⑴ 什么是集成电路
集成电路的发明,是多项技术不断发展的综合结果。
最早提出制造半导体集成电路思想的,是从事雷达研究的英国科学家达默。他在1952年5月发表的一篇论文中提出:“由于现在晶体管的出现和半导体方面的研究成果,有可能制造单块形状的电子器件而省去连接线。这种器件由多层绝缘材料、通导材料、整流材料和放大材料构成,在各层中去掉某一部分就能使器件具有某种电功能。”
达默的上述设想很有意义,可惜他本人未能使之付诸实施。进入50年代以后,军事工业和宇航工业的迅速发展,迫切需要各种功能更强、能实现更加复杂功能的半导体器件,而且还希望这种器件越小巧越好。
在社会需要的刺激下,那些早期来到硅谷开创电子工业的一批年轻的微电子工程师们,很自然地把研究方向瞄准到上述目标上。他们设想把一些晶体管及一些元件在新的形式下组合成一种更复杂的线路,而不是简单地拼凑在一起,这种线路称为集成电路。从外形来看,它们就是小小的硅片,因此人们也把它们称为芯片。至今,在各种计算机、计算器及各种电器设备中处处都可以看到这种芯片。早在第二次世界大战期间,有人就已设法把油墨状的电阻材料和镀银金属片印在陶瓷基片上,做成电阻和连接线的组合体;而印刷电路工艺的发展和晶体管的发明,都为集成电路的发明做了必要的技术准备。
现在人们认为,世界上最早的集成电路,是1958年由美国物理学家基尔比和诺伊斯两人各自独立地研究发明的,为了认定这项发明的专利权,他们两人所属的公司之间曾为此引发了一场为时不短的争执,因此,回顾一下他们各自的发明过程,是很有意思的。
基尔比于1923年生于美国密苏里州杰斐逊市,1947年毕业于伊利诺大学,1950年在威斯康星大学获硕士学位。
1958年5月,基尔比进入得克萨斯仪器公司还只有3个月,他被安排去进行电子设备微型化的研究。当时电子设备应用了电子管,后来逐步使用晶体管,但体积庞大。
按照国防部的要求,基尔比的任务是研究如何通过采用较小的元件、更细密的接线,使电子设备体积缩小,更加紧凑灵巧。
在这一年夏天,当基尔比的同事都去度假时,他却在宁静的环境中,坐在办公桌前苦苦思索解决微型化问题的办法。他在想出新办法前,屡次碰壁,后来才想到,所需用的全部电路元件包括晶体管、电阻、电容在内,可以用同一种半导体材料制成;这些电路元件必须绝缘,因此能单独起作用,彼此没有干扰;而全部电路元件都焊接在半导体圆片的基片或附近,从而可以利用先进的半导体技术手段使电路相互连接,不必担心元件在连接的地方会出现短路。当时基尔比把这种电路称为固体电路(现在有人称为微型电路)。1958年9月,基尔比的第一个安置在半导体锗片上的电路——“相移振荡器”取得了成功。
诺伊斯于1927年出生于美国衣阿华州的一个小镇。他对现实世界充满了好奇心,在十二三岁时就同二哥先后制造过一架硕大的滑翔机,装配出一辆汽车。他在大学同时学习物理、数学两个专业,对晶体管及其应用也很感兴趣,在晶体管方面奠定了坚实的理论基础。在1949年考取博士研究生后,仍选修一些有助于晶体管基础研究的课程,而在学术活动中,又有机会见到晶体管领域著名的专家肖克莱等人。
诺伊斯在1953年取得博士学位后,宁愿到待遇低的小公司任职。他认为:“越是小地方,就越能得到多方面的锻炼,有利于发挥作用。这样既便于选择合适的课题进行研究,又能成为企业家。”
当1955年肖克莱在硅谷创建“肖克莱半导体公司”时,诺伊斯就是其中被聘请来的优秀科技人才之一。在肖克莱半导体实验室成立的第一年内,诺伊斯和他的同事们竭力鼓动肖克莱把研究重点转向硅晶体管,但肖克莱执意要搞四层二极管的研究。由于认识上的分歧,1957年,诺伊斯和公司的另外7名年轻人一起离开了肖克莱公司,自己成立了“仙童半导体公司”,成为硅谷的第一家专门研制硅晶体管的公司。从这个意义上来说,诺伊斯早年想当企业家的愿望果真实现了。
当时,仙童公司在生产晶体管中首先使用一种“平面工艺”。主持技术工作的是赫尔尼,他是当时硅谷最有才干的科学家之一。他提出的平面工艺法,是通过各种措施把硅表面的氧化层尽量挤压,直到压成一张扁平的薄片为止,使器件的各电极在同一个平面上。因此,只要预先设计出晶体管的电极结构图,通过照相制版的方法,把它精缩成掩模板,就可使立体形状的晶体管制作成平面形状的晶体管。于是,结构无论怎样复杂和精密的晶体管,都可以用这种平面工艺压缩在一片小小的半导体硅片上。
平面工艺法的提出,使仙童公司科学家的思路豁然开朗,他们一下子看到了令人振奋的应用前景,他们意识到,不只是几个晶体管可以放置在一块硅片上,几十个、几百个甚至几百万个晶体管都可以放到一块硅片上。
平面工艺后来很快就应用到集成电路的制造上。仙童公司的科学家发现,运用照相平板印刷技术,可以在硅的表面上,把同样的晶体管按照一定的规律重复地排列,同时又使这些晶体管彼此相连。仙童公司的副经理诺伊斯与他人共同提出了制造集成电路的平面工艺法,并主持制造出世界上第一块用半导体硅制成的集成电路。
得克萨斯仪器公司的基尔比当然也认识到平面工艺法的重大价值。在诺伊斯之前半年就在制造“相移振荡器”时成功地实现了把电子线路安放在锗片上的设想。但诺伊斯制成的硅集成电路比基尔比的锗集成电路更实用,更容易生产。
当后来回忆自己在32岁发明集成电路的情况时,诺伊斯风趣地说:“我发明集成电路,那是因为我是一个‘懒汉’。当时曾考虑,用导线连接电子元件太费事,我希望越简单越好。”
而基尔比在得克萨斯仪器公司发明了后来称为集成电路的“固体电路”后,立即得到该公司负责人的重视,他们意识到这种新电子器件的重要性,并预计它将会得到广泛的应用,因此必须大力推广。
1959年2月,基尔比为他本人的“固体电路”申请了专利。不久之后,得克萨斯仪器公司宣布,他们已生产出一种比火柴头还小的半导体固体电路。而仙童公司的诺伊斯,虽然在此之前已使用平面工艺制造出半导体硅片集成电路,但并没有及时申请专利,直到1959年7月,诺伊斯才想到要去办专利申请手续,但时间已比基尔比晚了半年。
此后上述两家公司为集成电路的发明权长期争执不休,就是因为基尔比比诺伊斯申请专利的时间要早一些。基尔比先取得专利,但他的设计思想未能实现;而诺伊斯的平面工艺技术后来成为微电子革命的基础,但他却是在基尔比之后才申请专利的,更何况这一项技术在仙童公司并不是由他一人独自发现并加以完善的。
最后经法庭裁决,集成电路的发明专利权属于基尔比,而关键的有关集成电路的内部连接技术专利权属于诺伊斯。从1961年起,两人的专利使各自所在的公司都得到很大的经济效益,而他们两人也都因此成为国内外知名的发明家及微电子学的创始人,两人还一起获得美国科技人员最渴望得到的“巴伦坦奖章”。
⑵ 集成电路特点
(一)按功能结构分类
集成电路按其功能、结构的不同,可以分为模拟集成电路、数字集成电路和数/模混合集成电路三大
类。
模拟集成电路又称线性电路,用来产生、放大和处理各种模拟信号(指幅度随时间变化的信号。例如半导体收音机的音频信号、录放机的磁带信号等),其输入信号和输出信号成比例关系。而数字集成电路用来产生、放大和处理各种数字信号(指在时间上和幅度上离散取值的信号。例如3G手机、数码相机、电脑CPU、数字电视的逻辑控制和重放的音频信号和视频信号)。
(二)按制作工艺分类
集成电路按制作工艺可分为半导体集成电路和膜集成电路。
膜集成电路又分类厚膜集成电路和薄膜集成电路。
(三)按集成度高低分类
集成电路按集成度高低的不同可分为
SSI 小规模集成电路(Small Scale Integrated circuits)
MSI 中规模集成电路(Medium Scale Integrated circuits)
LSI 大规模集成电路(Large Scale Integrated circuits)
VLSI 超大规模集成电路(Very Large Scale Integrated circuits)
ULSI 特大规模集成电路(Ultra Large Scale Integrated circuits)
GSI 巨大规模集成电路也被称作极大规模集成电路或超特大规模集成电路(Giga Scale Integration)。
(四)按导电类型不同分类
集成电路按导电类型可分为双极型集成电路和单极型集成电路,他们都是数字集成电路.
双极型集成电路的制作工艺复杂,功耗较大,代表集成电路有TTL、ECL、HTL、LST-TL、STTL等类型。单极型集成电路的制作工艺简单,功耗也较低,易于制成大规模集成电路,代表集成电路有CMOS、NMOS、PMOS等类型。
(五)按用途分类
集成电路按用途可分为电视机用集成电路、音响用集成电路、影碟机用集成电路、录像机用集成电
路、电脑(微机)用集成电路、电子琴用集成电路、通信用集成电路、照相机用集成电路、遥控集成电路、语言集成电路、报警器用集成电路及各种专用集成电路。
1.电视机用集成电路包括行、场扫描集成电路、中放集成电路、伴音集成电路、彩色解码集成电路、AV/TV转换集成电路、开关电源集成电路、遥控集成电路、丽音解码集成电路、画中画处理集成电路、微处理器(CPU)集成电路、存储器集成电路等。
2.音响用集成电路包括AM/FM高中频电路、立体声解码电路、音频前置放大电路、音频运算放大集成电路、音频功率放大集成电路、环绕声处理集成电路、电平驱动集成电路,电子音量控制集成电路、延时混响集成电路、电子开关集成电路等。
3.影碟机用集成电路有系统控制集成电路、视频编码集成电路、MPEG解码集成电路、音频信号处理集成电路、音响效果集成电路、RF信号处理集成电路、数字信号处理集成电路、伺服集成电路、电动机驱动集成电路等。
4.录像机用集成电路有系统控制集成电路、伺服集成电路、驱动集成电路、音频处理集成电路、视频处理集成电路。
(六)按应用领域分
集成电路按应用领域可分为标准通用集成电路和专用集成电路。
(七)按外形分
集成电路按外形可分为圆形(金属外壳晶体管封装型,一般适合用于大功率)、扁平型(稳定性好,体积小)和双列直插型 。
⑶ 立体集成电路的特点是什么
立体集成电路即三维集成电路。立体集成电路具有高密度、高速度、多功能和低功耗等特点,可作成大容量存储器和高速信号处理器。SOI(硅/绝缘层结构)技术。随着分子束外延、化学气相淀积和原子搬移等超微加工技术的发展,在半导体芯片内部实现器件布局的立体化也将逐步实现,以制作出密度更高的立体集成电路。
⑷ 什么是集成电路
集成电路(integrated circuit)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗、智能化和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。集成电路发明者为杰克·基尔比(基于锗(Ge)的集成电路)和罗伯特·诺伊思(基于硅(Si)的集成电路)。当今半导体工业大多数应用的是基于硅的集成电路。
是20世纪50年代后期一60年代发展起来的一种新型半导体器件。它是经过氧化、光刻、扩散、外延、蒸铝等半导体制造工艺,把构成具有一定功能的电路所需的半导体、电阻、电容等元件及它们之间的连接导线全部集成在一小块硅片上,然后焊接封装在一个管壳内的电子器件。其封装外壳有圆壳式、扁平式或双列直插式等多种形式。集成电路技术包括芯片制造技术与设计技术,主要体现在加工设备,加工工艺,封装测试,批量生产及设计创新的能力上。
⑸ 三维集成电路的介绍
具有多层器件结构的集成电路。又称立体集成电路。现有的各种商品集成电路都是平面结构,即集成电路的各种单元器件一个挨一个地分布在一个平面上,称二维集成电路。
⑹ 三维集成电路的三维集成面临技术的挑战
三维集成面临技术的挑战:
①散热问题:由于电路系统拥有了更高的集成度,热回功耗也随之提升、表面积答体积比随之下降,与此同时,传统的平面散热技术不再能满足立体集成电路的散热要求。
②测试问题:传统测试技术只针对单层系统,而未提供针对多层芯片集成之后的整体系统测试技术。
⑺ 三维集成电路的三维集成的优点
三维集成的优点复是:
①提高封装密制度。多层器件重叠结构可成倍提高芯片集成度。
②提高电路工作速度。重叠结构使单元连线缩短,并使并行信号处理成为可能,从而实现电路的高速操作。
③可实现新型多功能器件及电路系统。如把光电器件等功能器件和硅集成电路集成在一起,形成新功能系统。日、美、欧共体各国都在致力于研究三维集成电路,并已制出一些实用的多层结构集成电路。立体电路是正在发展的技术。
⑻ 集成电路是什么意思
集成电路是指的一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗、智能化和高可靠性方面迈进了一大步。
集成电路在电路中用字母“IC”表示。集成电路发明者为杰克·基尔比(基于锗(Ge)的集成电路)和罗伯特·诺伊思(基于硅(Si)的集成电路)。当今半导体工业大多数应用的是基于硅的集成电路。
(8)立体集成电路扩展阅读:
集成电路按用途可分为电视机用集成电路、音响用集成电路、影碟机用集成电路、录像机用集成电路、电脑(微机)用集成电路、电子琴用集成电路、通信用集成电路、照相机用集成电路、遥控集成电路、语言集成电路、报警器用集成电路及各种专用集成电路。
1、电视机用集成电路包括行、场扫描集成电路、中放集成电路、伴音集成电路、彩色解码集成电路、AV/TV转换集成电路、开关电源集成电路、遥控集成电路、丽音解码集成电路、画中画处理集成电路、微处理器(CPU)集成电路、存储器集成电路等。
2、音响用集成电路包括AM/FM高中频电路、立体声解码电路、音频前置放大电路、音频运算放大集成电路、音频功率放大集成电路、环绕声处理集成电路、电平驱动集成电路,电子音量控制集成电路、延时混响集成电路、电子开关集成电路等。
3、影碟机用集成电路有系统控制集成电路、视频编码集成电路、MPEG解码集成电路、音频信号处理集成电路、音响效果集成电路、RF信号处理集成电路、数字信号处理集成电路、伺服集成电路、电动机驱动集成电路等。
4、录像机用集成电路有系统控制集成电路、伺服集成电路、驱动集成电路、音频处理集成电路、视频处理集成电路。
5、计算机集成电路,包括中央控制单元(CPU)、内存储器、外存储器、I/O控制电路等。
6、通信集成电路
7、专业控制集成电路