① 正反转带自锁电机控制电路图
电路图:
SB2和SB3均为复合按钮,合上电源开关Q,按下起动按钮SB2,其常闭触点SB2断开,使接触器KM2不得电;常开触点SB2接通,使接触器KM1得电吸合并自锁,其主触点闭合,接通电源,电动机正向起动运转。这时KM1的常闭触点KM1断开,进一步保证KM2不得电。
当需要电动机反转时,按下反向按钮SB3,其常开触点SB3断开,使接触器KM1断电释放,主触点断开,切除了电动机的电源,电动机断电而慢慢停止,同时SB3的常开触点闭合,又由于KM1的常闭辅助触点恢复闭合,使得接触器KM2得电吸合并自锁。
其主触点闭合,将电动机的两相电源对调,电动机反向转动。这时KM2的常闭触点断开,确保KM1断电。如果要电动机停止,只需要按下停止按钮SB1即可。
电动机的正确安装、使用和保养
一、检查
1、认真检查铭牌数据,确认电动机型号符合使用要求。
2、用500V兆欧表测量电动机绕组对外壳的绝缘电阻,绝缘电阻 应大于0.5MΩ。
二、安装
1、电动机-般安装在室内清洁、干燥的场所,周围必须通风良好,环境空气最高温度不超过40℃,最低温度不低于-15℃,并应防止强烈的热辐射。
2、按接线图接电源线接线头连接要紧固,带引出电缆、电线的电动机,可直接和电源线连接,接头处要绝缘密封。
3、当电源线,相序和电动粗接线头标志对应连接时,从轴伸端看电动机顺时针旋转。需要改变转向时,改变两根电源线接线的位置即可。
4、YD系列等变级多速异步电动机是利用换接引出线的方法来控制转速变化的,为保证多速电动机运行的可靠性,设计和操作控制装置时应注意,在高速切换为低速时,必须在切断电源的同时断开2Y接线的中性点。
以免在低速绕组接通时引起电源短路.在高速切换为低速的过程中,必续待电动机停转后才能接通低速绕组的电源,以减少对电动机及负载的冲击.转速切换要注意电动机的转向。
5、电动机可以采有联轴器,齿轮、皮带与负载机械联接,4kw以上的2极电动机
30kw以上的4极电动机不宜用皮带传动,双轴伸电动的第二轴伸只能用联轴嚣传动。联轴器、皮带轮轴孔与电动机轴的配合松紧应合适,安装时严禁用重锤敲击。采用联轴器传动时,电动机轴中心线与负载机械轴中心线应重合,
联轴器轴向保留1~3mm间隙。 采用皮带传达室动时,电动机轴中心线应与负载机械轴中心线平行,皮带中心线与轴中心线相互垂直。
三、接地
电动机必须可靠接地,接地方式、接地电阻等应符合《工业与民用 电力装置的接地设计规范》《工厂电力设计技术规范》等电气安全管理的规定,接地电阻小于4Ω。
② 继电电路
继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种"自动开关".故在电路中起着自动调节、安全保护、转换电路等作用。继电器是一种当输入量(电、磁、声、光、热,又称激励量)达到一定值时,输出量将发生跳跃式变化的自动控制器件。继电器的输入信号x从零连续增加达到衔铁开始吸合时的动作值xx,继电器的输出信号立刻从y=0跳跃到y=ym,即常开触点从断导通。一旦触点闭合,输入量x继续增大,输出信号y将不再起变化。当输入量x从某一大于xx值下降到xf,继电器开始释放,常开触点断开。我们把继电器的这种特性叫做继电特性,也叫继电器的输入-输出特性。
继电电路简单的说就是有继电器的电路,那么了解了继电器,就知道这种电路的作用及其应用了。
③ 电器由什么组成的
1、电源系统
电源系统包括蓄电池、发电机及其调节器。
2、用电系统
起动系、点火系、照明系、信号系统、电子控制系统、辅助电器
3、检测系统
包括各种检测仪表如电压表、电流表、水温表、油压表、燃油表、车速里程表、发动机转速表和各种报警灯,用来监测发动机和其它装置的工作情况。
4、配电系统
配电系统包括中央接线盒、电路开关、保险装置、插接件和导线等,以保证线路工作的可靠性和安全性。
(3)点传动电路扩展阅读:
机械式传动系
机械式传动系结构简单、工作可靠,在各类汽车上得到广泛的应用。其基本组成情况和工作原理:发动机的动力经离合器、变速器、万向节、传动轴、主减速器、差速器、半轴传给后面的驱动轮。
并与发动机配合,保证汽车在不同条件下能正常行驶。为了适应汽车行驶的不同要求,传动系应具有减速增扭、变速、使汽车倒退、中断动力传递、使两侧驱动轮差速旋转等具体作用。
液力传动系
液力传动系组合运用液力和机械来传递动力。在汽车上,液力传动一般指液传动,即以液体为传动介质,利用液体在主动元件和从动元件之间循环流动过程中动能的变化来传递动力。动液传动装置有液力偶合器和液力变矩器两种。
液力偶合器只能传递扭矩,而不能改变扭矩的大小,可以代替离合器的部分功能,即保证汽车平稳起步和加速,但不能保证在换档时变速器中的齿轮不受冲击。液力变矩器则除了具有液力偶合器的全部功能外,还能实现无级变速,故应用得比液力偶合器广泛得多。
但是,液力变矩器的输出扭矩与输入扭矩的比值范围还不足以满足使用要求,故一般在其后再串联一个有级式机械变速器而组成液力机械变速器以取代机械式传动系中的离合器和变速器。
液力机械式传动系能根据道路阻力的变化自动地在若干个车速范围内分别实现无级变速,而且其中的有级式机械变速器还可以实现自动或半自动操纵,因而可使驾驶员的操作大为简化。
但是由于其结构较复杂,造价较高,机械效率较低等缺点,除了高级轿车和部分重型汽车以外,一般轿车和货车很少采用。
参考链接:网络--汽车传动系统
④ 简述机电传动控制电路的工作原理
机电传动的电路的工作原理更多的是运用在控制器的一些机械上
⑤ 汽车启动电路的原理
你好 “汽车起动机的工作原理: 当点火开关闭合时,使得两个线圈绕组(保持线圈S-地和内吸拉线容圈S-M)通电。值得注意的是,由于吸拉线圈的电阻很小,通过它的电流很大。这个线圈是与电动机电路串联的,在电流的作用下,电动机会缓慢旋转,以方便小齿轮和飞轮接合。希望可以帮到你,望采纳,谢谢
⑥ 电接点压力表如何接线
1&3是常闭点,接4公斤(低压);2&3是常开点,接6公斤(高压);
接电接点压力表直接控制水泵电机接触器线圈的,低于4公斤起泵,高于8公斤停泵,没有报警的。常闭点接高压停泵,常开点接低压起泵,反正你可以接好后试试看呗,或者也可用手压泵试试看啊。
(6)点传动电路扩展阅读:
电接点压力表由测量系统、指示系统、磁助电接点装置、外壳、调整装置和接线盒(插头座)等组成。一般电接点压力表是用于测量对铜和铜合金不起腐蚀作用的气体、液体介质的正负压力,不锈钢电接点压力表用于测量对不锈钢不起腐蚀作用的气体、液体介质的正负压力并在压力达到预定值时发出信号,接通控制电路,达到自动控制的报警的目的。
电接点压力表基于测量系统中的弹簧管在被测介质的压力作用下,迫使弹簧管之末端产生相应的弹性变形一位移,借助拉杆经齿轮传动机构的传动并予放大,由固定齿轮上的指示(连同触头)逐将被测值在度盘上指示出来。与此同时,当其与设定指针上的触头(上限或下限)相接触(动断或动合)的瞬时,致使控制系统中的电路得以断开或接通,以达到自动控制和发信报警的目的。
⑦ 简述电传动机车的五种传动方式中机车的主电路结构
咨询记录 · 回答于2021-12-25
⑧ 汽车打火电路工作原理
点火系统的基本功能是依据发动机的工作顺序适时的向发动机提供强烈的高压火花。点火系统的功能体现在点火的时机和产生点火火花的强度。要实现摩托车上的12V低压直流电转化为可以产生足够强度火花的高压电,只有采用变压器通过次级线圈和初级线圈的较大比值来产生高压电。点火系统一般由控制初级线圈通断的开关、产生高压电的点火线圈和将高压电变成点火火花的火花塞构成。系统的蓄电池提供12V的电源,通过断电开关接通和切断初级线圈中的电流,这样在次级线圈中就会产生高达上万伏的高压电。当断电开关闭合时初级线圈中有电流通过并且电流值随着闭合时间的增长而不断的提高,当开关突然打开时由于电磁感应在次级线圈中便产生足够的电压并将该电压加到火花塞上使其产生火花点燃混合气。
二. 点火系统基本参数
1. 闭合角。点火系统中初级线圈电流的大小决定了点火系统的能量的高低,直接影响着发动机性能的发挥。初级电流的大小是由初级线圈的接通时间决定的,因此初级电路的接通时间便成为点火控制的一个重要的指标。当初级线圈接通时间越长线圈电流越大开关断开时在次级线圈上产生的感应电动势越高,点火的能量也就越强混合气越容易点燃;但电流过大会造成点火线圈过热和电源负荷的增加。因此,科学的控制初级线圈电路的接通时间成为点火控制的主要内容之一。由于在传统触点控制点火系统中,初级点火线圈电路中的开关为分电器机械触点,初级电路中的电流大小是通过触点闭合时间对应的分电器轴转角即闭合角来控制的,因此通常用闭合角来表示初级线圈电路的接通时间。为了使发动机在每一工况下点火系统都能产生一定强度的高压火花,要求初级线圈在开关断开是的电流具有稳定的值。而决定初级线圈中电流大小的因素主要是线圈通电时间和发动机系统电压。因此要求初级线圈电路接通时间能随电源电压的变化而变化,当电源电压降低是增加通电时间;当电源电压升高时能够缩短通电时间。对于闭合角控制来说,就是要求其值不但能够随着电源电压的变化而变化,而且要随着发动机转速的变化而变化。因为在对应同样的时间,发动机转速越高,分电器转过的角度越大,闭合角也越大;反之则然。
2. 点火提前角。点火时刻是点火系统控制的最重要的要素,因为点火时刻决定了 高压点火产生的时刻与发动机工作过程之间的配合关系。为了提高发动机的燃烧效率,提高其动力性、经济性及获得较低的排放污染,要求在发动机压缩行程进行到上止点前一定的曲轴转角处切断点火线圈初级线圈中的电流开始点火。这样对于理论意义上的点火时刻来说就是提前了一个曲轴转角,这个提前的角度就是点火提前脚。发动机工作中,对应不同的工况都有一个使其燃烧过程进行得最佳的点火时刻,这样的时刻用点火提前角表示即为最佳点火提前角。在正常情况下,发动机工作的最佳点火提前角与发动机的转速和负荷关系密切。
三. 点火系统的种类与特点
由于发动机点火时刻和初级线圈电流的不同控制方法,产生了不同的点火系统。按点火系统的不同发展阶段可分为:传统机械触点点火系统、无触点点火系统、微机控制式电子点火系统和微机控制式无分电器电子点火系统。
1. 传统机械式触点点火系统:传统的点火系统其点火时刻和初级线圈电流的控制是由机械传动的断电器触点来完成的。由发动机凸轮轴驱动的分电器轴控制着断电器触点的张开、闭合的角度和时刻与发动机工作行程的关系。为了使点火提前角能随发动机转速和负荷的变化自动调节,在分电器上装有离心式机械提前装置和真空式提前装置来感知发动机的转速和负荷的变化。机械式点火系统最大的缺点是因为断电器与驱动凸轮之间机械联动因此闭合角不能变化,而闭合时间和发动机转速的变化有很大的关系,当发动机转速升高时触点闭合时间缩短,初级线圈电流减小点火能量降低;当发动机转速降低时闭合时间又过长,造成线圈中电流过大容易损坏。这是机械触点点火系统无法克服的缺点。
2. 无触点电子点火系统:为了避免机械触点点火系统触点容易烧蚀损坏的缺点,在晶体管技术广泛应用后产生了非接触式传感器作为控制信号,以大功率三极管为开关代替机械触点的无触点电子点火系统。这种系统显著优点在于初级电路电流由晶体三极管进行接通和切断,因此电流值可以通过电路加以控制。不足之处在于这种系统中的点火时刻仍采用机械离心提前装置和真空提前装置,对发动机工况适应性差。
3. 微机控制式电子点火系统:为了提高点火系统的调整精度和各种工况的适应性,在电子点火系统的基础上,采用了微机控制。系统的特点是:不但没有分电器,而且在提前角的控制方面也没有离心提前装置和真空提前装置。从初级线圈电流的接通时间到点火时刻全部采用微机进行控制。其工作原理如下:微机系统通过传感器检测发动机的转速和负荷的大小,由此查阅存在内部存储器中的最佳控制参数,从而获得这一工况下的最佳点火提前角和点火线圈初级电路的最佳闭
⑨ 画出电动机启保停控制电路图,元件作用
断路器(QF) --控制总电源,当电路短路、过载时自动跳闸,切断主电源。保护设备安全。
断路器(FU) --控制保险,当控制电路短路时,会自动跳闸。断开控制电源。
接触器(KM)--接触器广义上是指工业电中利用线圈流过电流产生磁场,使触头闭合,以达到控制负载的电器。这里就是通过接触器控制电机。
热继电器(FR)--热继电器是由流入热元件的电流产生热量,使有不同膨胀系数的双金属片发生形变,当形变达到一定距离时,就推动连杆动作,使控制电路断开,从而使接触器失电,主电路断开,实现电动机的过载保护。
按钮--起到接通或切断控制电路的作用。
热继电器组成结构:
它由发热元件、双金属片、触点及一套传动和调整机构组成。发热元件是一段阻值不大的电阻丝,串接在被保护电动机的主电路中。双金属片由两种不同热膨胀系数的金属片辗压而成。图中所示的双金属片,
下层一片的热膨胀系数大,上层的小。当电动机过载时,通过发热元件的电流超过整定电流,双金属片受热向上弯曲脱离扣板,使常闭触点断开。由于常闭触点是接在电动机的控制电路中的,它的断开会使得与其相接的接触器线圈断电,从而接触器主触点断开,电动机的主电路断电,实现了过载保护。
热继电器动作后,双金属片经过一段时间冷却,按下复位按钮即可复位。
⑩ 电力传动与电力系统
把生产,输送,分配和消耗电能的个种设备连接在一起而组成的整体称为“电力系统”。 " 电力传动" 利用电动机将电能变为机械能,以驱动机器工作的传动。电力传动由电动机、传输机械能的传动机构和控制电动机运转的电气控制装置组成。电力传动可以分为交流电动机传动和直流电动机传动。电力传动所需的电能易于传输和集中生产,它本身又便于远距离自动控制。电动机的功率范围比较宽,从数瓦到1万千瓦以上,它已成为现代工业的主要动力机。