『壹』 帮我分析这个usb电路图
•VBUS: 提供电源
•D-:
传输线 (双向传输线)
•D+:
传输线 (双向传输线)
•GND: 接地
Shell是系统的用户界面,提供了用户与内核进行交互操作的一种接口。它接收用户输入的命令并把它送入内核去执行。
实际上Shell是一个命令解释器
USB信号使用分别标记为D+和D-两条差分传输信号平衡传输D-相位刚好和D+完全相反,如果有高频的干扰信号出现,就会在磁环内产生感应。同时在线内产生幅度相同但是反相的感应信号,以抵消长导线的电磁干扰 ,消除杂波干扰。
如果用一根传输线,在高速数据传输(0、1的快速变化)或高频信号干扰下产生感应信号,影响数据的传输准确性。
D18的作用:起提供上拉电阻和阻抗匹配,低通滤波,静电保护作用。其中,保护用的二级管在高频下的容抗需要小于3PF(皮法)。
电阻R9的作用:防止插头未插入时电平浮动,通常这个下拉电阻很大,对正常通信时不会产生什么影响。
R85 上拉电阻,与DPRXD相连接,它提供2.8V的电压。
R5 下拉电阻
D-:传输线
D+:传输线
Q1 三极管是开关用, R83是控制信号输入
C74 C79 高频电容
U6 USB2.0 集成的瞬态抑制二极管( TVS),是浪涌保护器件,5V 工作电压 ,保护 4 条 I/O 高速数据线
工作原理如下:
USB有两种不同配置,一个用于低速传输,一个用于全速或高速传输。当配置全速数据传输时,1.5kΩ 的上拉电阻会在D+ 线和2.8V之间进行连接。在正常模式下工作时给R79引脚提供2.8V电压。假如使用USB电缆将外设连接到手机上,USB控制器会检测到有外设接入,这是由1.5kΩ上拉电阻、17K的下拉电阻(MASTPD2)和外设的电阻一起实现的, 1.3kΩ上拉电阻便会抵消17kΩ下拉电阻的反偏作用,通过DPRXD的电压发生变化,给USB控制器发出一个状态信号。该状态信号会告知UPP准备进行全速或高速传输.状态定义为当D+ 高于VOH
(min),而D-小于VOL (max)。
反之通过D-的上拉、下拉电阻确定用低速传输的,从电路图的来看是采用全速或高速传输。
R83、和其它的通路的电阻必须要满足阻抗匹配。
本人水平有限,希望能帮到你,请各位指点批评。
『贰』 函数发生器基本原理
课程设计报告
西南大学计算机与信息科学学院
函数发生器的设计
摘要
函数信号发生器是一种能能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。现在我们通过对函数信号发生器的原理以及构成设计一个能变换出三角波、正弦波、方波的简易发生器。我们通过对电路的分析,参数的确定选择出一种最适合本课题的方案。在达到课题要求的前提下保证最经济、最方便、最优化的设计策略。按照设计的方案选择具体的原件,焊接出具体的实物图,并在实验室对焊接好的实物图进行调试,观察效果并与课题要求的性能指标作对比。最后分析出现误差的原因以及影响因素。
关键字:方案确定、参数计算、调试、误差分析。
1.1问题的提出
设计一个函数发生器使得能够产生发波、三角波、正弦波。
1、 主要技术指标
频率范围 10Hz~100Hz,100Hz~1000Hz,1kHz~10kHz
频率控制方式 通过改变RC时间常数手控信号频率
通过改变控制电压Uc实现压控频率VCF
输出电压 正弦波Upp≈3 V 幅度连续可调;
三角波Upp≈5 V 幅度连续可调;
方波Upp≈14 V 幅度连续可调.
波形特性 方波上升时间小于2s;
三角波非线性失真小于1%;
正弦波谐波失真小于3%。
2、 设计要求
(1) 根据技术指标要求及实验室条件自选方案设计出原理电路图,分析工作原理,计算元件参数。
(2) 列出所有元、器件清单报实验室备件。
(3) 安装调试所设计的电路,使之达到设计要求。
(4) 记录实验结果。
1.2基本原理
1、 函数发生器的组成
函数发生器一般是指能自动产生正弦波、方波、三角波的电压波形的电路或者仪器。电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。根据用途不同,有产生三种或多种波形的函数发生器,本课题介绍方波、三角波、正弦波函数发生器的方法。
1.3提出解决问题的方案及选取
1、三角波变换成正弦波
由运算放大器单路及分立元件构成,方波——三角波——正弦波函数发生器电路组成如图1所示,由于技术难点在三角波到正弦波的变换,故以下将详细介绍三角波到正弦波的变换。
图1
(1) 利用差分放大电路实现三角波——正弦波的变换
波形变换的原理是利用差分放大器的传输特性曲线的非线性,波形变换过程如图2所示。由图可以看出,传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim应正好使晶体接近饱和区域或者截至区域。
㎝
图2
方案一:用差分放大电路实现三角波到正弦波以及集成运放组成的电路实现函数发生器
(2) 用二极管折线近似电路实现三角波——正弦波的变换
二极管折线近似电路 图3
根据二极管折线近似电路实现三角波——正弦波的变换的原理图,可得其输入、输出特性曲线如入3所示。
频率调节部分设计时,可先按三个频率段给定三个电容值:1000pF、0.01Μf、0.1μF然后再计算R的大小。手控与压控部分线路要求更换方便。为满足对方波前后沿时间的要求,以及正弦波最高工作频率(10kHz)的要求,在积分器、比较器、正弦波转换器和输出级中应选用Sr值较大的运放(如LF353)。为保证正弦波有较小的失真度,应正确计算二极管网络的电阻参数,并注意调节输出三角波的幅度和对称度。输入波形中不能含有直流成分。
方案二:用二极管折线近似电路以及集成运放组成的电路实现函数发生器
(3)图是由μA741和5G8038组成的精密压控震荡器,当8脚与一连续可调的直流电压相连时,输出频率亦连续可调。当此电压为最小值(近似为0)时。输出频率最低,当电压为最大值时,输出频率最高;5G8038控制电压有效作用范围是0—3V。由于5G8038本身的线性度仅在扫描频率范围10:1时为0.2%,更大范围(如1000:1)时线性度随之变坏,所以控制电压经μA741后再送入5G8038的8脚,这样会有效地改善压控线性度(优于1%)。若4、5脚的外接电阻相等且为R,此时输出频率可由下式决定:
f=0.3/RC4
设函数发生器最高工作频率为2kHz,定时电容C4可由上式求得。
电路中RP3是用来调整高频端波形的对称性,而RP2是用来调整低频端波形的对称性,调整RP3和RP2可以改善正弦波的失真。稳压管VDz是为了避免8脚上的负压过大而使5G8038工作失常设置的。
方案三:用单片集成函数发生器5G8038
可行性分析:
上面三种方案中,方案一与方案二中三角波——正弦波部分原理虽然不一样,但是他们有共通的地方就是都要认为地搭建波形变换的电路图。而方案三采用集成芯片使得电路大大简化,但是由于实验室条件和成本的限制,我们首先抛弃的是第三种方案,因为它是牺牲了成本来换取的方便。其次是对方案一与方案二的比较,方案一中用的是电容和电阻运放和三极管等电器原件,方案二是用的二极管、电阻、三极管、运放等电器原件,所以从简单而且便于购买的前提出发我们选择方案一为我们最终的设计方案。
1.4参数的确定
1、 从电路的设计过程来看电路分为三部分:①正弦波部分②方波部分③三角波部分
2、 正弦波部分
由于我们选取差分放大电路对三角波——正弦波
进行变换,首先要完成的工作是选定三极管,我
们现在选择KSP2222A型的三极管,其静态曲线图
像如右图所示。
根据KSP2222A的静态特性曲线,选取静态
工作区的中心
由直流通路有:
20 k
k
因为静态工作点已经确定,所以静态电流变成已知。根据KVL方程可计算出镜像电流源中各个电阻值的大小:
可得
3、 方波部分与三角波部分参数的确定
根据性能指标可知
由 ,可见f与c成正比,若要得到1Hz~10Hz,C为10 。10Hz~100Hz,C为1 。
则 =7.5k ~75k ,则 =5.1k
则 =2.4k 或者 =69.9 k
∴ 取100 k
∵
由输出的三角形幅值与输出方波的幅值分别为5v和14v,有
=
∴ =10k
则 ≈47 k , =20 k
根据方波的上升时间为两毫秒,查询运算放大器的速度,可以选择74141型号的运放。
由此可得调整电阻:
七、实务图的焊接和调试
1、按照方案一的电路图焊接好电路板。
2、调试前,将电路板接入±12伏电压,地线与电源处公共地线连接.
(1)频率范围:
为便于测量,将电路板上的方波信号接入示波器,并合上C1=10µF的开关,断开C2=1uF的开关,然后调节RP2,并测出此时方波信号频率的变化范围;
断开C1的开关,合上C2的开关,按照同样的方法调节RP2并记录方波信号频率的变化范围,结果如下:
电容 频率
10µF 1Hz~30Hz
1uF 27.47~316Hz
以上频率并未完全到达要求的指标范围,经分析,原因在于:
通过对比,发现频率范围整体下移,这里可能存在两个原因,第一是反馈通道上的 存在磨损,使电阻值达不到计算的数值。第二是三角波运放上的反向端的电阻 也存在 一样的问题。
(2)输出电压:
① 方波:
电路板上方波信号接入示波器,调节RP1,测得方波峰峰Vpp=14V,可见所得值与性能指标中的一致。
② 三角波:
撤除方波信号并接入三角波信号,调节RP1, 测得三角波峰峰值Upp=5V也能达到课题的要求。
③ 正弦波:
将正弦波信号接入示波器,调节RP3和RP4,测得正弦波峰峰值Upp=2.8V.也基本上能到达课题要求。
3、波形特性测定:
① 方波上升时间:
将电路板上的方波信号接入示波器,,调节示波器上周期调节旋钮,直到能清楚观测到方波信号上升沿处的跃变,测得方波上升时间为:
tr=6.4µs
分析:上升时间达不到要求,这个可以用换运放类型来解决。通过改变运放的速度来改变其上升时间。
① 三角波非线形失真:
撤除方波信号,将电路板上三角波信号接入示波器通道1,测得此时的三角波信号参数如下:
频率: f=98.42Hz
峰峰值: Upp=5V
此时将实验台上函数发生器产生的三角波作为标准信号接入示波器的通道2,并调节其频率及峰峰值,使之与要测试的三角波信号参数一致(f=98.42Hz,Upp=5V).
在示波器上的双踪模式下比较,发现两通道的三角波完全重合,说明无非线形失真.
② 正弦波严重失真:
分析:由于调节平衡的滑动变阻器的一只引脚坏掉了,我自己拿一根导线将其接好,所以导致电路的不对成性,使得静态工作点偏离原定的位置,故导致此结果。
1.5心得体会
通过对函数信号发生器的设计,我深刻认识到了“理论联系实际”的这句话的重要性与真实性。而且通过对此课程的设计,我不但知道了以前不知道的理论知识,而且也巩固了以前知道的知识。最重要的是在实践中理解了书本上的知识,明白了学以致用的真谛。也明白老师为什么要求我们做好这个课程设计的原因。他是为了教会我们如何运用所学的知识去解决实际的问题,提高我们的动手能力。在整个设计到电路的焊接以及调试过程中,我个人感觉调试部分是最难的,因为你理论计算的值在实际当中并不一定是最佳参数,我们必须通过观察效果来改变参数的数值以期达到最好。而参数的调试是一个经验的积累过程,没有经验是不可能在短时间内将其完成的,而这个可能也是老师要求我们加以提高的一个重要方面吧!
『叁』 已知积分电路输入方波的周期T Upp 以及输出三角波的Upp 怎么算积分电路的t(读tao)
设方波的Upp为Upp1,则峰值(U+)=Upp1/2,谷值(U-)=-Upp1/2
三角波初始值为U0(三角波峰值),Upp为Upp2
经过方波峰值的半个周期(T/2),三角波瞬时值为U0-(U+)(T/2)/t=U0-Upp1*T/(4*t);(这是谷值)
再经过方波谷值的半个周期(T/2),三角波瞬时值为U0-(U+)(T/2)/t-(U-)(T/2)/t=U0;(回到峰值)
那么就有Upp2=Upp1*T/(4*t),t=RC即可算出。
『肆』 晶体管放大电路中,最大不失真电压Uom(有效值)怎么求 静态管压降Uceq是怎么定义的和Uom有关么
晶体管放大电路中最大不失真电压Uom(有效值)的求法:最大不失真电压Upp(峰值)/ 1.414 = Uom。
最大不失真电压Upp(峰值):理想状态下,不考虑三极管的饱和压降,可以将电源电压看作可以输出的最大不失真电压。
静态管压降Uceq的定义Uceq:是指三极管静态时的C、E极间的电压,一般的共射输出。
Uce就是输出电压和Uom没有直接关系。
(4)Upp在电路扩展阅读:
晶体管放大电路的工作原理:
晶体三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
从三个区引出相应的电极,分别为基极b发射极e和集电极c。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电结。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。
『伍』 设计一个方波—三角波产生电路
5分谁会给你弄这仔细?
自己去搜555波形发生器
『陆』 函数发生器的焊接调试
(一)按照方案一的电路图焊接好电路板。
(二)调试前,将电路板接入±12伏电压,地线与电源处公共地线连接. 为便于测量,将电路板上的方波信号接入示波器,并合上C1=10µF的开关,断开C2=1uF的开关,然后调节RP2,并测出此时方波信号频率的变化范围;
断开C1的开关,合上C2的开关,按照同样的方法调节RP2并记录方波信号频率的变化范围,结果如下: 电容 频率 10µF 1Hz~30Hz 1uF 27.47~316Hz 以上频率并未完全到达要求的指标范围,经分析,原因在于:
通过对比,发现频率范围整体下移,这里可能存在两个原因,第一是反馈通道上的 存在磨损,使电阻值达不到计算的数值。第二是三角波运放上的反向端的电阻 也存在 一样的问题。 ① 方波:
电路板上方波信号接入示波器,调节RP1,测得方波峰峰Vpp=14V,可见所得值与性能指标中的一致。
② 三角波:
撤除方波信号并接入三角波信号,调节RP1, 测得三角波峰峰值Upp=5V也能达到课题的要求。
③ 正弦波:
将正弦波信号接入示波器,调节RP3和RP4,测得正弦波峰峰值Upp=2.8V.也基本上能到达课题要求。
3。波形特性测定:
① 方波上升时间:
将电路板上的方波信号接入示波器,,调节示波器上周期调节旋钮,直到能清楚观测到方波信号上升沿处的跃变,测得方波上升时间为:
tr=6.4µs
分析:上升时间达不到要求,这个可以用换运放类型来解决。通过改变运放的速度来改变其上升时间。
① 三角波非线形失真:
撤除方波信号,将电路板上三角波信号接入示波器通道1,测得此时的三角波信号参数如下:
频率: f=98.42Hz
峰峰值: Upp=5V
此时将实验台上函数发生器产生的三角波作为标准信号接入示波器的通道2,并调节其频率及峰峰值,使之与要测试的三角波信号参数一致(f=98.42Hz,Upp=5V).
在示波器上的双踪模式下比较,发现两通道的三角波完全重合,说明无非线形失真.
② 正弦波严重失真:
分析:由于调节平衡的滑动变阻器的一只引脚坏掉了,我自己拿一根导线将其接好,所以导致电路的不对成性,使得静态工作点偏离原定的位置,故导致此结果。
『柒』 急求模拟电路课程设计
模拟电路课程设计
The Outline of Analog Circuits Course Project
一、 目的与任务
模拟电路课程设计是模拟电子技术课程重要的实践性教学环节,是对学生学习模拟电子技术的综合性训练,这种训练是通过学生独立进行某一个或两个课题的设计、安装和调试来完成的。
通过模拟电路课设要求学生:
1、 根据给定的技术指标,从稳定可靠、使用方便、高性能价格比出发来选择方案,运用所学过的各种电子器件和电子线路知识,设计出相应的功能电路。
2、 通过查阅手册和文献资料,培养学生独立分析问题和解决实际问题的能力。
3、 了解常用电子器件的类型和特性,并掌握合理选用的原则。
4、 学会电子电路的安装与调试技能,掌握电子电路的测试方法及了解印刷线路板的设计,制作方法。
5、 进一步熟悉电子仪器的使用方法。
6、 学会撰写课程设计总结报告。
7、 培养学生严肃认真的工作作风和严谨的科学态度。
二、 内容、要求与安排
1、内容:
课题名称:
(1) 多路输出直流稳压电源的设计与制作
(2) 波形产生电路的设计
(3) 高保真音频功率放大器的设计与制作计
(4) 函数信号发生器的设计与制作
(5) 水温控制系统的设计与制作
(6) 设计并制作音频频谱柱状显示器电路
2、要求:
在教师的指导下,学生要在规定的时间内完成课题的设计,安装和调试并独立完成总结报告。
3、进度安排及方式:(以四学时为一个单元)
第一单元:集中讲课,主要内容如下:
(1)课程设计的目的与要求
(2)课程设计的教学过程
(3)课程设计的评分标准
(4)课程设计题目介绍
(5)学生自由组合,选择题目。
第二单元:确定题目,教师就题目的基本要求答疑。学生讨论、查资料。
第三、四、五单元:查资料、设计、EDA仿真。
学生根据课题要求,独立完成课题的设计方案,并可以运用MULTISIM软件在微机上完成对所设计电路的仿真。
第六单元至第八单元:组装、调试、写报告。
第九单元:完成收尾工作,清点材料、工具。准备课设报告。
最后考试:分组答辩。
三、 场地与设备
1、 实验室场地:实验中心。
2、 实验所用设备:示波器、函数发生器、毫伏表、万用表(指针、数字)、直流稳压电源、实验箱。
四、 考核内容与成绩评定
1、 考核内容:
(1) 设计能力
(2) 组装或焊接调试情况
(3) 解决问题的能力
(4) 总结报告情况
(5) 出勤情况、工作作风和科学态度。
2、 成绩评定:
设计的正确性、合理性和EDA仿真情况 20分,实际操作,调试、效果 40分,
总结报告 20分,口试 20分。
课题一 多路输出直流稳压电源的设计与制作
一、设计目的
1、学习直流稳压电源的设计方法;
2、学会选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压电源;
3、掌握直流稳压电源的主要性能参数及其测试方法;
二、要求完成的主要任务
(1)设计任务
根据技术要求和已知条件,完成对多路输出直流稳压电源的设计、装配与调试。
(2)设计要求
① 要求设计制作一个多路输出直流稳压电源,可将220V/50Hz交流电转换为多路直流稳压电源
输出:±5V/1A,一组可调正电压+3~+18V/1A。
② 选择电路方案,完成对确定方案电路的设计。计算电路元件参数与元件选择、并画出总体电路原理图,阐述基本原理。(选做:用PSPICE或EWB软件完成仿真)
③ 安装调试并按规定格式写出课程设计报告书。
初始条件:
可选元件:变压器/15W/±12V;整流二极管或整流桥若干,电容、电阻、电位器若干;根据
需要选择若干三端集成稳压器;交流电源220V,或自备元器件。
可用仪器:示波器,万用表,
3、方案选择与论证
直流稳压电源总体功能框图如图下1所示。
参考电路图:
变压器根据所需电流决定功率,可用220V输入、输出15V/1A左右的。如没有合适的找个12V几瓦的也能用
课题二 波形产生电路的设计
一、设计目的
1、掌握波形发生电路的设计方法;
2、学会选择合适的器件来设计波形发生电路;
3、熟悉非正弦波产生电路调整与测试的基本方法;
4、提高应用集成运放的能力及独立进行电路设计的能力。
二、 设计要求和技术指标
1、技术指标:要求信号频率f=1 kHZ, VOm=0.2V.输出端不采用稳压二极管。
2、设计要求
(1)采用集成运放自己设计一个简单的方波产生电路,要求:f=1 kHZ, VOm=0.2V;
(2)要求绘出原理图,并用Protel画出印制板图;
(3)根据设计要求和技术指标设计好电路,选好元件及参数;
(4)拟定测试方案和设计步骤;
(5)撰写课程设计总结报告,要求有电路设计过程,调整测试内容、方法、步骤,测试记录及结果分析。
课题三 高保真音频功率放大器的设计与制作计
一、设计参数:
1. 采用全部或部分分立元件设计一种音频功率放大器。
2. 额定输出功率
3. 负载阻抗 。
4. 失真度
5. 设计放大器所需的直流稳压电源。
二、设计要求:
要求设计制作一个高保真音频功率放大器,输出功率10W/8Ω,频率响应20~20KHZ,
效率>60﹪,失真小。
三 设计方案图
音频放大器的目的是以要求的音量和功率水平在发声输出元件上重新产生真实、高效和低失真的输入音频信号。音频频率范围约为20 Hz~20 kHz,因此放大器必须在此频率范围内具有良好的频率响应。音频功率放大器的主要作用是向负载提供功率,要求输出功率尽可能大,效率尽可能高。非线性失真尽可能小。
输入级 ――→ 中间推动级 ―― → 输出级
负反馈线路 ← ―― 互补对称功放
课题四 函数信号发生器的设计与制作
一. 任务与要求
(1)要求能产生三角波、正弦波、方波;
(2)要求函数信号发生器能够实现频率可调
二. 设计目的
(1)学会用简单的电子元器件及芯片制作简单的函数信号发生电路,锻炼实际动手能力;
(2)学会调试电路与分析电路
三. 技术指标
要求设计制作一个方波——三角波——正弦波发生器,频率范围10~100HZ,100HZ~1KHZ,1 KHZ~10 KHZ;正弦波Upp≈3V,三角波Upp≈5V,方波Upp≈14V,幅度连续可调,线性失真小。
课题五 水温控制系统的设计与制作
一. 设计要求
(1)设计制作可以测量和控制的温度控制器
测量和控制的温度范围:10°—60°
精度:±1°
控制对象:继电器或晶闸管
继电器或晶闸管触电连接:一组转换接点为市电220V,10A
(2)选择电路方案,完成对确定电路方案的设计。计算电路元件参数与原件选择,画出原理图。
(3)进行安装和调试
二.设计任务
根据技术指标选择合适的温度传感器,选择合适的晶闸管或继电器,完成对水温控制系统的设计、装配和调试。
三.具体技术指标
室温~600C,控制精度± 10C,控制通道输出为双向晶闸管或继电器,一组转换接点为市电220V,10A。
课题六 设计并制作音频频谱柱状显示器电路
一、 设计任务
设计并制作音频频谱柱状显示器电路。示意图如下:
二、设计要求
(1)音乐输入:0~1.5Vrms;单声道。输入端采用莲花座和Q9座并联形式,莲花座用于音乐输入,Q9座用于测试。将柱状显示的LED集中布置于一个15cm×10cm的面板上。音频功放可使用现成有源功放,功率大于1W。
(2)制作5路带通滤波器,分别对应中心频率为:60Hz、250Hz、1kHz、4kHz、16k(1)Hz;滤波器Q值约为1.5。
(3)条状显示采用10个发光二极管显示电压高低,1~10个发光二极管点亮的阈值电压分别为:60mV、80mV、110 mV、160 mV、220 mV、320 mV、440 mV、630 mV、890 mV、1.25V,可用运放或专用集成电路制做。例如LM3915条状指示集成电路。
『捌』 12v直流稳压电源设计
用7812系列,滤波电容0.5a用1000,1a用2200,小的用470,输出用10μ消震,最好接个发光管一是电源指示,二是稳压块工作稳定,如果电流大则需要散热片,7812稳定工作压差》3.5伏。变压器要求输出功率要够,一般整流滤波带负载是1.2——1.4u0,u0是变压器输出交流电压
『玖』 ICL8038内部框图介绍有多少种
3.3、内部框图工作原理
★当给函数发生器ICL8038合闸通电时,电容C的电压为0V,根据电压比较器的电压传输特性,电压比较器Ⅰ和Ⅱ的输出电压均为低电平;因而RS触发器的 ,输出Q=0, ;
★使开关S断开,电流源IS1对电容充电,充电电流为
IS1=I
因充电电流是恒流,所以,电容上电压uC随时间的增长而线性上升。
★当上升为VCC/3时,电压比较器Ⅱ输出为高电平,此时RS触发器的 ,S=0时,Q和 保持原状态不变。
★一直到上升到2VCC/3时,使电压比较器Ⅰ的输出电压跃变为高电平,此时RS触发器的 时,Q=1时, ,导致开关S闭合,电容C开始放电,放电电流为IS2-IS1=I因放电电流是恒流,所以,电容上电压uC随时间的增长而线性下降。
起初,uC的下降虽然使RS触发的S端从高电平跃变为低电平,但 ,其输出不变。
★一直到uC下降到VCC/3时,使电压比较器Ⅱ的输出电压跃变为低电平,此时 ,Q=0, ,使得开关S断开,电容C又开始充电,重复上述过程,周而复始,电路产生了自激振荡。
由于充电电流与放电电流数值相等,因而电容上电压为三角波,Q和 为方波,经缓冲放大器输出。三角波电压通过三角波变正弦波电路输出正弦波电压。
结论:改变电容充放电电流,可以输出占空比可调的矩形波和锯齿波。但是,当输出不是方波时,输出也得不到正弦波了。
3.4、方案电路工作原理(见图1-7)
当外接电容C可由两个恒流源充电和放电,电压比较器Ⅰ、Ⅱ的阀值分别为总电源电压(指+Vcc、-VEE)的2/3和1/3。恒流源I2和I1的大小可通过外接电阻调节,但必须I2>I1。当触发器的输出为低电平时,恒流源I2断开,恒流源I1给C充电,它的两端电压UC随时间线性上升,当达到电源电压的确2/3时,电压比较器I的输出电压发生跳变,使触发器输出由低电平变为高电平,恒流源I2接通,由于I2>I1(设 I2=2I1),I2将加到C上进行反充电,相当于C由一个净电流I放电,C两端的电压UC又转为直线下降。当它下降到电源电压的1/3时,电压比较器Ⅱ输出电压便发生跳变,使触发器输出为方波,经反相缓冲器由引脚9输出方波信号。C上的电压UC,上升与下降时间相等(呈三角形),经电压跟随器从引脚3输出三角波信号。将三角波变为正弦波是经过一个非线性网络(正弦波变换器)而得以实现,在这个非线性网络中,当三角波的两端变为平滑的正弦波,从2脚输出。
其中K1为输出频段选择波段开关,K2为输出信号选择开关,电位器W1为输出频率细调电位器,电位器W2调节方波占空比,电位器W3、W4调节正弦波的非线性失真。
图1-1
3.5、两个电压比较器的电压传输特性如图1-4所示。
图1-4
3.6、常用接法
如图(1-2)所示为ICL8038的引脚图,其中引脚8为频率调节(简称为调频)电压输入端,电路的振荡频率与调频电压成正比。引脚7输出调频偏置电压,数值是引脚7与电源+VCC之差,它可作为引脚8的输入电压。
如图(1-5)所示为ICL8038最常见的两种基本接法,矩形波输出端为集电极开路形式,需外接电阻RL至+VCC。在图(a)所示电路中,RA和RB可分别独立调整。在图(b)所示电路中,通过改变电位器RW滑动的位置来调整RA和RB的数值。
图1-5
当RA=RB时,各输出端的波形如下图(a)所示,矩形波的占空比为50%,因而为方波。当RA≠RB时,矩形波不再是方波,引脚2输出也就不再是正弦波了,图(b)所示为矩形波占空比是15%时各输出端的波形图。根据ICL8038内部电路和外接电阻可以推导出占空比的表达式为
故RA<2RB。
为了进一步减小正弦波的失真度,可采用如图(1-6)所示电路,电阻20K与电位器RW2用来确定8脚的直流电压V8,通常取V8≥2/3Vcc。V8越高,Ia、Ib越小,输出频率越低,反之亦然。RW2可调节的频率范围为20HZ20~KHZ。V8还可以由7脚提供固定电位,此时输出频率f0仅有Ra、Rb及10脚电容决定,Vcc采用双对电源供电时,输出波形的直流电平为零,采用单对电源供电时,输出波形的直流电平为Vcc/2。两个100kΩ的电位器和两个10kΩ电阻所组成的电路,调整它们可使正弦波失真度减小到0.5%。在RA和RB不变的情况下,调整RW2可使电路振荡频率最大值与最小值之比达到100:1。在引脚8与引脚6之间直接加输入电压调节振荡频率,最高频率与最低频率之差可达1000:1。
3.7、实际线路分析
可在输出增加一块LF35双运放,作为波形放大与阻抗变换,根据所选择的电路元器件值,本电路的输出频率范围约10HZ~20KHZ;幅度调节范围:正弦波为0~12V,三角波为0~20V,方波为0~24V。若要得到更高的频率,还可改变三档电容的值。
图1-6
表 1-1 ISL8038管脚功能
管 脚 符 号 功 能
1,12 SINADJ1,SINADJ2 正弦波波形调整端。通常SINADJ1开路或接直流电压,
SINADJ2接电阻REXT到V-,用以改善正弦波波形和减小失真。
2 SINOUT 正弦波输出
3 TRIOUT 三角波输出
4,5 DFADJ1,DFADJ2 输出信号重复频率和占空比(或波形不对称度)调节端。通常DFADJ1端接电阻RA到V+,DFADJ2端接RB到V+,改变阻值可调节频率和占空比。
6 V+ 正电源
7 FMBIAS 调频工作的直流偏置电压
8 FMIN 调频电压输入端
9 SQOUT 方波输出
10 C 外接电容到V-端,用以调节输出信号的频率与占空比
11 V- 负电源端或地
13,14 NC 空脚
四、制作印刷电路板
首先,按图制作印刷电路板,注意不能有断线和短接,然后,对照原理图和印刷电路板的元件而进行元件的焊接。可根据自己的习惯并遵循合理的原则,将面板上的元器件安排好,尽量使连接线长度减少,变压器远离输出端。再通电源进行调试,调整分立元件振荡电路放大元件的工作点,使之处于放大状态,并满足振幅起振条件。仔细检查反馈条件,使之满足正反馈条件,从而满足相位起振条件。
制作完成后,应对整机进行调试。先测量电源支流电压,确保无误后,插上集成快,装好连接线。可以用示波器观察波形发出的相应变化,幅度的大小和频率可以通过示波器读出 。
五、系统测试及误差分析
5.1、测试仪器
双踪示波器 YB4325(20MHz)、万用表。
5.2、测试数据
基本波形的频率测量结果
频率/KHz
正弦波 预置 0.01 0.02 2 20 50 100
实测 0.0095 0.0196 2.0003 20.0038 50.00096 100.193
方波 预置 0.01 0.02 2 20 50
实测 0.095 0.0197 1.0002 2.0004 20.0038
三角波 预置 0.01 0.02 1 2 20 100
实测 0.0095 0.0196 1.0002 2.0004 20.0038 100.0191
5.3、误差分析及改善措施
正弦波失真。调节R100K电位器RW4,可以将正弦波的失真减小到1%,若要求获得接近0.5%失真度的正弦波时,在6脚和11脚之间接两个100K电位器就可以了。
输出方波不对称,改变RW3阻值来调节频率与占空比,可获得占空比为50%的方波,电位器RW3与外接电容C一起决定了输出波形的频率,调节RW3可使波形对称。
没有振荡。是10脚与11脚短接了,断开就可以了
产生波形失真,有可能是电容管脚太长引起信号干扰,把管脚剪短就可以解决此问题。也有可能是因为2030功率太大发热导致波形失真,加装上散热片就可以了。
5.4、调试结果分析
输出正弦波不失真频率。由于后级运放上升速率的限制,高频正弦波(f>70KHz)产生失真。输出可实现0.2V步进,峰-峰值扩展至0~26V。
图1-2
图 1�6�17
六、结论
通过本篇论文的设计,使我们对ICL8038的工作原理有了本质的理解,掌握了ICL8038的引脚功能、工作波形等内部构造及其工作原理。利用ICL8038制作出来的函数发生器具有线路简单,调试方便,功能完备。可输出正弦波、方波、三角波,输出波形稳定清晰,信号质量好,精度高。系统输出频率范围较宽且经济实用。
七、参考文献
【1】谢自美《电子线路设计.实验.测试(第三版)》武汉:华中科技大学出版社。2000年7月
【2】杨帮文《新型集成器件家用电路》北京:电子工业出版社,2002.8
【3】第二届全国大学生电子设计竞赛组委会。全国大学生电子设计竞赛获奖作品选编。北京:北京理工大学出版社,1997.
【4】李炎清《毕业论文写作与范例》厦门:厦门大学出版社。2006.10
【5】潭博学、苗江静《集成电路原理及应用》北京:电子工业出版社。2003.9
【6】陈梓城《家用电子电路设计与调试》北京:中国电力出版社。2006
『拾』 电气主接线有哪几种形式主要应用在什么场合
1、线路变电所组接线
线路变压器组接线便是线路和变压器直接相连,是一种最简略的接线要领。线路变压器组接线的好处是断路器少,接线简略,造价省。相应220kV接纳线路变压器组,110kV宜接纳单母分段接线,正常分段断路器打开运行,对限定短路电流结果显着,较得当于110kV开环运行的网架。但其可靠性相对较差,线路妨碍检修停运时,变压器将被迫停运,对变电所的供电负荷影响较大。其较得当用于正常二运一备的城区中间变电所,如上海中间城区就有接纳。
2、桥形接线
桥形接线接纳4个回路3台断路器和6个隔离开关,是接线制止路器数量较少。也是投资较省的一种接线要领。根据桥形断路器的位置又可分为内桥和外桥两种接线。由于变压器的可靠性宏大于线路,因此中应用较多的为内桥接线。若为了在检修断路器时不影响和变压器的正常运行,偶然在桥形外附设一组隔离开关,这就成了长期开环运行的四边形接线。
3、多角形接线
多角形接线便是将断路器和隔离开关相互连接,且每一台断路器两侧都有隔离开关,由隔离开关之间送出回路。多角形接线所用配置少,投资省,运行的机动性和可靠性较好。正常环境下为双重连接,任何一台断路器检修都不影响送电,由于没有母线,在连接的任一部门妨碍时,对电网的运行影响都较小。其最紧张的缺点是回路数受到限定,因为当环形接线中有一台断路器检修时就要开环运行,此时当别的回路产生妨碍就要造成两个回路停电,扩大了妨碍停电范畴,且开环运行的时间愈长,这一缺点就愈大。环中的断路器数量越多,开环检修的机遇就越大,所一样平常只采四角(边)形接线和五角形接线,同时为了可靠性,线路和变压器接纳对角连接原则。四边形的掩护接线比力庞大,一。二次回路倒换操作较多。
4、单母线分段接线
单母线分段接线便是将一段母线用断路器分为两段,它的好处是接线简略,投资省,操作方便;缺点是母线妨碍或检修时要造成部门回路停电。
5、母线接线
双母线接线便是将事情线。电源线和出线议决一台断路器和两组隔离开关连接到两组(一次/二次)母线上,且两组母线都是事情线,而每一回路都可议决母线团结断路器并列运行。
与单母线相比,它的好处是供电可靠性大,可以轮番检修母线而不使供电制止,当一组母线妨碍时,只要将妨碍母线上的回路倒换到另一组母线,就可敏捷光复供电,别的还具有调治。扩建。检修方便的好处;其缺点是每一回路都增长了一组隔离开关,使配电装置的构架及占地面积。投资费用都相应增长;同时由于配电装置的庞大,在变化运行要领倒闸操作时容易产生误操作,且不宜实现自动化;尤其当母线妨碍时,须短时切除较多的电源和线路,这对特别紧张的大型发电厂和变电站是不容许的。
6、母线带旁路接线
双母线带旁路接线便是在双母线接线的根本上,增设旁路母线。其特点是具有双母线接线的好处,当线路(主变压器)断路器检修时,仍有连续供电,但旁路的倒换操作比力庞大,增长了误操作的机遇,也使掩护及自动化体系庞大化,投资费用较大,一样平常为了节省断路器及配置隔绝,当出线到达5个回路以上时,才增设专用的旁路断路器,出线少于5个回路时,则接纳母联兼旁路或旁路兼母联的接线要领。
7、母线分段带旁路接线
双母线分段带旁路接线便是在双母线带旁路接线的根本上,在母线上增设分段断路器,它具有双母线带旁路的好处,但投资费用较大,占用配置隔绝较多,一样平常接纳此种接线的原则为:
(1)当配置连接的出入线总数为12~16回时,在一组母线上设置分段断路器;
(2)当配置连接的出入线总数为17回及以上时,在两组母线上设置分段断器。
8、3/2(4/3)断路器接线
3/2(4/3)断路器接线便是在每3(4)个断路器中间送出2(3)回回路,一样平常只用于500kV(或紧张220kV)电网的母线主接线。它的紧张好处是:
(1)运行调治机动,正常时两条母线和全部断路器运行,成多路环状供电;
(2)检修时操作方便,当一组母线停支时,回路不必要切换,任一台断路器检修,各回路仍按原接线要领霆,不需切换;
(3)运行可靠,每一回路由两台断路器供电,母线产生妨碍时,任何回路都不停电。
2/3(4/3)断路器接线的缺点是利用配置较多,特别是断路器和电流互感器,投资费用大,掩护接线庞大。