导航:首页 > 电器电路 > 威建电路

威建电路

发布时间:2022-05-05 20:39:14

⑴ 在中建五局、烟建、威建里选择,哪个较好综合一点

首先中建五局在中建属于很一般的分公司,其次中建规模比较大,体制臃肿,在里面工作升职方面比较困难,并且全国各地到处跑,而威建跟烟建比,逊色很多,综合不如烟建好,但具体个人工资方面不知道哪个更占优势。烟建基本上做得都是烟台的一些工程,除了烟建青岛公司,烟建济南公司,烟建上海公司这些是做他们地区的工程,如果选择烟建的话最好的就是烟建十公司,如果你能够进来,就赶快进来吧,里面的待遇和福利非常不错。(进十公司需要很硬的关系),希望我的回答能使你满意,加油吧。

⑵ 威建集团一公司拖欠工资怎么办

用人单位克扣或者拖欠劳动者工资的,劳动者可以向劳动保障监察大队投诉该单位。
去劳动监察大队投诉时携带:本人身份证、用人单位全称、负责人姓名及联系电话、能证明劳动者在用人单位上班的相关证据,由劳动保障监察大队下达限期改正,逾期不改正的,劳动保障监察大队可以下达行政处罚处理决定;逾期未执行的,申请法院强制执行。同时逾期不改正的,劳动者可以主张用人单位支付你拖欠工资数额50%-100%的赔偿金(劳动保障监察条例第26条)
《劳动法》第五十条规定:工资应当以货币形式按月支付给劳动者本人,不得克扣或者无故拖欠劳动者的工资。
《劳动合同法》第三十条 用人单位应当按照劳动合同约定和国家规定,向劳动者及时足额支付劳动报酬。
《工资支付暂行规定》第九条 劳动关系双方依法解除或终止劳动合同时,用人单位应在解除或终止劳动合同时一次付清劳动者工资。

⑶ 次声波发生器电路图急需~~!!!

我来回答,次声又称亚声,是频率在20Hz以下的低频率波.许多自然灾害如地震、火山爆发、龙卷风等在发生前都会发出次声波.次声波对人体能够造成危害,引起头痛、呕吐、呼吸困难等症状.在20世纪30年代,美国一位物理学家做过实验:他把一台次声发生器带进剧场,开演后悄悄地打开,然后坐在自己的包厢内观察动静,只见坐在次声器四周的观众产生一种惶恐不安和迷惑不解的神情,并很快蔓延到整个剧场.次声波的特点是来源广、传播远、穿透力强科学家们利用它来预测台风、研究大气结构等.在军事上可以利用次声来侦察大气中的核爆炸、跟踪导弹等等.
1890年, 一艘名叫“马尔波罗号”帆船在从新西兰驶往英国的途中,突然神秘地失踪了. 20年后,人们在火地岛海岸边发现了它.奇怪的是:船上的开都原封未动.完好如初.船长航海日记的字迹仍然依稀可辨;就连那些死已多年的船员,也都“各在其位”,保持着当年在岗时的“姿势”;
1948年初,一艘荷兰货船在通过马六甲海峡时,一场风暴过后,全船海员莫明其妙地死光;在匈牙利鲍拉得利山洞入口, 3名旅游者齐刷刷地突然倒地,停止了呼吸......
上述惨案,引起了科学家们的普遍关注,其中不少人还对船员的遇难原因进行了长期的研究.就以本文开头的那桩惨案来说,船员们是怎么死的?是死于天火或是雷击的吗?不是,因为船上没有丝毫燃烧的痕迹;是死于海盗的刀下的吗?不!遇难者遗骸上看到死前打斗的迹象;是死于饥饿干渴的吗?也不是!船上当时贮存着足够的食物和淡水.至于前面提到的第二桩和第三桩惨案,是自杀还是他杀?死因何在?凶手是谁?检验的结果是:在所有遇难者身上,都没有找到任何伤痕,也不存在中毒迹象.显然,谋杀或者自杀之说已不成立.那么,是以及病一类心脑血管疾病的突然发作致死的吗?法医的解剖报告表明,死者生前个个都很健壮!
经过反复调查,终于弄清了制造上述惨案的“凶手”,是一种为人们所不很了解的次声的声波.次声波是一种每秒钟振动数很少,人耳听不到的声波.次声的声波频率很低,一般均在20兆赫以下,波长却很长,传播距离也很远.它比一般的声波、光波和无线电波都要传得远.例如,频率低于1赫的次声波,可以传到几千以至上万公里以外的地方.1960年,南美洲的智利发生大地震,地震时产生的次声波传遍了全世界的每一个角落!1961年,苏联在北极圈内进行了一次核爆炸,产生的次声波竟绕地球转了5圈之后才消失!
次声波具有极强的穿透力,不仅可以穿透大气、海水、土壤,而且还能穿透坚固的钢筋水泥构成的建筑物,甚至连坦克、军舰、潜艇和飞机都不在话下.次声穿透人体时,不仅能使人产生头晕、烦燥、耳鸣、恶心、心悸、视物模糊,吞咽困难、胃痛、肝功能失调、四肢麻木,而且还可能破坏大脑神经系统,造成大脑组织的重大损伤.次声波对心脏影响最为严重,最终可导致死亡.
为什么次声波能致人于死呢?
原来,人体内脏固有的振动频率和次声频率相近似(0.01~20赫),倘若外来的次声频率与体内脏的振动频率相似或相同,就会引起人体内脏的“共振”,从而使人产生上面提到的头晕、烦躁、耳鸣、恶心等等一系列症状.特别是当人的腹腔、胸腔等固有的振动频率与外来次声频率一致时,更易引起人体内脏的共振,使人体内脏受损而丧命.前面开头提到的发生在马六甲海峡的那桩惨案,就是因为这艘货船在驶近该海峡时,恰遇上海上起了风暴.风暴与海浪摩擦,产生了次声波.次声波使人的心脏及其它内脏剧烈抖动、狂跳,以致血管破裂,最后促使死亡.
次声虽然无形,但它却时刻在产生并威胁着人类的安全.在自然界,例如太阳磁暴、海峡咆哮、雷鸣电闪、气压突变;在工厂,机械的撞击、摩擦;军事上的原子弹、氢弹爆炸试验等等,都可以产生次声波.
由于次声波具有极强的穿透力,因此,国际海难救助组织就在一些远离大陆的岛上建立起“次声定位站”,监测着海潮的洋面.一旦船只或飞机失事附海,可以迅速测定方位,进行救助.
近年来,一些国家利用次声能够“杀人”这一特性,致力次声武器——次声炸弹的研制尽管眼下尚处于研制阶段,但科学家们预言;只要次声炸弹一声爆炸,瞬息之间,在方圆十几公里的地面上,所有的人都将被杀死,且无一能幸免.次声武器能够穿透15厘米的混凝土和坦克钢板.人即使躲到防空洞或钻进坦克的“肚子”里,也还是一样地难逃残废的厄运.次声炸弹和中子弹一样,只杀伤生物而无损于建筑物.但两者相比,次声弹的杀伤力远比中子弹强得多. 7583希望对你有帮助!

⑷ 清华大学自动化系考研专业课《电路原理》应该用谁编的书

清华大学自动化电气考研专业课827电路原理复习用书:

考过已经上岸的过来人推荐,说点“权威官方”的吧(自认为,但事实如此)。

主要教材:《电路原理》第二版为电路原理教材,江辑光等著

《电路原理学习指导与习题集》第二版为电路习题集,出题人编写的,简称“习题集”

《电路原理试题选编》第三版选自部分1989~2013年清华大学电路原理真题

辅导资料:《清华自动化、电气工程报考指南》(常见问题+复习规划+真题点评)

《电路原理(第二版)课后习题详细分析笔记》

《电路原理学习指导与习题集(第二版)习题详细分析笔记》

《清华大学827电路原理(1996-2019)全真试题大全解》

及部分电子版资料。

教材和辅导资料可自行淘宝,我觉得挺不错,挺靠谱的。

复习建议:简单说一下吧,各个学校出题风格确实不一样,建议以清华的书籍为重心。要认真复习教材内容,完成课后习题及习题集习题,完成复习之后,再做真题你会发现很多真题都是源于此。建议至少要刷两遍,第一遍认真做,第二遍可以快速过,第二遍重在总结技巧套路。真题也应刷两遍,第一遍最好按照考试场景练习,第二遍总结技巧讨论等等。由于清华专业课难度较大,建议花与数学同等时间。最后多多总结!

⑸ 跪求(集成电路芯片封装技术的发展前景)

先进的芯片尺寸封装(CSP)技术及其发展前景
2007/4/20/19:53 来源:微电子封装技术

汽车电子装置和其他消费类电子产品的飞速发展,微电子封装技术面临着电子产品“高性价比、高可靠性、多功能、小型化及低成本”发展趋势带来的挑战和机遇。QFP(四边引脚扁平封装)、TQFP(塑料四边引脚扁平封装)作为表面安装技术(SMT)的主流封装形式一直受到业界的青睐,但当它们在0.3mm引脚间距极限下进行封装、贴装、焊接更多的I/O引脚的VLSI时遇到了难以克服的困难,尤其是在批量生产的情况下,成品率将大幅下降。因此以面阵列、球形凸点为I/O的BGA(球栅阵列)应运而生,以它为基础继而又发展为芯片尺寸封装(ChipScalePackage,简称CSP)技术。采用新型的CSP技术可以确保VLSI在高性能、高可靠性的前提下实现芯片的最小尺寸封装(接近裸芯片的尺寸),而相对成本却更低,因此符合电子产品小型化的发展潮流,是极具市场竞争力的高密度封装形式。

CSP技术的出现为以裸芯片安装为基础的先进封装技术的发展,如多芯片组件(MCM)、芯片直接安装(DCA),注入了新的活力,拓宽了高性能、高密度封装的研发思路。在MCM技术面临裸芯片难以储运、测试、老化筛选等问题时,CSP技术使这种高密度封装设计柳暗花明。

2CSP技术的特点及分类

2.1CSP之特点

根据J-STD-012标准的定义,CSP是指封装尺寸不超过裸芯片1.2倍的一种先进的封装形式[1]。CSP实际上是在原有芯片封装技术尤其是BGA小型化过程中形成的,有人称之为μBGA(微型球栅阵列,现在仅将它划为CSP的一种形式),因此它自然地具有BGA封装技术的许多优点。

(1)封装尺寸小,可满足高密封装CSP是目前体积最小的VLSI封装之一,引脚数(I/O数)相同的CSP封装与QFP、BGA尺寸比较情况见表1[2]。

由表1可见,封装引脚数越多的CSP尺寸远比传统封装形式小,易于实现高密度封装,在IC规模不断扩大的情况下,竞争优势十分明显,因而已经引起了IC制造业界的关注。

一般地,CSP封装面积不到0.5mm节距QFP的1/10,只有BGA的1/3~1/10[3]。在各种相同尺寸的芯片封装中,CSP可容纳的引脚数最多,适宜进行多引脚数封装,甚至可以应用在I/O数超过2000的高性能芯片上。例如,引脚节距为0.5mm,封装尺寸为40×40的QFP,引脚数最多为304根,若要增加引脚数,只能减小引脚节距,但在传统工艺条件下,QFP难以突破0.3mm的技术极限;与CSP相提并论的是BGA封装,它的引脚数可达600~1000根,但值得重视的是,在引脚数相同的情况下,CSP的组装远比BGA容易。

(2)电学性能优良CSP的内部布线长度(仅为0.8~1.0mm)比QFP或BGA的布线长度短得多[4],寄生引线电容(<0.001mΩ)、引线电阻(<0.001nH)及引线电感(<0.001pF)均很小,从而使信号传输延迟大为缩短。CSP的存取时间比QFP或BGA短1/5~1/6左右,同时CSP的抗噪能力强,开关噪声只有DIP(双列直插式封装)的1/2。这些主要电学性能指标已经接近裸芯片的水平,在时钟频率已超过双G的高速通信领域,LSI芯片的CSP将是十分理想的选择。

(3)测试、筛选、老化容易MCM技术是当今最高效、最先进的高密度封装之一,其技术核心是采用裸芯片安装,优点是无内部芯片封装延迟及大幅度提高了组件封装密度,因此未来市场令人乐观。但它的裸芯片测试、筛选、老化问题至今尚未解决,合格裸芯片的获得比较困难,导致成品率相当低,制造成本很高[4];而CSP则可进行全面老化、筛选、测试,并且操作、修整方便,能获得真正的KGD芯片,在目前情况下用CSP替代裸芯片安装势在必行。

(4)散热性能优良CSP封装通过焊球与PCB连接,由于接触面积大,所以芯片在运行时所产生的热量可以很容易地传导到PCB上并散发出去;而传统的TSOP(薄型小外形封装)方式中,芯片是通过引脚焊在PCB上的,焊点和pcb板的接触面积小,使芯片向PCB板散热就相对困难。测试结果表明,通过传导方式的散热量可占到80%以上。

同时,CSP芯片正面向下安装,可以从背面散热,且散热效果良好,10mm×10mmCSP的热阻为35℃/W,而TSOP、QFP的热阻则可达40℃/W。若通过散热片强制冷却,CSP的热阻可降低到4.2,而QFP的则为11.8[3]。

(5)封装内无需填料大多数CSP封装中凸点和热塑性粘合剂的弹性很好,不会因晶片与基底热膨胀系数不同而造成应力,因此也就不必在底部填料(underfill),省去了填料时间和填料费用[5],这在传统的SMT封装中是不可能的。

(6)制造工艺、设备的兼容性好CSP与现有的SMT工艺和基础设备的兼容性好,而且它的引脚间距完全符合当前使用的SMT标准(0.5~1mm),无需对PCB进行专门设计,而且组装容易,因此完全可以利用现有的半导体工艺设备、组装技术组织生产。

2.2CSP的基本结构及分类

CSP的结构主要有4部分:IC芯片,互连层,焊球(或凸点、焊柱),保护层。互连层是通过载带自动焊接(TAB)、引线键合(WB)、倒装芯片(FC)等方法来实现芯片与焊球(或凸点、焊柱)之间内部连接的,是CSP封装的关键组成部分。CSP的典型结构如图1所示[6]。

目前全球有50多家IC厂商生产各种结构的CSP产品。根据目前各厂商的开发情况,可将CSP封装分为下列5种主要类别[7、3]:

(1)柔性基板封装(FlexCircuitInterposer)由美国Tessera公司开发的这类CSP封装的基本结构如图2所示。主要由IC芯片、载带(柔性体)、粘接层、凸点(铜/镍)等构成。载带是用聚酰亚胺和铜箔组成。它的主要特点是结构简单,可靠性高,安装方便,可利用原有的TAB(TapeAutomatedBonding)设备焊接。

(2)刚性基板封装(RigidSubstrateInterposer)由日本Toshiba公司开发的这类CSP封装,实际上就是一种陶瓷基板薄型封装,其基本结构见图3。它主要由芯片、氧化铝(Al2O3)基板、铜(Au)凸点和树脂构成。通过倒装焊、树脂填充和打印3个步骤完成。它的封装效率(芯片与基板面积之比)可达到75%,是相同尺寸的TQFP的2.5倍。

(3)引线框架式CSP封装(CustomLeadFrame)由日本Fujitsu公司开发的此类CSP封装基本结构如图4所示。它分为Tape-LOC和MF-LOC

两种形式,将芯片安装在引线框架上,引线框架作为外引脚,因此不需要制作焊料凸点,可实现芯片与外部的互连。它通常分为Tape-LOC和MF-LOC两种形式。

(4)圆片级CSP封装(Wafer-LevelPackage)由ChipScale公司开发的此类封装见图5。它是在圆片前道工序完成后,直接对圆片利用半导体工艺进行后续组件封装,利用划片槽构造周边互连,再切割分离成单个器件。WLP主要包括两项关键技术即再分布技术和凸焊点制作技术。它有以下特点:①相当于裸片大小的小型组件(在最后工序切割分片);②以圆片为单位的加工成本(圆片成本率同步成本);③加工精度高(由于圆片的平坦性、精度的稳定性)。

(5)微小模塑型CSP(MinuteMold)由日本三菱电机公司开发的CSP结构如图6所示。它主要由IC芯片、模塑的树脂和凸点等构成。芯片上的焊区通过在芯片上的金属布线与凸点实现互连,整个芯片浇铸在树脂上,只留下外部触点。这种结构可实现很高的引脚数,有利于提高芯片的电学性能、减少封装尺寸、提高可靠性,完全可以满足储存器、高频器件和逻辑器件的高I/O数需求。同时由于它无引线框架和焊丝等,体积特别小,提高了封装效率。

除以上列举的5类封装结构外,还有许多符合CSP定义的封装结构形式如μBGA、焊区阵列CSP、叠层型CSP(一种多芯片三维封装)等。

3CSP封装技术展望

3.1有待进一步研究解决的问题

尽管CSP具有众多的优点,但作为一种新型的封装技术,难免还存在着一些不完善之处。

(1)标准化每个公司都有自己的发展战略,任何新技术都会存在标准化不够的问题。尤其当各种不同形式的CSP融入成熟产品中时,标准化是一个极大的障碍[8]。例如对于不同尺寸的芯片,目前有多种CSP形式在开发,因此组装厂商要有不同的管座和载体等各种基础材料来支撑,由于器件品种多,对材料的要求也多种多样,导致技术上的灵活性很差。另外没有统一的可靠性数据也是一个突出的问题。CSP要获得市场准入,生产厂商必须提供可靠性数据,以尽快制订相应的标准。CSP迫切需要标准化,设计人员都希望封装有统一的规格,而不必进行个体设计。为了实现这一目标,器件必须规范外型尺寸、电特性参数和引脚面积等,只有采用全球通行的封装标准,它的效果才最理想[9]。

(2)可靠性可靠性测试已经成为微电子产品设计和制造一个重要环节。CSP常常应用在VLSI芯片的制备中,返修成本比低端的QFP要高,CSP的系统可靠性要比采用传统的SMT封装更敏感,因此可靠性问题至关重要。虽然汽车及工业电子产品对封装要求不高,但要能适应恶劣的环境,例如在高温、高湿下工作,可靠性就是一个主要问题。另外,随着新材料、新工艺的应用,传统的可靠性定义、标准及质量保证体系已不能完全适用于CSP开发与制造,需要有新的、系统的方法来确保CSP的质量和可靠性,例如采用可靠性设计、过程控制、专用环境加速试验、可信度分析预测等。

可以说,可靠性问题的有效解决将是CSP成功的关键所在[10,11]。
(3)成本价格始终是影响产品(尤其是低端产品)市场竞争力的最敏感因素之一。尽管从长远来看,更小更薄、高性价比的CSP封装成本比其他封装每年下降幅度要大,但在短期内攻克成本这个障碍仍是一个较大的挑战[10]。

目前CSP是价格比较高,其高密度光板的可用性、测试隐藏的焊接点所存在的困难(必须借助于X射线机)、对返修技术的生疏、生产批量大小以及涉及局部修改的问题,都影响了产品系统级的价格比常规的BGA器件或TSOP/TSSOP/SSOP器件成本要高。但是随着技术的发展、设备的改进,价格将会不断下降。目前许多制造商正在积极采取措施降低CSP价格以满足日益增长的市场需求。

随着便携产品小型化、OEM(初始设备制造)厂商组装能力的提高及硅片工艺成本的不断下降,圆片级CSP封装又是在晶圆片上进行的,因而在成本方面具有较强的竞争力,是最具价格优势的CSP封装形式,并将最终成为性能价格比最高的封装。

此外,还存在着如何与CSP配套的一系列问题,如细节距、多引脚的PWB微孔板技术与设备开发、CSP在板上的通用安装技术[12]等,也是目前CSP厂商迫切需要解决的难题。

3.2CSP的未来发展趋势

(1)技术走向终端产品的尺寸会影响便携式产品的市场同时也驱动着CSP的市场。要为用户提供性能最高和尺寸最小的产品,CSP是最佳的封装形式。顺应电子产品小型化发展的的潮流,IC制造商正致力于开发0.3mm甚至更小的、尤其是具有尽可能多I/O数的CSP产品。据美国半导体工业协会预测,目前CSP最小节距相当于2010年时的BGA水平(0.50mm),而2010年的CSP最小节距相当于目前的倒装芯片(0.25mm)水平。

由于现有封装形式的优点各有千秋,实现各种封装的优势互补及资源有效整合是目前可以采用的快速、低成本的提高IC产品性能的一条途径。例如在同一块PWB上根据需要同时纳入SMT、DCA,BGA,CSP封装形式(如EPOC技术)。目前这种混合技术正在受到重视,国外一些结构正就此开展深入研究。

对高性价比的追求是圆片级CSP被广泛运用的驱动力。近年来WLP封装因其寄生参数小、性能高且尺寸更小(己接近芯片本身尺寸)、成本不断下降的优势,越来越受到业界的重视。WLP从晶圆片开始到做出器件,整个工艺流程一起完成,并可利用现有的标准SMT设备,生产计划和生产的组织可以做到最优化;硅加工工艺和封装测试可以在硅片生产线上进行而不必把晶圆送到别的地方去进行封装测试;测试可以在切割CSP封装产品之前一次完成,因而节省了测试的开支。总之,WLP成为未来CSP的主流已是大势所驱[13~15]。

(2)应用领域CSP封装拥有众多TSOP和BGA封装所无法比拟的优点,它代表了微小型封装技术发展的方向。一方面,CSP将继续巩固在存储器(如闪存、SRAM和高速DRAM)中应用并成为高性能内存封装的主流;另一方面会逐步开拓新的应用领域,尤其在网络、数字信号处理器(DSP)、混合信号和RF领域、专用集成电路(ASIC)、微控制器、电子显示屏等方面将会大有作为,例如受数字化技术驱动,便携产品厂商正在扩大CSP在DSP中的应用,美国TI公司生产的CSP封装DSP产品目前已达到90%以上。

此外,CSP在无源器件的应用也正在受到重视,研究表明,CSP的电阻、电容网络由于减少了焊接连接数,封装尺寸大大减小,且可靠性明显得到改善。
(3)市场预测CSP技术刚形成时产量很小,1998年才进入批量生产,但近两年的发展势头则今非昔比,2002年的销售收入已达10.95亿美元,占到IC市场的5%左右。国外权威机构“ElectronicTrendPublications”预测,全球CSP的市场需求量年内将达到64.81亿枚,2004年为88.71亿枚,2005年将突破百亿枚大关,达103.73亿枚,2006年更可望增加到126.71亿枚。尤其在存储器方面应用更快,预计年增长幅度将高达54.9%。

⑹ 塔吊回转制动电路怎么接

启动时,按下启动按钮SB2 ,SB2 的一组常开触点(-5)闭合,接通交流接触器KM1 和断电延时继电器KT 线圈回路电源,KM1 和KT 线圈得电吸合且KM1 常开触点(3-5)闭合自锁,KM1 三相主触点闭合,电动机得电启动运转。

在KT 线圈得电吸合后,KT 失电延时断开的常开触点(1-9)立即闭合,为制动时延时切除KM2 线圈回路电源做准备。注意,在按下启动按钮的同时,SB2 的另外一组常闭触点(9-11)断开。(SB2、KT都是一个整体图,这是电路图)

(6)威建电路扩展阅读

塔吊共有两套相同的回转机械传动系统,对称布置,按顺序由电机、液力耦合器、盘式制动器、行星齿轮减速机、回转小齿轮、回转大齿圈等部件组成。回转大齿圈支座上连接一节与齿圈同心的回转塔身,回转塔身上连接吊臂,吊臂长度通常在50米以上。

吊物吊挂在起升钢绳上沿吊臂运行。依照生产厂家“失电失制动”的设计原理,回转机构的盘式制动器的作用主要用于大臂回转到预定位置或塔吊加节、降节时固定塔臂不转。

回转机构的盘式制动器通常是完全松开的,也就是说在非工作(断电)时,因为盘式制动器松开,与制动盘同轴线的行星齿轮减速机输入轴、处于末端的回转小齿轮轴无受力。

当大风推动塔臂时,由于回转小齿轮不能紧紧刹在回转大齿圈上,所以与回转大齿圈有相对连接的吊臂将一直顺风转动下去。目的是使塔吊能随风转动,当大臂与风向平行时塔吊的迎风面积最小,从而可以减小风压对塔吊的影响,避免强风导致塔吊倾覆。

生产厂家这一原理是建立在塔吊空载的情况下,当然是一种理想状态。但是,工地上突发情况很多,如当大中型设备塔吊、打桩机同时作业时,电压波动是常事,因电压不稳跳闸现象频频发生。

突然的断电会容易导致塔吊吊钩上的吊物来不及卸下,此时塔吊随着惯性塔臂的顺风转动,吊物随意偏转,与建筑物、外架、作业工人随时发生撞击,特别是施工现场群塔密集时,吊物偏转与别的塔吊起升钢绳缠绕,牵拉,对两台塔吊的安全构成巨大威胁,不及时处理后果很严重。

且传统方式下塔吊回转电磁制动的刹车制动方式只能急停或塔吊静止时定位,不能实现缓慢减速停车,易造成塔吊大臂晃动或发生回转变速箱损坏等重大事故,存在严重的安全隐患。


⑺ 求电路图绘图软件

绝对适合你!
1绘图助手(绘制各种简单的电路图/流程图) V1.0 简体中文绿色特别版

www.05sun.com/downinfo/5773.html

2. PADS2007专业电路设计与绘图软件

www.05sun.com/downinfo/6412.html

3. 绘图助手 V1.0[绘制各种简单的电路图/流程图]简体中文绿色特别版

www.downxia.com/downinfo/3439.html

4. 绘图助手 V1.0┊主要是用来绘制各种简单的电路图/流程图┊简体中文绿色特别版

www.greendown.cn/soft/7630.html

5. 绘图助手(绘制各种简单的电路图/流程图)V1.0 绿色特别版

www.52z.com/soft/12265.html

⑻ 怎么在最短的时间内学会模拟电路

模拟电子电路没有看到平时学习困难的考试很简单,我想你走这条路,学习,当然,不花几个月的时间,不是一两天,甚至几个小时,如果他们的考试资本超过60分,该程序是如下:
这时候你再看看书肯定来不及了,并不需要一定要找到近几年,纸,这是你的考试必要的工具,以找到或可以吸取这个教训,很少的了解,所以他说:在哈萨克斯坦的大问题,通道对应的章节(第一专业大问题,基本上是一个大问题的相应章节是独立的,完整的章节不会来考试),然后依靠你各个击破分析试题,你会发现每年考试的几个公式,基本解决也是一个模式让您彻底了解每章23认真考试就OK了,这时候不为什么不这样做,你是什么就行了。
(1)本章的放大电路的直流通路交流通路交流等效电路共基极,共发射极,共集电极放大器计数的电压增益,输入,输出电阻的花最好找人告诉这些多焦点的焦点你要更快一些。大的问题得到了近两个小时,这章。
(2)第二个重要的困难是反馈放大电路章,考试的知识点也是固定的,基本的测试方法,以确定正,负反馈,负反馈放大电路的放大倍数公式的四个配置变焦性能的放大电路反馈系数。花1-2个小时就搞定了。
(3)在前面的半导体器件,二极管,三极管,场效应管这些事情的基础,这部分的章节看,也花了很多的时间,因为后面基本使用。
(4)的电压比较器的特性,阈值电压的分析,各种基本的算术电路,矩形波和三角波的电路,图中,直流稳压电源,一个差分放大电路,式频率响应的这些很快1小时的搞定
(5)最后,在半小时的考试,以填补在茫然的眼神,基本上所有的测试集在试卷上。
我希望你通过

⑼ 谁知道威海哪个小区是威建集团开发的,谢谢

威建集团开发的小区可多了,有威建新村 文化名居 蓝湾怡庭 韩国风情街 悦海湾 北海新城。

⑽ 青建 烟建 威建哪个公司较好

首先从资质比较:中建跟烟建都属于特技资质,威建是一级资质。
其次从稳定性比较:1、中建八局在中建属于还不错的公司,规模比较大,但体制比较臃肿,在里面工作升职方面比较困难(除非能够把里面的关系疏通好),并且全国各地到处跑,工资可能稍微高点,但工作地点不固定,这方面跟威建跟烟建比,要逊色很多,2、威建跟烟建基本上都是做当地的工程,工作地点还算稳定(除了一些在别的地区的分公司),以后成家后起码能有时间照顾家。
最后薪资待遇:普遍比较的话应该是中建的工资要高,毕竟人家是大的国企。但是不要忽略了虽然烟建跟威建总体实力不如中建,但旗下最好的分公司可能比中建八局青岛分公司和第四分公司好,威建不是很了解,所以也不做评价(咱不能睁着眼说瞎话)拿烟建来讲(比较了解),烟建十分公司是最好的(进十公司需要很硬的关系),待遇方面不方便透露,但是你能够进来的话就什么都不用想赶快进来吧,里面基本上做的是烟台市政道路桥梁等工程,并且基本都是上亿的项目,能学到很多东西,努力工作的话五六年买房买车不成问题。补充一下,烟建里面的升职空间,公司定的是基本上工作3-5年可以做到技术负责人,6-8年可以做到项目经理,当然不排除比较变态的能够两年技术负责,四五年项目经理。希望我的回答能够让你满意(能够给你一个好的参考)。也祝你能够找到一个好的工作。

阅读全文

与威建电路相关的资料

热点内容
扬州哪里有三星手机维修点 浏览:57
怎么修复家具上的痕迹 浏览:230
中级维修电工证怎么补 浏览:511
简单电路检测题 浏览:666
数字电路第六版答案 浏览:189
上海一恒深圳维修点 浏览:491
dw保修吗 浏览:287
安塞供电维修电话 浏览:573
玉柴南京售后服务站 浏览:353
专修海信电视维修点 浏览:14
汽车维修保险能报多少 浏览:281
贴皮家具为什么贵 浏览:229
东升房顶防水补漏多少钱 浏览:773
泉州美的空调售后维修中心 浏览:763
麦克维尔空调维修售后是什么 浏览:667
美式家具漆怎么做 浏览:611
rimova中国售后维修 浏览:441
贵阳五交化家电批发市场搬哪里去了 浏览:621
安庆五羊本田售后服务 浏览:527
苹果翻新机电池怎么显示 浏览:971