㈠ 漏电开关电路图有吗最后带说明! 谢谢!
漏电保护断路器
漏电保护断路器通常称作漏电开关,是一种安全保护电器,在线路或设回备出现对地漏电或答人身触电时,迅速自动断开电路,能有效的保证人身和线路的安全。电磁式电流动作型漏电断路器结构如图
漏电保护断路器主要由零序互感器TA、漏电脱扣器WS、试验按钮SB、操作机构和外壳组成。实质上就是在一般的自动开关中增加一个能检测电流的感受元件零序互感器和漏电脱扣器。零序互感器是一个环形封闭的铁芯,主电路的三相电源线均穿过零序互感器的铁芯,为互感器的一次绕组;环形铁芯上绕有二次绕组,其输出端与漏电脱扣器的线圈相接。在电路正常工作时,无论三相负载电流是否平衡,通过零序电流互感器一次侧的三相电流相量和为零,二次侧没有电流。当出现漏电和人身触电时,漏电或触电电流将经过大地流回电源的中性点,因此零序电流互感器一次侧三相电流的相量和就不为零,互感器的二次侧将感应出电流,此电流通过使漏电脱扣器线圈,使其动作,则低压断路器分闸切断了主电路,从而保障了人身安全。
为了经常检测漏电开关的可靠性,开关上设有试验按钮,与一个限流电阻R串联后跨接于两相线路上。当按下试验按钮后,漏电断路器立即分闸,证明该开关的保护功能良好。
㈡ 开漏电路输出的优缺点及功能
指漏极开路的输出形式。就像晶体管集电极开路的输出形式一样,集版电极上没有接集电极电权阻Rc,直接引到芯片外面成为输出端,需要在芯片外面接上一个负载电阻(上拉电阻)才能形成完整的放大(逻辑)电路。这种电路结构方便于组成“线与”逻辑。通常用于数字电路中的门电路以及模拟电路中的比较器输出级。
㈢ 开漏低电平输出和开漏高组态输出的区别 stm8
推挽输出:可以输出高,低电平,连接数字器件;
开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).
推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.
要实现 线与 需要用OC(open collector)门电路.是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小,效率高。输出既可以向负载灌电流,也可以从负载抽取电流。
开漏电路特点及应用
在电路设计时我们常常遇到开漏(open drain)和开集(open collector)的概念。
所谓开漏电路概念中提到的“漏”就是指MOSFET的漏极。同理,开集电路的“集”就是指三极管的集电极。开漏电路就是指以MOSFET的漏极为输出的电路。一般的用法是会在漏极外部的电路添加上拉电阻。完整的开漏电路应该由开漏器件和开漏上拉电阻组成。
组成开漏形式的电路有以下几个特点:
1. 利用外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。IC内部仅需很下的栅极驱动电流。如图1。
2. 可以将多个开漏输出的Pin,连接到一条线上。形成 “与逻辑” 关系。当PIN_A、PIN_B、PIN_C任意一个变低后,开漏线上的逻辑就为0了。这也是I2C,SMBus等总线判断总线占用状态的原理。
3. 可以利用改变上拉电源的电压,改变传输电平。 IC的逻辑电平由电源Vcc1决定,而输出高电平则由Vcc2决定。这样我们就可以用低电平逻辑控制输出高电平逻辑了。
4. 开漏Pin不连接外部的上拉电阻,则只能输出低电平(因此对于经典的51单片机的P0口而言,要想做输入输出功能必须加外部上拉电阻,否则无法输出高电平逻辑)。
5. 标准的开漏脚一般只有输出的能力。添加其它的判断电路,才能具备双向输入、输出的能力。
应用中需注意:
1. 开漏和开集的原理类似,在许多应用中我们利用开集电路代替开漏电路。例如,某输入Pin要求由开漏电路驱动。则我们常见的驱动方式是利用一个三极管组成开集电路来驱动它,即方便又节省成本。
2. 上拉电阻R pull-up的 阻值 决定了 逻辑电平转换的沿的速度 。阻值越大,速度越低功耗越小。反之亦然。
Push-Pull输出就是一般所说的推挽输出,在CMOS电路里面应该较CMOS输出更合适,应为在CMOS里面的push-pull输出能力不可能做得双极那么大。输出能力看IC内部输出极N管P管的面积。和开漏输出相比,push-pull的高低电平由IC的电源低定,不能简单的做逻辑操作等。push-pull是现在CMOS电路里面用得最多的输出级设计方式。
51单片机的I/O口是开漏输出,驱动能力较弱,所以一般都要加上拉电阻去驱动下一级电路,而AVR,STM8S系列的都是真正的双向I/O口,推挽输出,电流可达20mA左右。
㈣ 什么是开漏极单片机,最好有个比喻!
开漏极就是漏极开路啦,漏极开路是驱动电路的输出三极管的集电极开路,可以通过外接的上拉电阻提高驱动能力。51单片机的P0口就是漏极开路的。
这种输出用的是一个场效应三极管或金属氧化物管(MOS),这个管子的栅极和输出连接,源极接公共端,漏极悬空(开路)什么也没有接,因此使用时需要接一个适当阻值的电阻到电源,才能使这个管子正常工作,这个电阻就叫上拉电阻。
漏极开路输出,一般情况下都需要外接上拉电阻,以使电路输出呈现三态之高阻态,例如,在有些芯片的引脚就定义为漏极开路输出;还有一些带漏极开路输出的反向器等都需要外接上拉电阻才能正常工作。
对于漏极开路(OD)输出,跟集电极开路输出是十分类似的。将上面的三极管换成场效应管即可。这样集电极就变成了漏极,OC就变成了OD,原理分析是一样的。
㈤ 真正的开漏输出,开漏输出的电路是怎么样有谁提供
就是漏极开路,根据管型不同用的时候需上拉或下拉
㈥ 漏电开关工作原理电路图解
漏电保护器是当其下游电路发生漏电时,漏电流超过设定值起跳保护的装置,原理就是通过零序互感器监测漏电流,当漏电流达到起跳值时,脱扣继电器动作,开关跳闸。
㈦ 开漏极输出,栅极要接上拉电阻为什么呢,什么是开漏极输出一般应用在哪些场合
不一定非要上拉,要看你前面的驱动形式,有时还需下拉;
开漏极输出就是输出管的漏极直接连接到外部引脚上,内部不再与其他电路连接(有的可能有保护二极管);
根据原理很多场合都可使用,如驱动继电器,外部连接负载电阻时也可实现电压输出。
㈧ 简要说明开关输入电路中的上拉电阻在端口起到什么作用
上拉电阻:
(1)增加高电平的带载能力。(2)保证端口静态是高电平 。
下拉电阻:
(1)保证端口静态是低电平。(2)降低端口的阻抗,减少噪声干扰。
不同性质的电路,电阻值不同,如 TTL 与 CMOS 。查看芯片数据表有说明。
电路设计中,上拉就是将不确定的信号通过一个电阻嵌位在高电平,电阻同时起限流作用,下拉同理. 2:上拉是对器件注入电流,下拉是输出电流,弱强只是上拉电阻的阻值不同,没有什么严格区分,对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。上下拉电阻: 1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V), 这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。 2、OC门电路必须加上拉电阻,以提高输出的高电平值。 3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。 4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗, 提供泄荷通路。 5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。 6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。 7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。 上拉电阻:就是从电源高电平引出的电阻接到输出 1,如果电平用OC(集电极开路,TTL)或OD(漏极开路,COMS)输出,那么不用上拉电阻是不能工作的, 这个很容易理解,管子没有电源就不能输出高电平了。
㈨ 漏极开路门电路线于原理是什么
“线与”逻辑是因为多个逻辑门的输出三极管(场效应管、二极管),共用一个上拉电阻,只要一个逻辑门输出低电平,即集电极(漏极)开路输出的管子导通,就把上拉电阻接地,输出低电平;只有全部输出管截止,输出端被上拉电阻置为高电平,这就是与逻辑的运算结果。
㈩ 开漏和推挽到底啥区别
开漏和推挽区别如下;
推挽输出:可以输出高,低电平,连接数字器件;
开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内)。
推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。
开漏电路概念中提到的“漏”就是指MOS FET的漏极。同理,开集电路中的“集”就是指三极管的集电极。开漏电路就是指以MOS FET的漏极为输出的电路。一般的用法是会在漏极外部的电路添加上拉电阻。完整的开漏电路应该由开漏器件和开漏上拉电阻组成。如图1所示:
推挽这是一个输出电路,按功放输出级放大元件的数量,可以分为单端放大器和推挽放大器。单端放大器的输出级由一只放大元件(或多只元件但并联成一组)完成对信号正负两个半周的放大。单端放大机器只能采取甲类工作状态。