导航:首页 > 电器电路 > 解释门电路

解释门电路

发布时间:2022-05-16 07:09:41

Ⅰ 电子技术的门电路的怎么理解

门电路你可以形象点把它比作一个门口,就是进和出,只不过是进去什么,出来的会是什么罢了,中间会有一些处理,比如说非门,就是取反,进的和出的相反

Ⅱ 三态门电路解释

片选端抄(一般用OE表示,你这里用G)取反是因为它被设定为低电平有效;
DIR是控制传输方向的管脚,当DIR为高电平时,传输方向为A→B,当DIR为低电平时,传输方向为B→A。片选端OE(19脚)为低电平时,74245才工作,OE为高电平时,74245都输出高阻状态,对任何输入信号都没有反应。

Ⅲ 什么叫门电路

门电路,是指用以实现基本逻辑运算和复合逻辑运算的单元电路,常用的门电路专在逻辑功能上有与门、属或门、非门、与非门、或非门、与或非门、异或门等几种。门电路的各输入端所加的脉冲信号只有满足一定的条件时,“门”才打开,即才有脉冲信号输出。门电路几乎可以组成数字电路里面任何一种复杂的功能电路,包括类似于加法、乘法的运算电路,或者寄存器等具有存储功能的电路,以及各种自由的控制逻辑电路,都是由基本的门电路组合而成的。门电路输出端的电路结构有三种型式:有源负载推拉式(或互补式)输出、集电极(或漏极)开路输出和三态输出。

Ⅳ 门电路工作原理

第五节 CMOS逻辑门电路
http://www.fjtu.com.cn/fjnu/courseware/0321/course/_source/web/lesson/char2/j6.htm 看看把

CMOS逻辑门电路是在TTL电路问世之后 ,所开发出的第二种广泛应用的数字集成器件,从发展趋势来看,由于制造工艺的改进,CMOS电路的性能有可能超越TTL而成为占主导地位的逻辑器件 。CMOS电路的工作速度可与TTL相比较,而它的功耗和抗干扰能力则远优于TTL。此外,几乎所有的超大规模存储器件 ,以及PLD器件都采用CMOS艺制造,且费用较低。
早期生产的CMOS门电路为4000系列 ,随后发展为4000B系列。当前与TTL兼容的CMO器件如74HCT系列等可与TTL器件交换使用。下面首先讨论CMOS反相器,然后介绍其他CMO逻辑门电路。

MOS管结构图

MOS管主要参数:

1.开启电压VT
·开启电压(又称阈值电压):使得源极S和漏极D之间开始形成导电沟道所需的栅极电压;
·标准的N沟道MOS管,VT约为3~6V;
·通过工艺上的改进,可以使MOS管的VT值降到2~3V。

2. 直流输入电阻RGS
·即在栅源极之间加的电压与栅极电流之比
·这一特性有时以流过栅极的栅流表示
·MOS管的RGS可以很容易地超过1010Ω。

3. 漏源击穿电压BVDS
·在VGS=0(增强型)的条件下 ,在增加漏源电压过程中使ID开始剧增时的VDS称为漏源击穿电压BVDS
·ID剧增的原因有下列两个方面:
(1)漏极附近耗尽层的雪崩击穿
(2)漏源极间的穿通击穿
·有些MOS管中,其沟道长度较短,不断增加VDS会使漏区的耗尽层一直扩展到源区,使沟道长度为零,即产生漏源间的穿通,穿通后
,源区中的多数载流子,将直接受耗尽层电场的吸引,到达漏区,产生大的ID

4. 栅源击穿电压BVGS
·在增加栅源电压过程中,使栅极电流IG由零开始剧增时的VGS,称为栅源击穿电压BVGS。

5. 低频跨导gm
·在VDS为某一固定数值的条件下 ,漏极电流的微变量和引起这个变化的栅源电压微变量之比称为跨导
·gm反映了栅源电压对漏极电流的控制能力
·是表征MOS管放大能力的一个重要参数
·一般在十分之几至几mA/V的范围内

6. 导通电阻RON
·导通电阻RON说明了VDS对ID的影响 ,是漏极特性某一点切线的斜率的倒数
·在饱和区,ID几乎不随VDS改变,RON的数值很大 ,一般在几十千欧到几百千欧之间
·由于在数字电路中 ,MOS管导通时经常工作在VDS=0的状态下,所以这时的导通电阻RON可用原点的RON来近似
·对一般的MOS管而言,RON的数值在几百欧以内

7. 极间电容
·三个电极之间都存在着极间电容:栅源电容CGS 、栅漏电容CGD和漏源电容CDS
·CGS和CGD约为1~3pF
·CDS约在0.1~1pF之间

8. 低频噪声系数NF
·噪声是由管子内部载流子运动的不规则性所引起的
·由于它的存在,就使一个放大器即便在没有信号输人时,在输 出端也出现不规则的电压或电流变化
·噪声性能的大小通常用噪声系数NF来表示,它的单位为分贝(dB)
·这个数值越小,代表管子所产生的噪声越小
·低频噪声系数是在低频范围内测出的噪声系数
·场效应管的噪声系数约为几个分贝,它比双极性三极管的要小

一、CMOS反相器

由本书模拟部分已知,MOSFET有P沟道和N沟道两种,每种中又有耗尽型和增强型两类。由N沟道和P沟道两种MOSFET组成的电路称为互补MOS或CMOS电路。
下图表示CMOS反相器电路,由两只增强型MOSFET组成,其中一个为N沟道结构,另一个为P沟道结构。为了电路能正常工作,要求电源电压VDD大于两个管子的开启电压的绝对值之和,即
VDD>(VTN+|VTP|) 。

1.工作原理

首先考虑两种极限情况:当vI处于逻辑0时 ,相应的电压近似为0V;而当vI处于逻辑1时,相应的电压近似为VDD。假设在两种情况下N沟道管 TN为工作管P沟道管TP为负载管。但是,由于电路是互补对称的,这种假设可以是任意的,相反的情况亦将导致相同的结果。
下图分析了当vI=VDD时的工作情况。在TN的输出特性iD—vDS(vGSN=VDD)(注意vDSN=vO)上 ,叠加一条负载线,它是负载管TP在 vSGP=0V时的输出特性iD-vSD。由于vSGP<VT(VTN=|VTP|=VT),负载曲线几乎是一条与横轴重合的水平线。两条曲线的交点即工作点。显然,这时的输出电压vOL≈0V(典型值<10mV ,而通过两管的电流接近于零。这就是说,电路的功耗很小(微瓦量级)

下图分析了另一种极限情况,此时对应于vI=0V。此时工作管TN在vGSN=0的情况下运用,其输出特性iD-vDS几乎与横轴重合 ,负载曲线是负载管TP在vsGP=VDD时的输出特性iD-vDS。由图可知,工作点决定了VO=VOH≈VDD;通过两器件的电流接近零值 。可见上述两种极限情况下的功耗都很低。

由此可知,基本CMOS反相器近似于一理想的逻辑单元,其输出电压接近于零或+VDD,而功耗几乎为零。

2.传输特性

下图为CMOS反相器的传输特性图。图中VDD=10V,VTN=|VTP|=VT=
2V。由于 VDD>(VTN+|VTP|),因此,当VDD-|VTP|>vI>VTN 时,TN和TP两管同时导通。考虑到电路是互补对称的,一器件可将另一器件视为它的漏极负载。还应注意到,器件在放大区(饱和区)呈现恒流特性,两器件之一可当作高阻值的负载。因此,在过渡区域,传输特性变化比较急剧。两管在VI=VDD/2处转换状态。

3.工作速度

CMOS反相器在电容负载情况下,它的开通时间与关闭时间是相等的,这是因为电路具有互补对称的性质。下图表示当vI=0V时 ,TN截止,TP导通,由VDD通过TP向负载电容CL充电的情况。由于CMOS反相器中,两管的gm值均设计得较大,其导通电阻较小,充电回路的时间常数较小。类似地,亦可分析电容CL的放电过程。CMOS反相器的平均传输延迟时间约为10ns。

二、CMOS门电路

1.与非门电路

下图是2输入端CMOS与非门电路,其中包括两个串联的N沟道增强型MOS管和两个并联的P沟道增强型MOS管。每个输入端连到一个N沟道和一个P沟道MOS管的栅极。当输入端A、B中只要有一个为低电平时,就会使与它相连的NMOS管截止,与它相连的PMOS管导通,输出为高电平;仅当A、B全为高电平时,才会使两个串联的NMOS管都导通,使两个并联的PMOS管都截止,输出为低电平。

因此,这种电路具有与非的逻辑功能,即
n个输入端的与非门必须有n个NMOS管串联和n个PMOS管并联。

2.或非门电路

下图是2输入端CMOS或非门电路。其中包括两个并联的N沟道增强型MOS管和两个串联的P沟道增强型MOS管。

当输入端A、B中只要有一个为高电平时,就会使与它相连的NMOS管导通,与它相连的PMOS管截止,输出为低电平;仅当A、B全为低电平时,两个并联NMOS管都截止,两个串联的PMOS管都导通,输出为高电平。
因此,这种电路具有或非的逻辑功能,其逻辑表达式为

显然,n个输入端的或非门必须有n个NMOS管并联和n个PMOS管并联。
比较CMOS与非门和或非门可知,与非门的工作管是彼此串联的,其输出电压随管子个数的增加而增加;或非门则相反,工作管彼此并联,对输出电压不致有明显的影响。因而或非门用得较多。

3.异或门电路

上图为CMOS异或门电路。它由一级或非门和一级与或非门组成。或非门的输出。而与或非门的输出L即为输入A、B的异或

如在异或门的后面增加一级反相器就构成异或非门,由于具有的功能,因而称为同或门。异成门和同或门的逻辑符号如下图所示。

三、BiCMOS门电路

双极型CMOS或BiCMOS的特点在于,利用了双极型器件的速度快和MOSFET的功耗低两方面的优势,因而这种逻辑门电路受到用户的重视


1.BiCMOS反相器

上图表示基本的BiCMOS反相器电路,为了清楚起见,MOSFET用符号M表示BJT用T表示。T1和T2构成推拉式输出级。而Mp、MN、M1、M2所组成的输入级与基本的CMOS反相器很相似。输入信号vI同时作用于MP和MN的栅极。当vI为高电压时MN导通而MP截止;而当vI为低电压时,情况则相反,Mp导通,MN截止。当输出端接有同类BiCMOS门电路时,输出级能提供足够大的电流为电容性负载充电。同理,已充电的电容负载也能迅速地通过T2放电。
上述电路中T1和T2的基区存储电荷亦可通过M1和M2释放,以加快
电路的开关速度。当vI为高电压时M1导通,T1基区的存储电荷迅速消散。这种作用与TTL门电路的输入级中T1类似。同理 ,当vI为低电压时,电源电压VDD通过MP以激励M2使M2导通,显然T2基区的存储电荷通过M2而消散。可见,门电路的开关速度可得到改善。

2.BiCMOS门电路

根据前述的CMOS门电路的结构和工作原理,同样可以用BiCMOS技术实现或非门和与非门。如果要实现或非逻辑关系,输入信号用来驱动并联的N沟道MOSFET,而P沟道MOSFET则彼此串联。正如下图所示的
2输入端或非门。

当A和B均为低电平时,则两个MOSFET MPA和MPB均导通,T1导通而MNA和MNB均截止,输出L为高电平。与此同时,M1通过MPA和MpB被VDD所激励,从而为T2的基区存储电荷提供一条释放通路。
另一方面,当两输入端A和B中之一为高电平时 ,则MpA和MpB的通路被断开,并且MNA或MNB导通,将使输出端为低电平。同时,M1A或M1B为T1的基极存储电荷提供一条释放道路。因此 ,只要有一个输入端接高电平,输出即为低电平。

四、CMOS传输门

MOSFET的输出特性在原点附近呈线性对称关系,因而它们常用作模拟开关。模拟开关广泛地用于取样——保持电路、斩波电路、模数和数模转换电路等。下面着重介绍CMOS传输门。

所谓传输门(TG)就是一种传输模拟信号的模拟开关。CMOS传输门由一个P沟道和一个N沟道增强型MOSFET并联而成,如上图所示。TP和TN是结构对称的器件,它们的漏极和源极是可互换的。设它们的开启电压|VT|=2V且输入模拟信号的变化范围为-5V到+5V 。为使衬底与漏源极之间的PN结任何时刻都不致正偏 ,故TP的衬底接+5V电压,而TN的衬底接-5V电压 。两管的栅极由互补的信号电压(+5V和-5V)来控制,分别用C和表示。
传输门的工作情况如下:当C端接低电压-5V时TN的栅压即为-5V,vI取-5V到+5V范围内的任意值时,TN均不导通。同时,TP的栅压为+5V
,TP亦不导通。可见,当C端接低电压时,开关是断开的。
为使开关接通,可将C端接高电压+5V。此时TN的栅压为+5V ,vI在-5V到+3V的范围内,TN导通。同时TP的棚压为-5V ,vI在-3V到+5V的范围内TP将导通。
由上分析可知,当vI<-3V时,仅有TN导通,而当vI>+3V时,仅有TP导通当vI在-3V到+3V的范围内,TN和TP两管均导通。进一步分析
还可看到,一管导通的程度愈深,另一管的导通程度则相应地减小。换句话说,当一管的导通电阻减小,则另一管的导通电阻就增加。由于两管系并联运行,可近似地认为开关的导通电阻近似为一常数。这是CMOS传输出门的优点。
在正常工作时,模拟开关的导通电阻值约为数百欧,当它与输入阻抗为兆欧级的运放串接时,可以忽略不计。
CMOS传输门除了作为传输模拟信号的开关之外,也可作为各种逻辑电路的基本单元电路。

Ⅳ 求与门,或门,非门,与非门,或非门,与或门的含义和电路图

门电路是数字逻辑的一种称呼,有三种基本逻辑关系,即与、或、非,下面用一般电路来解释:

1、与门

与:指同时的意思,A和B或者更多的条件,同时具备时,才能有结果,只要有一个条件不具备,就没有结果。

只有当两个开关都闭合时,电灯才会亮,就是两个开关串联。

2、或门

或:或者的意思,许多条件A,B,C等,其中至少有一个条件具备时,就有结果,只有所有条件都不具备时,才没有结果。

只需要一个开关闭合,电灯就会点亮,就是两个开关并联。

3、非门

非:就是相反的意思,具备条件A,没有结果,不具备条件A,则有结果。

只有在开关断开时,电灯才会亮,就是一个开关和电灯并联。

(资料来源:网络:门电路)

Ⅵ 谁给我解释下数字电路中门电路还有非门和与非门都说下

门电路是数字电路的基本组成单元。它有一个或多个输入端和一个输出端,输入和输出为低电平和高电平(分别代表2进制0和1)。
门电路一般有:与门、或门、非门、与非门、或非门等
非门:输出状态(0或1)与输入状态相反。
与非门:以两输入的为例
,先把输入求与,即同为1得1,只要两输入中有0则得0,在将得到的值求非后输出。

Ⅶ 如何理解与门电路(问题很傻,高手勿笑)

首先说,理论知识很重要。搞实践没有理论会很肤浅。

“与”就是“乘”的意思。输出电平=各输入电平的乘积。所以“A,B,C三个输入端只要有一个输入是低电平(0)则输出端Y输出为低电平(0)”这句话是正确的--乘数中有一个是0,积就是0。

“A,B,C三个输入端只要有一个输入是低电平(0)则输出端Y输出为低电平(0),……是不是说因为A,B,C三点和Y是并联关系?”---完全可以这样理解。

“可是并联电路不是都与电源电压相等吗?我觉得无论A,B,C是否导通,Y两端的电压都应该是电源电压啊”---你张冠李戴了:
在比如家用照明电路中,电灯是与电源并联的,所以电灯的电压与电源电压相等。
在本电路中,Y不是与电源并联的,而是通过电阻R接电源U的,情况就完全不同了,当ABC任一输入为“0”时,相应的D导通,电流在R上产生压降,Y的电压就不可能是电源电压啦,而是电源电压减去R压降,在这里就是D的正向压降,以硅二极管来说,是0.7V--可忽略,认为Y无电压(可把正向导通的二极管看成是导线),是低电平“0”
在ABC都是高电平1时,所有的二极管都不导通,(可能)只有Y的电流流经R,在R上产生压降,所以Y的电压是略小于电源U的,但Y的电流很小R的压降也很小可忽略。认为Y的电压等于电源,是高电平“1”。

Ⅷ 用最通俗易懂的话语解释或门、与门、非门电路

与门:某财务室门为了安全,并列安装了2把锁,只有甲乙二人同时开锁才可打开门,甲单独开锁打不开门,甲单独开锁也打不开门。或门则是甲单去开锁门也开,乙单去开锁门也开,一起去也开门。非门是甲去开锁打不开门,乙去开锁也不打开门,一起去也不打不开门。

Ⅸ 解释CMOS门电路的输入端为什么不能悬空

这是有MOS管的特性决定的,MOS管输入阻抗很大(栅极源极之间有一层氧化层),输入阻抗大,对微弱信号的捕捉能力就很强(简单地把干扰源等效为一个理想电压源和一个内阻的串联,根据分压原理可知输入电阻越大输入的分压越大),所以悬空时很容易受周围信号的干扰。

静态功耗低,每门功耗为纳瓦级;逻辑摆幅大,近似等于电源电压。抗干扰能力强,直流噪声容限达逻辑摆幅的35%左右。可在较广泛的电源电压范围内工作,便于与其他电路接口,速度快,门延迟时间达纳秒级;在模拟电路中应用,其性能比NMOS电路好;与NMOS电路相比,集成度稍低。

(9)解释门电路扩展阅读:

由于两管栅极工作电压极性相反,故将两管栅极相连作为输入端,两个漏极相连作为输出端,如图1(a)所示,则两管正好互为负载,处于互补工作状态。

当输入低电平(Vi=Vss)时,PMOS管导通,NMOS管截止,输出高电平。·

当输入高电平(Vi=VDD)时,PMOS管截止,NMOS管导通,输出为低电平。

在复杂直流电路中,某一段电路里的电流真实方向很难预先确定,在交流电路中,电流的大小和方向都是随时间变化的。这时,为了分析和计算电路的需要,引入了电流参考方向的概念,参考方向又叫假定正方向。

所谓正方向,就是在一段电路里,在电流两种可能的真实方向中,任意选择一个作为参考方向(即假定正方向)。当实际的电流方向与假定的正方向相同时,电流是正值;当实际的电流方向与假定正方向相反时,电流就是负值。

Ⅹ 什么是门电路,非门电路,与非门电路

【门】电路,就是【开关】电路。1、【与】门电路,就是以【与】的关系搭建的开关电路。2、【或】门电路,就是以【或】的关系搭建的电路。3、【非】门电路,就是以【非】的关系搭建的开关电路。4、与非门电路,就是以【与】相反的开关电路。——单独解释【与】、【或】、【非】、【与非】举例:1、【与】:一个灯泡串联两个开关接电源,把灯开亮的条件是,两个开关都接通,灯泡才亮,这两个开关的【串联】就是【与】的关系,即我【与】你同时接通才能搭建一个使灯得到信号的结果。2、【或】:两个开关并联接好再控制一个灯泡,我【或】你都能接通给灯泡提供信号使灯泡发光,两个开关【并联】是【或】的关系。3【非】:在一个发光的灯泡上并联一个开关,开关接通时,灯泡反而不能发光,即【非】发光,这个开关制止了信号,是【非】的功能。4、【与非】:把两个串联好的开关,并联在发光的灯泡的两端上,在两个开关都接通时,灯泡不发光,即我【与】你同时【串联】接通时,灯泡是【非】发光状态。还有【异或】门、【异或非】门-------道理同上。现在以【与非门】电路应用举例:一个4【与非门】集成块,内部含4个独立的【与非门】。只举例其中一个【与非门】的工作情况,它有两个信号输入端,一个输出端,输出端接一个已经发光的灯泡。当给一个输入端一个正信号,灯泡仍然发光,当两个输入端都加给一个正信号时,灯泡熄灭。也就是我【与】你同时发出信号时,灯泡【非】发光。

阅读全文

与解释门电路相关的资料

热点内容
数模电路定律 浏览:220
海淀区清河旧家具市场在哪里 浏览:901
怎么翻新七成新的房子 浏览:887
芜湖市小米官方售后在哪里 浏览:588
现代汽车的售后电话号码是多少 浏览:856
进水机维修多少钱 浏览:328
华为维修点地址东莞 浏览:865
家具涂装设备哪里好 浏览:499
创维电视西安售后电话 浏览:339
艺术家居 浏览:363
镀锌铁皮如何使用沥青麻丝做防水 浏览:582
正负电源整流电路图 浏览:695
美得理电子琴维修点 浏览:527
家居刑罚 浏览:315
去售后做维修工一般多少钱一个月 浏览:335
空气源维修电话 浏览:214
装修完家电需要哪些 浏览:788
海尔哪些家电做得好 浏览:303
夏普2348打印机怎么进维修模式 浏览:616
丽水松下电视维修点 浏览:119