A. 调相的调相电路
调相实现常见的有三种方法,分别是可变移相法调相、可变时延法调相、矢量合成法调相。
可控移相网络有多种实现电路,其中应用最广的是由变容二极管和电感组成的调谐回路。电路组成如下图所示。
实际加到变容二极管上的调制电压uΩ’(t) 为
就构成间接调频。
相应的公式为:
这种方法能得到较大的相移,调制线性较好,但电路复杂。
如上图是矢量合成法调相的电路模型,矢量合成法原理为:
单音调制时,调相信号可表示为
说明:实现线性调相的条件:
B. 积分电路与微分电路的工作原理及定义
输出抄信号与输入信号的积分成正比袭的电路,称为积分电路。
http://ke..com/view/618186.html?wtp=tt
输出电压与输入电压的变化率成正比的电路。
http://ke..com/view/618183.htm
(输入字数受限)
C. 运算放大器 积分电路中 电容上并联一电阻 此电路什么作用
理想积分器是不用并联这个电阻的。
实际的积分器由于运算放大器难版免会存在偏置电压权,尽管偏置电压很低,还是会对电容进行充放电,时间一长,电容就饱和了。并联电阻的目的就是为了使给电容提供放电回路,不要饱和。
并联电阻后的积分器的传递函数已经不是理想积分器了,但是,只要输入信号周期远远大于RC常数,可以近似为积分器。
(3)调相电路扩展阅读:
积分电路还可以用于处理模拟信号。当输入为正弦信号 ui(t)=Um 时,积分电路的输出为u0(t)=1/RCdt=Um/ωRC。
其幅度为输入信号的1/ωRC,相位落后90°。当输入信号含有不同频率分量时,积分电路输出端的信号中频率较高的分量所占的比例降低。
在间接调频器中,为了用调相电路得到调频波,先用积分电路对调制信号积分,后由调相电路对载波进行相位调制,得到调频波。
积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。电路原理很简单,都是基于电容的充放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的时间宽度。
D. 自感传感器在应用中存在那些问题可以通过采用差动式自感传感器获得改善答案
1、自感式传感器的工作原理
电感值与以下几个参数有关:与线圈匝数w平方成正比;与空气隙有效截面积S0成正比;与空气隙长度l0所反比。
2、灵敏度与非线性
气隙型其灵敏度为:差动式传感器其灵敏度:
以上结论在满足Δl/l0<<1时成立。
从提高灵敏度的角度看,初始空气隙l0距离人应尽量小。其结果是被测量的范围也变小。同时,灵敏度的非线性也将增加。如采用增大空气隙等效截面积和增加线圈匝数的方法来提高灵敏度,则必将增大传感器的几何尺寸和重量。这些矛盾在设计传感器时应适当考虑。与截面型自感传感器相比,气隙型的灵敏度较高。但其非线性严重,自由行程小,制造装配困难。因此近年来这种类型的使用逐渐减少。差动式传感器其灵敏度与单极式比较。其灵敏度提高一倍,非线性大大减小。
3、等效电路
自感式传感器从电路角度来看并非纯电感,它既有线圈的铜耗,又有铁芯的涡流及磁滞损耗,这可用折合的有功电阻抗Rq表示。此外,无功阻抗除电感之外还包括绕组间分布电容。这部分电容用集总参数C表示,一个电感线圈的完整等效电路可用图3-4表示。
式中Rm---磁路总磁阻;
Za---铁芯部分的磁阻抗;
Z0--空气隙的磁阻抗。
4、转换电路
一、调幅电路
调幅电路的一种主要形式是交流电桥。图(a)所示为交流电桥的一般形式。桥臂Zi可以是电阻、电抗或阻抗元件。当空载时,其输出称为开路输出电压,表达式如下。式中U为电源电压。
图交流电桥的一般形式及等效电路
(a)电阻平衡臂电桥(b)变压器电桥
二、调频电路
调频电路的基本原理是传感器电感L变化将引起输出电压频率f的变化。一般是把传感器电感L和一个固定电容C接入一个振荡回路中,如图(a)所示。当L变化时,振荡频率随之变化,根据的f大小即可测出被测量值。当L有了微小变化ΔL后,频率变化Δf为
图调频电路
三、调相电路
调相电路的基本原理是传感器电感L变化将引起输出电压相位φ的变化。图(a)所示是一个相位电桥,一臂为传感器L,另一臂为固定电阻R。设计时使电感线圈具有高品质因数。忽略其损耗电阻,则电感线圈与固定电阻上压降UL与UR互相垂直,如图(b)所示。当电感L变化时,输出电压U0的幅值不变,相位角φ随之变化。
φ与L的关系为
式中ω--电源角频率
图调相电路
5、零点残余电压
它表现在电桥预平衡时,无法实现平衡,最后总要存在着某个输出值ΔU0,这称为零点残余电压,如图所示。
图U0-l特性
6、自感式传感器的特点以及应用
自感式传感器有如下几个特点:
①灵敏度比较好,目前可测0.1μm的直线位移,输出信号比较大、信噪比较好;
②测量范围比较小,适用于测量较小位移;
③存在非线性;
④消耗功率较大,尤其是单极式电感传感器,这是由于它有较大的电磁吸力的缘故;
⑤工艺要求不高,加工容易。
E. 自感式传感器采用交流电桥测量存在什么问题,如何解决
自感式传感器实现了把被测量的变化转变为电感量的变化。为了测出电感量的变化,同时也为了送入下级电路进行放大和处理,就要用转换电路把电感变化转换成电压(或电流)变化。把传感器电感接人不同的转换电路后,原则上可将电感变化转换成电压(或电流)的幅值、频串、相位的变化,它们分别称为调幅、调频、调相电路。在自感式传感器中,调幅电器用得较多,调频、调相电路用得较少。
自感式传感器有如下几个特点:
(1)灵敏度比较好,目前可测0.1 μm的直线位移,输出信号比较大,信噪比较好。
(2)测量范围比较小,适用于测量较小位移。
(3)存在非线性。
(4)消耗功率较大,尤其是单极式电感传感器,这是由于它有较大的电磁吸力的缘故。
(5) 工艺要求不高,加工容易。
F. 给定积分器电路有什么作用
很多产品上的电机使用调频的方式进行调速。积分电路也可以用来抑制频率干扰信号。在间接调频器中,先用积分电路对调制信号积分,使调制信号幅度与它的频率成反比,然后由调相电路对载波进行相位调制,就可以产生调频波,实现调相-调频波的变换。从而实现调速。
G. 直接调频 间接调频 优缺点
直接调频法中振荡器和调制器合二为一。这种方法的优点是在实现线性调频的要求下,可以获得相对较大的频偏。它的主要缺点是会导致FM波的中心频率偏移,频率稳定度差,在许多场合对载频采取自动频率微调电路(AFC)来克服载频的偏移或者对晶体振荡器进行直接调频。
间接调频法
先将调制信号进行积分处理,然后用它控制载波的瞬时相位变化,从而实现间接控制载波的瞬时频率变化的方法,称为间接调频法。
根据前述调频与调相波之间的关系可知,调频波可看成将调制信号积分后的调相波。
这样,调相输出的信号相对积分后的调制信号而言是调相波,但对原调制信号而言则为调频波。这种实现调相的电路独立于高频载波振荡器以外,所以这种调频波突出的优点是载波中心频率的稳定性可以做得较高,但可能得到的最大频偏较小。
无论是直接调频,还是间接调频,其主要技术要求是:频偏尽量大,并且与调制信号保持良好的线性关系;中心频率的稳定性尽量高;寄生调幅尽量小;调制灵敏度尽量高。其中频偏增大与调制线性度之间是矛盾的。
H. 当输出波形和输入波形反相时,导通延迟时间和截止延迟时间分别指什么
这是逻辑实验的一个思考题吧,这里说的“输出波形和输入波形反相”指的是调整双踪示波器的按钮使ch1和ch2的波形同时反向,tPdL和tPdH表示的仍分别是导通延迟时间和截止延迟时间,只不过一个是上升一个是下降而已。
输入信号经过了一个电阻后经过反馈流到电容上,但此时认为电容的初始电量为零,故此时给电容充电。由理想运算放大器的虚短、虚断性质得,(vi-0)/R=dQ/dt=C*d(0-vo)/dt,所以vo=-1/(RC)∫ vdt。
简单的RC积分电路的实际输出波形与理想情况不同,在t<<RC的时间范围内,输出电压比较接近于理想的线性斜升电压,随着时间延续,电容两端的电压增高,充电电流减小、输出电压就越来越偏离理想积分电路的输出。
当输入信号含有不同频率分量时,积分电路输出端的信号中频率较高的分量所占的比例降低。在间接调频器中,为了用调相电路得到调频波,先用积分电路对调制信号积分,后由调相电路对载波进行相位调制,得到调频波。
当时间常数较大,如超过10ms时,电容C1的值就会达到数微法,由于微法级的标称值电容选择面较窄,故宜用改变电阻R1的方法来调整时间常数。
但如所需时间常数较小时,就应选择R1为数千欧~数十千欧,再往小的方向选择C1的值来调整时间常数。因为R1的值如果太小,容易受到前级信号源输出阻抗的影响。
I. Proteus电子电路设计及仿真的目录
第1章 Proteus概述 1
1.1 Proteus历史 1
1.2 Proteus应用领域 1
1.3 Proteus VSM组件 2
1.4 Proteus的启动和退出 3
1.5 Proteus设计流程 5
1.5.1 自顶向下设计 5
1.5.2 自下而上设计 5
1.6 Proteus安装方法 6
第2章 Proteus ISIS基本操作 9
2.1 Proteus ISIS工作界面 9
2.1.1 编辑窗口 9
2.1.2 预览窗口 11
2.1.3 对象选择器 11
2.1.4 菜单栏与主工具栏 11
2.1.5 状态栏 13
2.1.6 工具箱 13
2.1.7 方向工具栏及仿真按钮 15
2.2 编辑环境设置 16
2.2.1 模板设置 16
2.2.2 图表设置 16
2.2.3 图形设置 17
2.2.4 文本设置 17
2.2.5 图形文本设置 17
2.2.6 交点设置 19
2.3 系统参数设置 20
2.3.1 元件清单设置 20
2.3.2 环境设置 22
2.3.3 路径设置 23
2.3.4 属性定义设置 24
2.3.5 图纸大小设置 25
2.3.6 文本编辑选项设置 25
2.3.7 快捷键设置 25
2.3.8 动画选项设置 27
2.3.9 仿真选项设置 28
实例2-1 原理图绘制实例 32
第3章 Proteus ISIS电路绘制 36
3.1 绘图模式及命令 36
3.1.1 Component(元件)模式 37
3.1.2 Junction dot(节点)模式 38
3.1.3 Wire label(连线标号)模式 38
3.1.4 Text scripts(文字脚本)模式 39
3.1.5 总线(Buses)模式 41
3.1.6 Subcircuit(子电路)模式 41
3.1.7 Terminals(终端)模式 42
3.1.8 Device Pins(器件引脚)模式 43
3.1.9 2D图形工具 44
3.2 导线的操作 45
3.2.1 两对象连线 45
3.2.2 连接点 45
3.2.3 重复布线 46
3.2.4 拖动连线 46
3.2.5 移走节点 47
3.3 对象的操作 47
3.3.1 选中对象 48
3.3.2 放置对象 48
3.3.3 删除对象 48
3.3.4 复制对象 48
3.3.5 拖动对象 48
3.3.6 调整对象 49
3.3.7 调整朝向 49
3.3.8 编辑对象 49
3.4 绘制电路图进阶 49
3.4.1 替换元件 49
3.4.2 隐藏引脚 49
3.4.3 设置头框 50
3.4.4 设置连线外观 51
3.5 典型实例 52
实例3-1 绘制共发射极放大电路 52
实例3-2 JK触发器组成的三位二进制同
步计数器的绘制与测试 54
实例3-3 KEYPAD的绘制及仿真 57
实例3-4 单片机控串行输入并行输出
移位寄存器绘制练习 65
第4章 ProteusISIS分析及仿真工具 69
4.1 虚拟仪器 69
4.2 探针 71
4.3 图表 72
4.4 激励源 74
4.4.1 直流信号发生器DC设置 75
4.4.2 幅度、频率、相位可控的正弦
波发生器SINE设置 75
4.4.3 模拟脉冲发生器PULSE设置 76
4.4.4 指数脉冲发生器EXP设置 77
4.4.5 单频率调频波信号发生器SFFM
设置 78
4.4.6 PWLIN分段线性脉冲信号发生
器设置 78
4.4.7 FILE信号发生器设置 79
4.4.8 音频信号发生器AUDIO设置 80
4.4.9 单周期数字脉冲发生器DPULSE
设置 81
4.4.10 数字单边沿信号发生器DEDGE
设置 81
4.4.11 数字单稳态逻辑电平发生器
DSTATE设置 82
4.4.12 数字时钟信号发生器DCLOCK
设置 82
4.4.13 数字模式信号发生器DPATTERN
设置 83
4.5 典型实例 83
实例4-1 共发射极放大电路分析 83
实例4-2 ADC0832电路时序分析 88
实例4-3 共发射极应用低通滤波电路
分析 91
第5章 模拟电路设计及仿真 95
5.1 运算放大器基本应用电路 95
5.1.1 反相放大电路 96
5.1.2 同相放大电路 97
5.1.3 差动放大电路 98
5.1.4 加法运算电路 100
5.1.5 减法运算电路 101
5.1.6 微分运算电路 102
5.1.7 积分运算电路 102
实例5-1 PID控制电路分析 104
5.2 测量放大电路与隔离电路 106
5.2.1 测量放大器 106
实例5-2 测量放大器测温电路分析 108
5.2.2 隔离放大器 109
实例5-3 模拟信号隔离放大电路
分析 110
5.3 信号转换电路 112
5.3.1 电压比较电路 112
5.3.2 电压/频率转换电路 117
5.3.3 频率/电压转换电路 118
5.3.4 电压—电流转换电路 119
5.3.5 电流—电压转换电路 120
5.4 移相电路与相敏检波电路 121
5.4.1 移相电路 121
5.4.2 相敏检波电路 123
实例5-4 相敏检波器鉴相特性分析 125
5.5 信号细分电路 126
实例5-5 电阻链二倍频细分电路
分析 128
5.6 有源滤波电路 129
5.6.1 低通滤波电路 129
5.6.2 高通滤波电路 131
5.6.3 带通滤波电路 134
5.6.4 带阻滤波电路 135
5.7 信号调制/解调 136
5.7.1 调幅电路 137
5.7.2 调频电路 139
5.7.3 调相电路 141
5.8 函数发生电路 142
5.8.1 正弦波信号发生电路 142
实例5-6 电容三点式振荡电路分析 145
5.8.2 矩形波信号发生电路 147
5.8.3 占空比可调的矩形波发生
电路 148
5.8.4 三角波信号发生电路 150
5.8.5 锯齿波信号发生电路 150
实例5-7 集成函数发生器ICL8038
电路分析 150
第6章 数字电路设计及仿真 155
6.1 基本应用电路 155
6.1.1 双稳态触发器 155
6.1.2 寄存器/移位寄存器 158
实例6-1 74LS194 8位双向移位寄存器
分析 158
6.1.3 编码电路 160
6.1.4 译码电路 162
实例6-2 CD4511译码显示电路
分析 163
6.1.5 算术逻辑电路 164
6.1.6 多路选择器 166
6.1.7 数据分配器 167
6.1.8 加/减计数器 168
6.2 脉冲电路 171
6.2.1 555定时器构成的多谐振荡器 171
实例6-3 占空比与频率均可调的多
谐振荡器分析 175
6.2.2 矩形脉冲的整形 177
6.3 电容测量仪 181
6.3.1 电容测量仪设计原理 181
6.3.2 电容测量仪电路设计 181
6.4 多路电子抢答器 185
6.4.1 简单8路电子抢答器 185
6.4.2 8路带数字显示电子抢答器 186
第7章 单片机仿真 190
7.1 Proteus与单片机仿真 190
7.1.1 创建源代码文件 190
7.1.2 编辑源代码程序 192
7.1.3 生成目标代码 192
7.1.4 代码生成工具 192
7.1.5 定义第三方源代码编辑器 193
7.1.6 使用第三方IDE 193
7.1.7 单步调试 194
7.1.8 断点调试 194
7.1.9 MULTI-CPU调试 195
7.1.10 弹出式窗口 195
7.2 WinAVR编译器 203
7.2.1 WinAVR编译器简介 203
7.2.2 安装WinAVR编译器 204
7.2.3 WinAVR的使用 206
7.3 ATMEGA16单片机概述 210
7.3.1 AVR系列单片机特点 210
7.3.2 ATmega16总体结构 212
7.4 I/O端口及其第二功能 221
7.4.1 端口A的第二功能 222
7.4.2 端口B的第二功能 222
7.4.3 端口C的第二功能 223
7.4.4 端口D的第二功能 224
实例7-1 使用Proteus仿真键盘控
LED 224
7.5 中断处理 228
7.5.1 ATmega16中断源 229
7.5.2 相关I/O寄存器 229
7.5.3 断处理 233
实例7-2 使用Proteus仿真中断唤醒的
键盘 234
7.6 ADC模拟输入接口 239
7.6.1 ADC特点 239
7.6.2 ADC的工作方式 240
7.6.3 ADC预分频器 240
7.6.4 ADC的噪声抑制 243
7.6.5 与ADC有关的I/O寄存器 243
7.6.6 ADC噪声消除技术 246
实例7-3 使用Proteus仿真简易电
量计 247
7.7 通用串行接口UART 252
7.7.1 数据传送 252
7.7.2 数据接收 253
7.7.3 与UART相关的寄存器 253
实例7-4 使用Proteus仿真以查询方式
与虚拟终端及单片机之间互相
通信 260
实例7-5 使用Proteus仿真利用标准I/O
流与虚拟终端通信调试 265
7.8 定时器/计数器 269
7.8.1 T/C0 269
7.8.2 T/C1 273
7.8.3 T/C2 279
7.8.4 定时器/计数器的预分频器 282
实例7-6 使用Proteus仿真T/C0定时
闪烁LED灯 282
实例7-7 使用Proteus仿真T/C2产生
信号T/C1进行捕获 286
实例7-8 使用Proteus仿真T/C1产生
PWM信号控电机 291
实例7-9 使用Proteus仿真看门狗
定时器 297
7.9 同步串行接口SPI 299
7.9.1 SPI特性 300
7.9.2 SPI工作模式 300
7.9.3 SPI数据模式 301
7.9.4 与SPI相关的寄存器 302
实例7-10 使用Proteus仿真端口
扩展 304
7.10 两线串行接口TWI 310
7.10.1 TWI特性 311
7.10.2 TWI的总线仲裁 311
7.10.3 TWI的使用 311
7.10.4 与TWI相关的寄存器 312
实例7-11 使用Proteus仿真双芯片
TWI通信 315
7.11 综合仿真 320
实例7-12 使用Proteus仿真DS18B20
测温计 321
实例7-13 使用Proteus仿真电子
万年历 333
实例7-14 使用Proteus仿真DS1302
实时时钟 346
第8章 PCB布板 353
8.1 PCB概述 353
8.2 Proteus ARES的工作界面 353
8.2.1 编辑窗口 354
8.2.2 预览窗口 355
8.2.3 对象选择器 355
8.2.4 菜单栏与主工具栏 355
8.2.5 状态栏 357
8.2.6 工具箱 357
8.3 ARES系统设置 358
8.3.1 颜色设置 358
8.3.2 默认规则设置 358
8.3.3 环境设置 360
8.3.4 选择过滤器设置 361
8.3.5 快捷键设置 361
8.3.6 网格设置 361
8.3.7 使用板层设置 362
8.3.8 板层对设置 362
8.3.9 路径设置 363
8.3.10 模板设置 364
8.3.11 工作区域设置 365
实例8-1 PCB布板流程 366
参考文献 378
原理图,顾名思义就是表示电路板上各器件之间连接原理的图表。在方案开发等正向研究中,原理图的作用是非常重要的,而对原理图的把关也关乎整个项目的质量甚至生命。由原理图延伸下去会涉及到PCB layout,也就是PCB布线,当然这种布线是基于原理图来做成的,通过对原理图的分析以及电路板其他条件的限制,设计者得以确定器件的位置以及电路板的层数等。
基尔霍夫定律Kirchhoff laws是电路中电压和电流所遵循的基本规律,是分析和计算较为复杂电路的基础,1845年由德国物理学家G.R.基尔霍夫(Gustav Robert Kirchhoff,1824~1887)提出。它既可以用于直流电路的分析,也可以用于交流电路的分析,还可以用于含有电子元件的非线性电路的分析。运用基尔霍夫定律进行电路分析时,仅与电路的连接方式有关,而与构成该电路的元器件具有什么样的性质无关。基尔霍夫定律包括电流定律(KCL)和电压定律(KVL),前者应用于电路中的节点而后者应用于电路中的回路。
多用表
multimeter
由磁电系电表的测量机构与整流器构成的多功能、多量程的机械式指示电表(见电流表)。可用以测量交、直流电压,交、直流电流,电阻。又称万用表或繁用表。有些多用表还具有测量电容、电感等功能。
多用表主要由磁电系电表的测量机构、测量电路和转换开关
组成。其中,转换开关是多用表选择不同测量功能和不同量程时的切换元件。
满偏转电流约为 40~200μA。多用表用一个测量机构来测量多种电学量,各具有几个量程。其工作原理是:通过测量电路的变换,将被测量变换成磁电系测量机构能够接受的直流电流。例如测量机构结合分流器(见电流表)及分压器,就形成测量直流电流和电压的多量程直流电表。磁电系测量机构与半波或全波整流器组成整流式电表的测量机构,再结合分流器及分压器,就形成测量交流电流和电压的多量程交流电表。多用表内还带有电池,当被测电阻值不同时,电池使测量机构内通过不同数值的电流,从而反映出不同的被测电阻值。转换开关是多用表选择不同测量功能和不同量程时的切换元件。
用多用表测量电阻的原理电路见图。当被测电阻Rx=0时,电路中的电流最大,调节R使测量机构指针的偏转角为满刻度值,此时电路中的电流值I0=E/R。当被测电阻Rx增大时,电流I=E/(R+Rx)逐渐减小,指针的偏转角也减小。因此多用表表盘上的电阻值标尺是反向的,而且刻度不均匀。若被测电阻Rx=R,则电流I=I0/2,指针偏转角为满偏转角的一半。因此刻度中点处所标的电阻值(称为中值电阻)即为该量程下多用表的内阻值。通常电阻值标尺的有效读数范围为0.1~10倍中值电阻值。
随着电子技术的不断进步,多用表正逐步向数字式方向发展。
J. 采用电力电子技术如何从电网中得到幅值,相位及频率可控的交流电
交流电的幅值、相位、频率都是可调的。简单的放电电路就可以调幅。简单的调相电路就可以调相,简单的调频电路就可以调频。三个因素同时调节的条件可能性也是有的。