㈠ 常用的调频方法有哪几种调相方法有哪几种常用的直接调频电路有哪几种
抗干扰:用来对抗通讯或雷达运行的任何干扰的系统或技术。学术定义:(1)抗干扰的定义是:结合电路的特点使干扰减少到最小。(2)所谓抗干扰:是指设备能够防止经过天线输入端,设备的外壳以及沿电源线作用于设备的电磁干扰。措施抗干扰措施的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。1、抑制干扰源抑制干扰源就是尽可能的减小干扰源的/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。抑制干扰源的常用措施如下:⑴继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作的次数。⑵在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K到几十K,电容选0.01uF),减小电火花影响。⑶给电机加滤波电路,注意电容、电感引线要尽量短。⑷电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。⑸布线时避免90度折线,减少高频噪声发射。⑹可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。2、切断干扰传播路径的常用措施⑴充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。⑵如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。⑶注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。此措施可解决许多疑难问题。⑷电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源(如电机,继电器)与敏感元件(如单片机)远离。⑸用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片引脚排列时已考虑此要求。⑹单片机和大功率器件的地线要单独接地,以减小相互干扰。大功率器件尽可能放在电路板边缘。⑺在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件如磁珠、磁环、电源滤波器,屏蔽罩,可显著提高电路的抗干扰性能。⒊提高敏感器件的抗干扰性能提高敏感器件的抗干扰性能是指从敏感器件这边考虑尽量减少对干扰噪声的拾取,以及从不正常状态尽快恢复的方法。提高敏感器件抗干扰性能的常用措施如下:⑴布线时尽量减少回路环的面积,以降低感应噪声。⑵布线时,电源线和地线要尽量粗。除减小压降外,更重要的是降低耦合噪声。⑶对于单片机闲置的I/O口,不要悬空,要接地或接电源。其它IC的闲置端在不改变系统逻辑的情况下接地或接电源。⑷对单片机使用电源监控及看门狗电路,如:IMP809,IMP706,IMP813,X25043,X25045等,可大幅度提高整个电路的抗干扰性能。⑸在速度能满足要求的前提下,尽量降低单片机的晶振和选用低速数字电路。⑹IC器件尽量直接焊在电路板上,少用IC座。4、软件方面⑴我习惯于将不用的代码空间全清成"0",因为这等效于NOP,可在程序跑飞时归位;⑵在跳转指令前加几个NOP,目的同1;⑶在无硬件WatchDog时可采用软件模拟WatchDog,以监测程序的运行;⑷涉及处理外部器件参数调整或设置时,为防止外部器件因受干扰而出错可定时将参数重新发送一遍,这样可使外部器件尽快恢复正确;⑸通讯中的抗干扰,可加数据校验位,可采取3取2或5取3策略;⑹在有通讯线时,如I^2C、三线制等,实际中我们发现将Data线、CLK线、INH线常态置为高,其抗干扰效果要好过置为低。5、硬件方面⑴地线、电源线的布线肯定重要了!⑵线路的去耦;⑶数、模地的分开;⑷每个数字元件在地与电源之间都要104电容;⑸在有继电器的应用场合,尤其是大电流时,防继电器触点火花对电路的干扰,可在继电器线圈间并一104和二极管,在触点和常开端间接472电容,效果不错!⑹为防I/O口的串扰,可将I/O口隔离,方法有二极管隔离、门电路隔离、光偶隔离、电磁隔离等;⑺当然多层板的抗干扰肯定好过单面板,但成本却高了几倍。⑻选择一个抗干扰能力强的器件比之任何方法都有效,我想这点应该最重要。因为器件天生的不足是很难用外部方法去弥补的,但往往抗干扰能力强的就贵些,抗干扰能力差的就便宜,正如台湾的东东便宜但性能却大打折扣一样!主要看各位的应用场合了!实现法⒈干扰现象分析干扰成因:现有的国内卫星广播电视系统普遍采用的是透明转发器和单波束赋形收发天线。并且,因为地球静止轨道位置资源和无线频率资源有限,所以卫星的空间位置和工作频率必须向国际电联申报并要符合国际规定,其参数包括电视信号的编码方式都是公开的。抗干扰接头另外,卫星广播电视的频带利用方式通常由SCPC(单路单载波)和MCPC(多路单载波)两种方式。采用SCPC方式,多套节目可以通过频率分配共用同一卫星转发器,节省大量的地面节目接收设施,但是由于多载波上行存在互调干扰,转发器功率回退较多,功率利用率不高,而且由于每个载波间需要足够的保护频带,频带利用率也不高,卫星转发器较易受到其他载波信号的干扰,安全性较低。而MCPC方式下,多套节目共用一个完整的转发器经由同一上行站上行,由于单一载波上行,卫星转发器的功率资源可以得到充分利用,而且节省了多载波上行时的频率保护间隔,转发器可工作在饱和状态,安全得到了最大限度的保护,但也相应增加了地面信号引接设施。因此,现有的卫星广播电视系统较易受到非法信号的干扰。并且传输体制采取SCPC较MCPC更易受到非法信号的干扰。2、干扰类型及应对措施从干扰来源上说,主要分为自然现象干扰、设备故障干扰、地面电磁环境干扰、邻星干扰与人为原因造成的干扰等,有些干扰是相互交叉。自然现象干扰主要包括日凌干扰、雨雪衰等。日凌干扰目前尚无有效的方法来避免,一般卫星公司会把各地的日凌时间通知用户,以便用户提前做好准备,地球站可通过增大天线口径和接收灵敏度来缩短日凌干扰的持续时间。而雨(雪)衰所导致的接收信号的恶化有一个渐变过程,可以通过补偿上行链路的雨(雪)衰损耗和留出足够的下行链路的雨衰备余量,来降低因雨(雪)衰造成的损失。设备故障干扰主要包括卫星故障干扰和地面设备故障干扰两大类。卫星设备故障干扰可以通过及时切换备份器件,严重时转星或者更换转发器来解决。而地面设备故障干扰又分为中频转发干扰、地面调频广播干扰、交调干扰、杂散干扰等。前两者都是属于中频引入的干扰,可通过卫星公司协助排查干扰源以及地球站做好相应的系统或传输线路的电磁屏蔽工作来减小受干扰的可能性。杂散干扰可通过卫星公司改变受影响转发器的增益档设置、地球站相应提高上行功率来减少干扰影响。交调干扰可通过地球站严格控制上行功率以及确保调制解调器、上变频器、发射机等有足够的预留回退余量来解决。地面电磁环境干扰主要包括微波通信中继信号干扰、雷达信号干扰等,可以通过电磁检测和频率协调,以及电磁屏蔽手段来解决问题。抗干扰电容3、地球站的抗干扰系统实现抗干扰地球站的抗干扰措施。通过以上对干扰现象的分析,目前,各地球站可以采取以下抗干扰措施。⑴上行地球站应使用大功率发射机和大口径高增益发射天线:一旦卫星受干扰时,减小星上接收机增益,加大上行功率,以增强转发器输入载噪比,减小干扰影响。⑵上行地球站应使用大功率MCPC上行信号推至转发器饱和点:传送电视节目少用或不用SCPC信号,从而利用转发器饱和点强信号对弱信号的抑制作用特性,进一步减小非法干扰影响。⑶上行地球站应配备相应的抗干扰系统,通过对地球站所有设备的实时监控,对各类干扰及时发现、判断和处理。卫星通信抗干扰技术随着国民经济的发展,无线通信已被广泛地应用在国民经济的各个领域和人们的日常生活中,特别是公用移动通信的迅速发展,社会上使用的各种无线通信设备的数量急剧上升。现代战争中,指挥通信、军事情报、兵器控制都日益依赖于电子设备,特别是无线电设备的支持。信息战和电子战作为一种崭新的作战形式涉及军事领域,开辟了继陆海空战场之后的第四维战场--电磁战场..为了提高通信系统信息传输的可靠性,对抗各种形式的干扰,人们采用了各种通信抗干扰技术,保护通信系统在干扰环境下能准确、实时、不间断地传输信息。因此,对通信抗干扰原理和技术进行系统的介绍是很有必要的。一般说,通信抗干扰的基本体系、方法、措施可分为三类:⑴信号处理。如直接序列扩频技术(DS-SS),其关键参量是作为时间函数的相位;跳频技术(FH-SS)其关键参量是作为时间函数的载频;等等。⑵空间处理。如采用自适应天线调零技术,当接收端受到干扰时,使其天线方向图零点自动指向干扰方向,以提高通信接收机的信干比。⑶时间处理。如猝发传输技术,由于通信信号在传输过程中暴露的时间很短暂,从而大大降低了被干扰方侦察、截获的概率。通信抗干扰技术研究的就是在已知或预测敌方的干扰手段情况下,在上述技术基础上(当然不排除以后有新的技术类别)选取适当的技术手段来消除或减轻敌方干扰,而使我方需要进行的通信能够延续的一项技术。对敌方的干扰性质,强度、种类、手段、采用的体系,了解得越清楚,采取的措施越有针对性,取得的效果也越好。由于敌方的对抗手段往往是综合的、多变的,有的可能是完全新颖的,所以抗干扰的手段也必须采取多种方式的结合才能取得较好的效果。通信抗干扰技术的特点:⑴对抗性强,技术综合性强,难度高,发展快,某种程度上说是敌我双方智慧和技术的斗争。通信的成败关系着战争的胜负,所以此技术对抗性很强。通信抗干扰有了新技术,搞对抗的就想新的对策,反过来也一样,这样就促进了技术的发展和难度的提高。⑵对技术的实用性和可靠性的要求高,通信抗干扰必须在战场上实际解决问题。指标高而不可靠或不实用是不能容忍的,其后果不堪设想。军用卫星通信抗干扰手段⑴直接序列(DS)扩频所谓直接序列扩频,就是直接用高码率的扩频码序列(通常是伪随机序列)在发射端去扩展信号的频谱,使单位频带内的功率变小,即信号的功率谱密度变低,通信可在信道噪声和热噪声的背景下,使信号淹没在噪声里,敌方很不容易发现有信号存在。而在接收端,用相同的扩频码去进行解扩(缩谱),即可把DS扩频信号能量集中,恢复原状,又能把干扰能量分散并抑制掉。因此,该体制的最大特点是信号隐蔽性好,被截收的概率小,抗干扰能力随着码序列的长度增加而加强。通常认为,直扩信号要隐蔽,其码长不能低于32位。DS扩频技术在军事星(Milstar)、租赁卫星(LEASAT)和舰队通信卫星(FLTSATCOM)等军用通信卫星中得到应用。⑵跳频(FH)所谓跳频,是指用一定码序列去选择的多频率频移键控,使载波频率不断跳变,这是一种以"躲避"方式为主的抗干扰体制。为了对付跟踪式干扰,各国都力图提高跳频速度。20世纪80年代跳频速度一般在200跳/秒左右,目前,跳速可达300~500跳/秒。美国的军事星和舰队通信卫星7号和8号上装有的极高频(EHF)组件,上下行均使用了跳频技术。军事星-2的跳频范围达2GHz带宽。抗干扰器⑶跳时(TH)跳时是用一定的码序列进行选择的多时片的时移键控,使发射信号在时间轴上跳变。从抑制干扰的角度来看,跳时得益甚少,唯一的优点是在于减少了占空比,一个干扰发射机为取得干扰效果就必须连续发射,因为干扰机不易识破跳时所使用的伪码参数。⑷各种混合方式在上述几种基本的抗干扰方式的基础上,可以互相组合,构成各种混合方式。例如FH/DS、DS/TH、FH/TH或DS/FH/TH等。采用两维甚至三维的混合式抗干扰技术体制是国外抗干扰通信发展的一个趋势。例如,将跳频信号用直扩码进行调制的跳频/直扩(FH/DS)混合抗干扰体制,这种体制每一跳频率点均以直扩信号方式出现,直扩信号的特点是其功率谱密度低,敌方难以侦收,即使侦收出来,只要侦收时间超过跳频所需时间,也无法进行跟踪干扰。美国的军事星和舰队通信卫星采用了跳频/直扩混合体制,美国的三军联合战术信息发布系统(JTIDS)就采用跳时、跳频加直扩的三维抗干扰技术体制。⑸扩展频段,发展微波、毫米波、光通信美国的国防通信卫星系统(DSCS)、英国的天网(Skynet)和北约(NATO)卫星最初工作在超高频(SHF)(约8GHz)。在90年代,DSCSⅢ为了适应移动通信的需要,增加了UHF频段。而天网4(SkynetⅣ)和北约4(NATOⅣ)除了增加UHF频段外,还增加了用于试验提高抗干扰性的EHF(44GHz)上行信道。美国海军的特高频后续星(UFO)系列从第4颗卫星开始,星上增加了一个与军事星兼容的EHF通信分系统,而且其舰队广播上行链路使用SHF频段。美国的军事星系统使用60GHz的星际链路,由于该频率上大气层的衰减很高,所以星际链路不受地基电子战设备的截收和干扰,而其星地链路在EHF频段(上行44GHz,下行20GHz)。卫星采用光通信时和电波之间不存在干扰问题,而且光通信能实现1Gbit/s以上的大容量卫星通信,美国NASA、欧洲ESA、日本等国正在大力研究光通信技术。⑹多波束天线和干扰置零技术美国的国防卫星通信系统(DSCSⅢ)的多波束天线(含19个发射波束和61个接收波束)能够根据敏感器探测到的干扰源位置,通过波束形成网络控制每个波束的相对幅度和相位,使天线在干扰方向上的增益为零。军事星和舰队通信卫星EHF组件都有点波束天线,使点波束之处的干扰很难奏效。⑺转发器加限幅器抗饱和抗干扰未采用扩频调制技术等上述技术的透明式线性转发器,其抗干扰性是很弱的,使用常规的干扰样式和与地球站的发射功率相当的干扰功率就可把它推入饱和区,而使它无法正常工作。带有限幅器的转发器,其抗干扰性优于线性转发器。但由于它具有强信号抑制弱信号的作用,只要干扰功率足够大,干扰仍可奏效。
㈡ 急求调频接收机电路原理图
自制45--470MHZ调频接收机
www.avrw.com
接收机具有高灵敏度线路简单,易于安装调试,由电池供电,工作稳定耗电少,体积小,便于携带等特点。电原理图见图1。
工作原理:由高频头将天线接收到的微弱调频信号进行放大和混频,混频后产生的31.5MHz伴音中频信号由IF端输出。ICl为调频接收集成块(由于高频头具有良好的调谐接收性能,而TDA7010T是专用调频接收1C,接收灵敏度达3uV,从而保证了整机具有很高的接收灵敏度),中频信号输入ICl的(11)脚,经ICl进行中频放大、调频检波后由②脚输出音频信号,IC2用于音频信号功率放大。T1、T2及LEDI等组成调谐指示电路。
T3、DWI、T4及相关元件组成6V稳压电路,为高频头及ICl提供稳定工作电压。T5、T6、B及相关元件组成升压逆变电路,通过T6、D3、DW3检测输出电压,以控制T5的振荡强度,达到稳压节能的目的。逆变电路输出33V调谐电压,供高频头调谐选台之用。Rt为温度补偿电阻,用于补偿开机初始因电容初充电造成33V调谐电压轻微不足(极轻微,用万用表测量不出)。图2为预选台电路,与K1配合使用。元件选择与制作:高频头可选用TDQ-3型470MHz全增补高频头,AFC脚留空,R1、R2、Cl选用微型或贴片元件,可直接焊接在高频头屏蔽盒内。调谐电位器W2选用100k多圈电位器,使调谐选台更方便,更稳定。ICl外围电路宜选用贴片元件安装,L用0.4mm漆包线在3mm的圆珠笔心上密绕23匝而成。升压逆变器B用1Omm小磁环作磁心(可从旧电子镇流器上拆用),用透明胶布包一层作绝缘处理,用0.25mm漆包线绕制,数据见图1上标注的数值。L3的作用是为6V稳压电路提供比电源电压略高(约0.8V)的偏置电压,以保证当电池电压下降至6.2V时仍有6V稳定电压输出。T4作恒流管用,DWI提供稳定的偏置电流。由于电源供电电路采取了相应措施,使6V输出电压和33V调谐电压非常稳定,保证了高频头和中放鉴频电路的高稳定性。电源选用6节7号镍氢充电电池或两块锂充电电池,CZ2为外接电源插孔。喇叭选用中50mm内磁式,整机可安装在14.5cmx8cmx2.2cm的塑料盒内。调试本接收机唯一需要调试的就是ICl的接收频率。为了保证其调谐为31.5MHz,可用正常接收的电视机配合调试:即用导线连接电视机高顿头IF端与TDA70IOT的天线输入端(即(11)脚),并连接地线;调整L,使之能收到伴音信号即可。测升压逆变电路工作电流约12mA;整机静态电流应小于45mA;电源电压在6.2~9V之间变化时,整机电流基本不变。使用效果本接收机经笔者半年多的使用和检验,效果令人非常满意。接收灵敏度很高(接收当地调频广播和电视台信号只需几厘米长的天线即可),工作稳定可靠;功耗低,小巧玲珑,令人爱不释手。由于高频头采取了低电压供电方式,使其工作电流大为下降。因此整机工作电流很小,从而利于用电池供电。本接收机的不足之处是开机初始需经过约3秒钟时间才能进入稳定工作状态。
㈢ 调频电路是什么电路
一般来说是结合电路说的,现在没有就简单说说,因为震荡频率f=1/(2*pi*L*C),所以通过改变加在变容二极管上的电压使电容量C随之改变,这样f也相应改变,达到调频的目的。
㈣ 关于调频电路
你没有很好的理解频谱的概念。
频谱相当于一个表示频率成分的图,在幅频特性曲专线属上,一个频率,在频谱上是一个线(垂直于X轴),而高度就是这个频率信号的幅度值。
当然,如果一个信号中有两个以上的频率,在频谱上将出现两条以上的线,这些线可能是分开的,也可能是紧挨着的(看这些信号频率之间的关系,如果频率靠得非常近,频谱仪的灵敏度关系,也可能紧挨着)。
至于你说的调频问题,首先你要明白,调频的本质就是将信号电压变化通过VCO转换为频率变化。由于两者的对应关系并不是线性的,所以你看到的频率也会很杂乱,会随着时间变化而变化,某个特定时间点上你看到的某个频率,在下一个检测时间点上,未必一定就存在。各个时间段上的频率值,包括频率组成和幅度值都是不一样的。
但调频也有个特性就是,调频已调信号的频率虽然会变化,但它不会跳出一个范围,它与中心频率的偏离量就是最大频偏。
㈤ 怎样做最简调幅/调频电路
电容三点式振荡电路是调频电路,集电极LC电路是调幅电路。这是最简单的振荡电路。
㈥ 调频电路的原理框图是由哪几部分组成
调频,全称“频来率自调制”。使载波的瞬时频率按照所需传递信号的变化规律而变化的调制方法。[1]它是一种使受调波瞬时频率随调制信号而变的调制方法。实现这种调制方法的电路称调频器,广泛用于调频广播、电视伴音、微波通信、锁相电路和扫频仪等方面。
㈦ 无线遥控器如何调频
工业无线遥控器指的是那些适合在工业环境中使用。抗干扰能力强,安全性高的遥控器。这类遥控器使用的通常是无线电波作为传输媒介,而不是红外线。所以调频自然就是需要应用无线电波的调频方式。
一种是用少许的元件加一个频率点的晶振(石英晶体振荡器)来实现调频。
另一种方法是通过LC振荡来实现,频率跟选用电感、电容的大小有关。有的遥控器中会留有一个可以调整频率的电感线圈,通过转动电感里面的色小铁芯来控制电感量的大小,从而实现频率的调整。
㈧ 一个简单的FM发射电路求解释
共基极Colpitts振荡器,驻极体话筒作为输入(线路输入亦可),输入信号电压变化将改专变晶体管属be结电容,从而改变与电感并联的总电容,实现调频。这个电路的频率稳定度比较差,温度、天线长短、人体远近都将影响其中心频率,网上应该可以找到很多改进型的。
可以阅读以下高频电子线路教材的电容三端式振荡器相关章节。
㈨ 调频电路
变容二极管是V/F 转换电路里面的一部分,是变化的电压转换成变化的电容量。
㈩ 调频电路工作原理
从左到右顺序:第一个9018是射频振荡,按参数频率在88-108M之间,话筒采集的声音通过第一级9018的BE结电容进行频率调制,中间的1000pF电容为振荡级退耦,不可省略。第一级信号能过33pF电容送入第二级9018做选频放大,第二级工作在甲类,微调第二级7T的线圈与发射信号谐振可得最好效果。最后33pF电容接入天线发射。但最好33pF接在7T线圈的第三圈抽头处,以阻抗匹配。