导航:首页 > 电器电路 > 可控硅全波整流电路

可控硅全波整流电路

发布时间:2022-05-28 16:22:05

『壹』 可控硅的工作原理和主要作用

一、可控硅的工作原理:

1、双向可控硅:双向可控硅是一种硅可控整流器件,也称作双向晶闸管。这种器件在电路中能够实现交流电的无触点控制,以小电流控制大电流,具有无火花、动作快、寿命长、可靠性高以及简化电路结构等优点。

(1)可控硅全波整流电路扩展阅读:

1、可控硅从外形上分主要有螺旋式、平板式和平底式三种,螺旋式的应用较多。可控硅有三个电极---阳极(A)阴极(C)和控制极(G)。它有管芯是P型导体和N型导体交迭组成的四层结构,共有三个PN结。

2、可控硅和只有一个PN结的硅整流二极度管在结构上迥然不同。可控硅的四层结构和控制极的引用,为其发挥“以小控大”的优异控制特性奠定了基础。

3、在应用可控硅时,只要在控制极加上很小的电流或电压,就能控制很大的阳极电流或电压。电流容量达几百安培以至上千安培的可控硅元件。

4、一般把5安培以下的可控硅叫小功率可控硅,50安培以上的可控硅叫大功率可控硅。

『贰』 可控硅整流电路的原理

其原理根据负载RL上有电压UL输出。Ug到来得早,可控硅导通的时间就早;Ug到来得晚,可控硅导通的时间就晚。通过改变控制极上触发脉冲Ug到来的时间,就可以调节负载上输出电压的平均值UL(阴影部分的面积大小)。在电工技术中,常把交流电的半个周期定为180°,称为电角度。
这样,在U2的每个正半周,从零值开始到触发脉冲到来瞬间所经历的电角度称为控制角α;在每个正半周内可控硅导通的电角度叫导通角θ。很明显,α和θ都是用来表示可控硅在承受正向电压的半个周期的导通或阻断范围的。通过改变控制角α或导通角θ,改变负载上脉冲直流电压的平均值UL,实现了可控整流。
可控硅:可控硅又叫晶闸管,是晶体闸流管(Thyristor)的简称,俗称可控硅,指的是具有四层交错P、N层的半导体装置。最早出现的一种是硅控整流器(Silicon Controlled Rectifier,SCR),中国大陆通常简称可控硅,又称半导体控制整流器,是一种具有三个PN结的功率型半导体器件,为第一代半导体电力电子器件的代表。
晶闸管的特点是具有可控的单向导电,即与一般的二极管相比,可以对导通电流进行控制。晶闸管具有以小电流(电压)控制大电流(电压)作用,并体积小、轻、功耗低、效率高、开关迅速等优点,广泛用于无触点开关、可控整流、逆变、调光、调压、调速等方面。

『叁』 单相半波(全波)可控(不可控)整流电路怎么区分

单个二极管整流是半波
四个二极管或用四脚的整流桥的是全波
一个三个脚的是半波可控整流
两个三个脚的加两个二极管是全波可控整流
三脚元件一般是可控硅
也有可能是三极管或场效应管

『肆』 求教可控硅和IGBT整流的原理和电路实现方法

一种大容量IGBT整流器控制技术1引言随着现代微电子、功率元件、计算机的发展,整流器结构及其控制技术也得到了迅猛的进步。从二极管整流、可控硅整流,再到大容量igbt整流器,各种整流器都得到实际的应用。针对不同的技术需求,选择不同的整流结构,同时采纳了各种先进的控制技术。因此基于功率元件的通流能力和耐压水平,选择某种结构的整流器在传动系统中至关重要;而其软件控制技术也保障了传动设备在现场安全运行。2大容量igbt整流器在大型冷轧厂的应用某冷轧厂主轧机五机架,主马达功率最大为5750kw。包括卷曲机在内,总共采用了6套大容量传动系统。在大容量传动系统中,采用日立矢量变频调速控制系统,其中整流器和逆变器功率元件均采用三菱3.3kv/1.2ka规格的igbt。每台整流器采用独立直流母线给逆变器供电,而中容量和小容量传动系统则采用公共直流母线。在整流器中采用pwm控制方式以及igbt功率元件,一方面其高功率因数节省电能的同时,另一方面能够减少谐波,因此省去部分svc装置。这套变频装置具有输出电压谐波小,功率因数高,调速精度高,系统动态特性好等诸多优点。同时由于全数字控制方式,整套系统在工艺调整、日常维护等方面简洁方便并能准确查找故障。3igbt整流器控制原理igbt整流器一方面用来将电网电压整流成直流电压送往逆变器;同时也可以将反向制动产生的能量通过igbt逆变成网侧频率电压送往电网。在igbt模块中,与igbt元件还并联一个二极管。此二极管在逆变器中常作续流二极管,将马达反向制动过程的机械能量反馈回逆变输入侧。而在igbt整流器中,整流过程主要是依靠二极管进行全波整流,并不是依靠igbt进行整流,也不进行调压,调频调压主要由逆变器实现;igbt元件的功能主要体现在提高功率因数为1,同时将系统回馈能量逆变成工频电压反馈回电网,如图1所示。图1大容量igbt整流器主回路3.1日立变频器三电平pwm控制技术整流器采用三电平系统整流电路,它将输出直流电压为edc通过钳位二极管分为+edc/2、0和-edc/2三电平。采用三电平系统,可以有效的降低每个igbt承受的压降,从而提高整流器容量。在三电平控制系统中,门极指令逻辑见表1。图2为整流器的控制信号和波形示意图。通过双极性载波信号与一同步交流电压比较,输出门极控制脉宽调制信号,按照表1的指令逻辑,来控制igbt的导通[1]。表1igbt控制指令逻辑图2igbt控制指令及波形五机架中大马达额定电压达1750v,额定电流可达1553a。这么高的电压和大电流,如果采用高频载波频率,igbt发热量也较高,对igbt装置的损伤就较大。为了减少igbt的发热量以延长使用寿命,为此载波频率采用相对较低至600hz。但是这种控制方式带来的结果可能会使输出的电压波形失真较高,影响控制精度等问题。为解决这个问题,采用预见性pwm控制技术,即先预测采用600hz频率的载波频率会给输出pwm波带来多少误差,然后通过控制回路输出的pwm波形对其进行补偿,使输出的电压波形更接近正弦波[1]。3.2输出电压控制结构[1]图3整流器数字控制系统框架图图3为整流器数字控制系统框架图,其所含基本结构如下:(1)自动电压调节器(avr)avr控制可以在负载或电网波动时,通过反馈电压和和指令电压进行比较控制,保证输出直流电压与指令一致。avr采用比例积分pi环节,avr的输出作为整流器矢量控制中有功电流的给定。(2)负荷补偿整流装置采用负荷补偿环节,当负荷变化引起直流电压波动时,该环节通过反馈到输入环节可以减小该波动。负荷补偿计算逆变器侧功率的消耗变换,将功率波动计算结果作为整流器控制输入的一部分,改变有功电流的给定,减少直流电压的变化。(3)同步电源与pwm同步电源通过将网侧电源变压后得到;同步电源与高频载波信号通过比较结构产生pwm。由于该系统为数字系统,在pwm的产生过程中,考虑到高功率因数的控制,采用了矢量控制技术,将网侧无功控制为0。3.3谐波控制技术pwm变频器输出波形以接近正弦为目的,但是其输出电压中不可避免存在着谐波。对于制动能量反馈回电网的波形中也一样存在。产生谐波的主要原因是:(1)在工程应用中,对pwm波形的生成往往采用规则采样法或者专用集成电路器件,并不能保证脉宽调制序列波的波形面积与各段正弦波面积相等;(2)在实现控制时,为了防止逆变器同一桥臂上、下两器件的同时导通而导致直流侧短路,设置了一个导通时滞环节,这些因素不可避免的造成输出波形有所失真[2][3]。对pwm波形作傅氏级数分析,可求得其k次谐波相电压幅值的表达式为:其中:us—变频器直流电压;αi—以相位角表示的第i个脉冲起始/终了时刻;m—同步电压半个周期内pwm脉冲波的个数。从上述公式可以看出,pwm整流器所带来高次谐波的数量与载波的相位有很大关系。对于同一电网下多组大容量整流器运行,采用控制每组间载波相位差相配合,可以很好的消除一些谐波。假设两组整流器运行在同一电网下,图4为载波相位关系。图(a)中两个整流器单元载波相位相同,所以两整流器产生的谐波也同相,因此体现在该系统电网上的谐波为它们之和;图(b)中两整流器载波相位相差180o(假设一个载波周期对应360o),那么两个整流器系统产生的某次谐波相位也将相差180o,幅值相反,则产生在电网上的合成谐波幅值则接近0。因此,对于n次谐波来说,可以通过设置同一电网下不同整流器载波相位差δφ并配合,来减少系统所产生的谐波[1]。,其中m为整流器单元个数。图4载波相位与谐波的关系原理图图5现场调整载波相位前后电压波形图图5中所示的两个现场测试波形图,图a为整流器控制中未调整载波相位配合时谐波对网侧的影响;图b为将酸轧、连退和镀锌三条机组的整流器的pwm载波相位调整配合后网侧输入点电压波形。因为现场整流器数量较多且复杂,每个整流器组具体调整的相位差由日方进行仿真得出。可以看出,调整载波相位配合后,谐波对网侧电压的影响明显减小。3.4高功率因数控制技术功率因数控制在变频器控制中是一个重要课题,对于电机节能有重要意义。但是变频器功率元件和控制方式的不同,其整流电路的功率因数也不尽相同。见表2。表2不同整流器的功率因数及特点[2][3]③功率可以双向传递,具有再生能力对于功率因数高的要求,便选择pwm了整流电路,其中功率元件采用了igbt功率元件。通过基于igbt的控制系统可以很好的将功率因数控制为1,将能量从网侧几乎全部传递到马达,同时将在反向制动时将能量反馈回电网。在这个功率因数控制中,采用矢量控制技术。其中电流调节器检出电源侧电流,通过(u,v,w)到(dfb,qfb)变换,将它分解为与电源电压同相的有功分量iqf和与电源电压正交的无功分量idfb。而将给定id*设定为0,并控制参数使两个反馈值与给定值iq*和id*一致。由此,可以使输入电压与电流同相,也就是功率因数为1。另外,将自动电压调节器和负荷补偿环节的输出作为有功电流给定来控制整流器输出。图6为功率因数控制过程中整流器矢量图,图a为非高功率因数参数矢量图,可见vs和is相位不一致,所以输入功率因数小于1;图b为对整流器矢量控制后的矢量图,vs和is被控制到同一相位,使输入功率因数为1。图6整流器向量图4结束语这套大容量高功率因数整流器在冷轧厂的成功应用,保证了生产的稳定运行。在试运行阶段,系统运行稳定,操作维护方便简洁。在其控制系统中,运用了大量的新技术,低载波频率和载波相位配合等技术的应用有效降低了谐波对电网的影响;同时,矢量控制高功率因数技术,保证了网侧输入功率因数达到1.0。

『伍』 2.单相全波可控整流电路与单相桥式全控整流电路有什么本质的区别

前者是在全波整流电路后的直流电路中串接一个可控硅来控制导通角,后者是桥路本身就采用可控硅来控制导通角,前者简单,只需控制一个可控硅,但多个耗能元件,适合高压,后者需控制两个或4个可控硅,控制线路复杂

『陆』 请问老师 这个 这个全波可控 SCR整流电路 和普通的整流电路 用处上有什么差别,它用在哪里

这是一种通过双基二极管触发可控硅的不同的导通角来实现直流调压的的电路,图中是用来调节白灼灯亮度的。
呵呵!这是至少40年前的电路了,现在根本不会用,了解一下也好。

『柒』 什么是可控整流电路的触发角负载为大电感时可控整流电路中续流二极管的用途是什么

可控硅整流电路触发角:
可控硅整流电路,为了控制电路的输出,用改变可控硅的触发脉冲时间即交流电源的触发角度(半波为0~180°)来改变可控硅的导通时间(即导通角)。
续流二极管作用:
整流电路输出负载的电感,因为在可控硅导通期间能吸收能量,一旦可控硅导通结束,可控硅变为截止状态,负载中的电感会因为电流的突变产生反电势,电感中的能量会通过可控硅产生电流,使可控硅维持导通不能截止,在桥式全波整流电路中,可控硅导通维持到下一个半波后,就发生可控硅导通失控,因而输出失控,不稳定。在负载两端反向并联一只二极管后,就可以将这个反电势"短路"(起续流作用),可控硅会不再因电感释放能而不能截止,整流电路工作正常,这个二极管就是续流二极管。

阅读全文

与可控硅全波整流电路相关的资料

热点内容
智能家居系统c 浏览:158
深圳樱花热水器售后维修电话 浏览:655
沐润尚品实木家具长春哪里有 浏览:339
耳机类的售后服务 浏览:559
唐山哪里有oppo手机售后服务 浏览:79
国家电网的公积金一般有多少 浏览:163
原木家具刷什么 浏览:311
公路保修期 浏览:542
小米4整屏维修要多少钱 浏览:234
xboxone国行售后电话 浏览:414
宝露丝家具 浏览:467
潍柴电磁风扇维修视频 浏览:132
榆林万和热水器售后维修 浏览:724
华为售后在观音桥哪里 浏览:978
科龙电热水器售后服务电话 浏览:488
家居体验员是干什么 浏览:61
娇娇家居 浏览:813
苹果x维修屏幕要多久 浏览:446
山西太原苹果手机售后电话 浏览:605
led大灯具坏了怎么维修 浏览:142