抗为
由图1—12(c)等效电路,转移阻抗为
由次级感应电势产生,有
考虑次级的反映阻抗,则