导航:首页 > 电器电路 > cpu的电路图

cpu的电路图

发布时间:2022-06-08 05:17:48

㈠ cpu的基本结构及其工作原理

1、CPU的外形及结构
CPU是整个计算机系统的核心部件,外部结构如下图所示。CPU看上去非常简单,是一个矩形片状物体。其中间凸起部分是CPU核心,它一般是一片指甲大小的、薄薄的硅晶片,在这块小小的硅片上,密布着数以千万计的晶体管,它们相互配合协调,完成各种复杂的运算和操作。为帮助散热,一般在CPU的核心上都加装一个金属封装壳,金属封装壳周围是CPU基板,它将CPU内部的信号引接到CPU针脚上。基板的背面有许多密密麻麻的镀金针脚,它是CPU与外部电路连接的通道。

2、CPU的组成部分
CPU内部主要由运算器、控制器和寄存器组组成,如下图所示。

运算器用来对数据进行各种算术运算和逻辑运算。控制器是CPU的指挥中心,它能对计算机指令进行分析,产生各种控制型信号。寄存器组用来临时存放参加运算的数据和计算的中间结果。
3、CPU的工作原理
CPU的工作原理就像一个工厂对产品的加工过程:进人工厂的原料(程序指令),经过物资部门(控制器)的调度分配,被送往生产线(运算器),生产出成品(寄存器组)后,再存储在仓库(内存)中,最后等着拿到市场上去卖(交由应用程序使用)。这个过程看起来相当长,实际上只是一瞬间发生的事情。也可以这样理解CPU只执行三种基本的操作,分别是读出数据、处理数据和往内存写数据。
现在,主流CPU还是Intel和AMD两家的天下。无论是高端还是低端,两大品牌都有着全线的产品。具体型号及产品可自行网络,这里不做过多介绍。

4、CPU常用术语
4.1.主频
衡量CPU速度快慢的一个重要指标就是CPU的工作频率,也叫做CPU的主频,主频亦称为内频。主频就是CPU的时钟频率,它控制着CPU工作节拍,主频越高,CPU工作节拍就越快,运算速度也就越高。主频通常用一秒钟内处理器所能发出电子脉冲数来测定,计量单位一般为MHz或GHz。目前P4的主频达3GHz以上,IBM公司已研制出速度高达110GHz。
4.2.外频
CPU跟外部(即系统总线)接触沟通的频率称为外频。外频是由主板提供,CPU以这个频率跟系统其他的配件进行沟通,因此,外频亦称为系统总线频率或前端总线速度(FSB)。早期CPU内部与外部的工作频率都相同,后来主频要比外频快。现在PⅢ的外频为133 MHz,P4的外频可采用高达800MHz的外频。
4.3.倍频
CPU的倍频,即倍频系数。它足指CPU主频和外频之间存在着一个比值关系,这个比值就是倍频系数。所以,主频和外频、倍频三者的关系是:主频=外频×倍频
4.4.超频
外频和倍频都可以根据CPU参数通过主板跳线或程序来设置,从而设定CPU主频。通过适当提高外频或倍频,有些CPU的主频可以超过它的标称工作频率,这就是习惯上称的“超频”。超频可以在一定程度上提高系统的性能,但是超频会导致CPU的功耗增加,使CPU工作温度升高,甚至损坏CPU。
4.5.一级缓存(L1 Cache)
一级缓存也称L1高速缓存,它封装在CPU芯片内部的高速缓存,用于暂时存储CPU运算时的部分指令和数据,存取速度与CPU主频相近。内置的L1高速缓存的容量和结构对CPU的性能影响较大,一级缓存容量越大,则CPU处理速度就会越快,对应的CPU价格也就越高。
4.6.二级缓存(L2 Cache)
二级缓存亦称L2高速缓存,指CPU外部的高速缓存。像一级缓存一样,二级缓存越大,则CPU处理速度就越快,整台计算机性能也就越好。一级缓存和二级缓存都位于CPU和内存之间,用于缓解高速CPU与慢速内存速度匹配问题。
4.7、超线程技术
超线程技术是Intel的创新设计,就是在一个处理器中放人两个逻辑处理单元,让多线程的应用程序能够并行处理多项任务,提高CPU的运行效率。

㈡ 绘制笔记本计算机CPU单项供电的原理图,并说明电路的工作原理

仅以MAX1817说明

主要是单项供电,5V输入电压连接到引脚9、17和26,电池电压(7V~24V)连接引脚1(V+)和Q1的D极,芯片的DH和DL控制Q1和Q2的控制端,使得电池输入电压变成适合CPU工作的内核电压,输出端(OUTPUT)的0.6V~1.75V电压经过电感L1滤波以后真正输出稳定的CPU工作电压。

㈢ CPU供电的图片和电路图

5和6是电感吧,来电路图源我就没办法画出来了,用文字说说电路还可以

以现在这种图片看来,这是2+1相供电,3个都是线圈式电感

9号是4针式接口,接入两条+12V线和两条地线,接入后通过5电感器,然后进入左边两个1电容进行滤波,之后进入北桥,其中由一个2电源IC进行控制,这样就完成那1相供电

那些钽电容一般是对2相供电进滤波,由24针的接口接入,两路并联,接入后通过6电感器,然后进入7进行滤波,其中由2电源IC进行控制,接入CPU,这样就完成那两相供电

说是这样说的了,画出来的话就免了吧,

㈣ 求一CPU结构图以及它的工作原理。

㈤ CPU工作原理和电路图

CPU的工作原理就是:

1、取指令:CPU的控制器从内存读取一条指令并放入指令寄存器。指令的格式一般是这个样子滴:操作码就是汇编语言里的mov,add,jmp等符号码;操作数地址说明该指令需要的操作数所在的地方,是在内存里还是在CPU的内部寄存器里。

2、指令译码(解码):指令寄存器中的指令经过译码,决定该指令应进行何种操作(就是指令里的操作码)、操作数在哪里(操作数的地址)。

3、执行指令(写回),以一定格式将执行阶段的结果简单的写回。运算结果经常被写进CPU内部的暂存器,以供随后指令快速存取。

4、修改指令计数器,决定下一条指令的地址。

(5)cpu的电路图扩展阅读:

CPU从内存中接收数据和指令,并处理这些指令,将处理结果再送回内存中结果可以显示和储存起来,周而复始,一直这样执行下去,天荒地老,海枯枝烂,直到停电。CPU内部的工作过程为:控制器-运算器-累加器-储存器-寄存器-累加器。

CPU的工作原理就像一个工厂对产品的加工过程:进入工厂的原料(程序指令),经过物资分配部门(控制单元)的调度分配,被送往生产线(逻辑运算单元),生产出成品(处理后的数据)后,再存储在仓库(存储单元)中,最后等着拿到市场上去卖(交由应用程序使用)。

㈥ 非常复杂的CPU电路图是如何做出来的

用Protel DXP 2004之类的软件画出来的。调用元件库中的元件,就可以画出。

如下图就是Protel DXP 2004中Z80CPU的元件。

㈦ cpu门电路原理

用以实现基本逻辑运算和复合逻辑运算的单元电路称为门电路。常用的门电路在逻辑功能上有与门、或门、非门、与非门、或非门、与或非门、异或门等几种。
门电路输入
“门”是这样的一种电路:它规定各个输入信号之间满足某种逻辑关系时,才有信号输出,通常有下列三种门电路:与门、或门、非门(反相器)。从逻辑关系看,门电路的输入端或输出端只有两种状态,无信号以“0”表示,有信号以“1”表示。也可以这样规定:低电平为“0”,高电平为“1”,称为正逻辑。反之,如果规定高电平为“0”,低电平为“1”称为负逻辑,然而,高与低是相对的,所以在实际电路中要先说明采用什么逻辑,才有实际意义,例如,负与门对“1”来说,具有“与”的关系,但对“0”来说,却有“或”的关系,即负与门也就是正或门;同理,负或门对“1”来说,具有“或”的关系,但对“0”来说具有“与”的关系,即负或门也就是正与门。
凡是对脉冲通路上的脉冲起着开关作用的电子线路就叫做门电路,是基本的逻辑电路。门电路可以有一个或多个输入端,但只有一个输出端。门电路的各输入端所加的脉冲信号只有满足一定的条件时,“门”才打开,即才有脉冲信号输出。从逻辑学上讲,输入端满足一定的条件是“原因”,有信号输出是“结果”,门电路的作用是实现某种因果关系──逻辑关系。所以门电路是一种逻辑电路。基本的逻辑关系有三种:与逻辑、或逻辑、非逻辑。与此相对应,基本的门电路有与门、或门、非门。

㈧ CPU电路图怎么设计出来的

CPU设计的流程:

随着工艺的发展,半导体芯片的集成化程度越来越高,设计的系统越来越复杂,规模越来越大,性能的需求越来越高,功耗也越来越大,给芯片设计工程师和EDA厂商带来了新的挑战。芯片的设计方法也随着发生了改变,经历了从早期的手工设计阶段、计算机辅助设计阶段,计算机辅助工程阶段,电子自动化设计阶段,发展到系统芯片阶段。

1、设计定义和可综合的RTL代码。设计定义描述芯片的总体结构、规格参数、模块划分、使用的接口等。然后设计者根据硬件设计所划分出的功能模块,进行模块设计或者复用已有的IP核,通常使用硬件描述语言在寄存器传输级描述电路的行为,采用Verilog/VHDL描述各个逻辑单元的连接关系,以及输入/输出端口和逻辑单元之间的连接关系。门级网表使用逻辑单元对电路进行描述,采用例化的方法组成电路,以及定义电路的层次结构。前仿真,也称为RTL级仿真或功能仿真。通过HDL仿真器验证电路逻辑功能是否有效,在前仿真时,通常与具体的电路实现无关,没有时序信息。


2、逻辑综合。建立设计和综合环境,将RTL源代码输入到综合工具,例如Design Compiler,给设计加上约束,然后对设计进行逻辑综合,得到满足设计要求的门级网表。门级网表可以以ddc的格式存放。电路的逻辑综合一般由三步组成:转化、逻辑优化和映射。首先将RTL源代码转化为通用的布尔等式(GTECH格式);逻辑优化的过程尝试完成库单元的组合,使组合成的电路能最好的满足设计的功能、时序和面积的要求;最后使用目标工艺库的逻辑单元映射成门级网表,映射线路图的时候需要半导体厂商的工艺技术库来得到每个逻辑单元的延迟。综合后的结果包括了电路的时序和面积。


3、版图规划。在得到门级网表后,把结果输入到JupiterXT做设计的版图规划。版图规划包含宏单元的位置摆放、电源网络的综合和分析、可布通性分析、布局优化和时序分析等。


4、单元布局和优化。单元布局和优化主要定义每个标准单元(Cell)的摆放位置,并根据摆放的位置进行优化。EDA工具广泛支持物理综合,即将布局和优化与逻辑综合统一起来,引入真实的连线信息,减少时序收敛所需要的迭代次数。把设计的版图规划和门级网表输入到物理综合工具,例如Physical Compiler进行物理综合和优化。在PC中,可以对设计在时序、功耗、面积和可布线性进行优化,达到最佳的结果质量。


5、静态时序分析(STA)、形式验证(FV)和可测性电路插入(DFT)。

静态时序分析是一种穷尽分析方法,通过对提取的电路中所有路径的延迟信息的分析,计算出信号在时序路径上的延迟,找出违背时序约束的错误,如建立时间和保持时间是否满足要求。在后端设计的很多步骤完成后都要进行静态时序分析,如逻辑综合之后,布局优化之后,布线完成之后等。

形式验证是逻辑功能上的等效性检查,根据电路的结构判断两个设计在逻辑功能上是否相等,用于比较RTL代码之间、门级网表与RTL代码之间,以及门级网表之间在修改之前与修改之后功能的一致性。

可测性设计。通常,对于逻辑电路采用扫锚链的可测性结构,对于芯片的输入/输出端口采用边界扫描的可测性结构,增加电路内部节点的可控性和可观测性,一般在逻辑综合或物理综合之后进行扫锚电路的插入和优化。


6、后布局优化,时钟树综合和布线设计。在物理综合的基础上,可以采用Astro工具进一步进行后布局优化。在优化布局的基础上,进行时钟树的综合和布线。Astro在设计的每一个阶段,都同时考虑时序、信号、功耗的完整性和面积的优化、布线的拥塞等问题。其能把物理优化、参数提取、分析融入到布局布线的每一个阶段,解决了设计中由于超深亚微米效应产生的相互关联的复杂问题。


7、寄生参数的提取。提取版图上内部互连所产生的寄生电阻和电容值。这些信息通常会转换成标准延迟的格式被反标回设计,用于静态时序分析和后仿真。有了设计的版图,使用Sign-Off参数提取的工具,如Star-RCXT进行寄生参数的提取,其可以设计进行RC参数的提取,然后输入到时序和功耗分析工具进行时序和功耗的分析。


8、后仿真,以及时序和功耗分析。后仿真也叫门级仿真、时序仿真、带反标的仿真,需要利用局部布线后获得的精确延迟参数和网表进行仿真、验证网表的功能和时序是否正确。如Primetime-SI能进行时序分析,以及信号完整性分析,可以做串扰延迟分析、IR drop(电压降)的分析和静态时序分析。在分析的基础上,如发现设计中还有时钟违规的路径,Primetime-SI可以自动为后端工具如Astro产生修复文件。PrimePower具有门级功耗的分析能力,能验证整个IC设计中的平均峰值功耗,帮助工程师选择正确的封装,决定散热和确证设计的功耗。在设计通过时序和功耗分析之后,PrimeRail以Star-RCXT、HSPICE、Nanosim和PrimeTime的技术为基础,为设计进行门级和晶体管级静态和动态的电压降分析,以及电迁移的分析。


9、ECO(工程修改命令)修改。当在设计的最后阶段发现个别路径有时序问题或者逻辑错误时,有必要对设计的部分进行小范围的修改和重新布线。ECO修改只对版图的一小部分进行修改而不影响到芯片其余部分的布局布线,保留了其他部分的时序信息没有改变。


10、物理验证。物理验证是对版图的设计规则检查(DRC)及逻辑图网表和版图网表比较(LVS)。将版图输入Hercules,进行层次化的物理验证,以确保版图和线路图的一致性,其可以预防、及时发现和修正设计在设计中的问题。其中DRC用以保证制造良率,LVS用以确认电路版图网表结构是否与其原始电路原理图(网表)一致。LVS可以在器件级及功能级进行网表比较,也可以对器件参数,如MOS电路沟道宽/长、电容/电阻值等进行比较。

在完成以上步骤之后,设计就可以签收、交付到芯片制造厂了(Tape out)。

㈨ 计算机CPU内部电路图怎样的 要详细的,谢谢了

你网络一下:X86 CPU内部结构
http://www..com/s?ie=utf-8&bs=b490&f=8&rsv_bp=1&wd=X86+CPU%E5%86%85%E9%83%A8%E7%BB%93%E6%9E%84&rsv_sug3=8&rsv_sug=0&rsv_sug1=8&rsv_sug4=328&inputT=16520
普通人是不可能得到INTEL或AMD的CPU内部电路图的,而且也没有必回要,这是N多牛人经答过几代发展逐步开发出来的。你要是有兴趣可以看看INTEL发展史

㈩ 谁知道CPU的电路图啊工作原理是什么有知道的告诉我啊!谢谢!

CPU电路图这是商业机密,不会泄露的,如果能拿到中国早就自己制作上百万亿次的计算机了。
超大规模集成电路的图纸数量、容量很惊人的。
个人即使看懂了也无能为力。

CPU是Central Processing Unit的缩写,是中央处理器的意思。我们经常听人谈到的486,Pentium就是CPU 。CPU是一个电子元件,其规格就标注在元件上或元件的包装盒上,如i80486DX2-66这行编号就代表了这颗处理器是Intel公司制造的486等级的CPU,它的最高工作频率是66Mhz;又如K6-200的CPU,代表了这颗是AMD公司制造的586MMX级的CPU,它的最高工作频率是200Mhz。
CPU的工作原理其实很简单,它的内部元件主要包括:控制单元,逻辑单元,存储单元三大部分。指令由控制单元分配到逻辑运算单元,经过加工处理后,再送到存储单元里等待应用程序的使用。

为了增加CPU的执行效能各厂商发展出很多技术。例如:

1、多个运算单元同时进行运算。
2、管线功能:让指令或资料同时多笔准备好。
3、预先存取功能:当程序或资料还没有执行到时,便预先取得并存于CPU内。
4、预测功能:预测程序会执行的路径预先把资料先取回来。
5、多媒体功能:把一些以往由专业多媒体芯片的功能加入CPU。 例如 Intel 的 MMX。

以下是常见的CPU厂家:

1、Intel
2、AMD
3、Cyrix(已被VIA收购)
4、IDT(已被VIA收购)

评判CPU的性能好坏的几个主要参数包括超频、内存总线速度、扩展总线速度、工作电压、地址总线宽度、数据总线宽度、内置协处理器、超标量、L1高速缓存、采用回写。超频:CPU的频率包括主频、外频、倍频。外频即系统总线的工作频率,主频即CPU内部的工作频率:外频=主频×倍频。现在一般的标准外频包括66Mhz 133Mhz 100Mhz。标准的倍频包括:2、2.5、3、3.5、4、4.5、5等。

“超频”乃是当前众多DIYer们的口头禅,但同时又令许多对电脑了解不多的人感到困惑。下面我就简单为大家介绍一下“超频”。

“超频”就是强制CPU在高于标称频率的频率下工作,通过提高计算机主频来提高计算机的性能。但现在DIYer们已把超频扩到了更大的领域,除了CPU,AGP卡、PCI介面卡、DRAM甚至于硬盘等都因为CPU外频提升而工作在规格以上的频率,从广义上讲这都叫做超频。

下面我就先从CPU的超频谈起。提高CPU的工作频率有两种方法:提高倍频系数和提高外部总线频率。

外部总线频率就是我们常说的66MHz、75MHz、83MHz、100MHz,甚至更高。倍频系数就是CPU的工作频率和CPU内部频率的比值,比如3倍频、3. 5倍频等。如赛扬300A的工作频率是300Mhz,其内部频率是66Mhz,倍频数为4.5。那么是否每一个CPU都能超频,超频又需要什么条件呢?一般来说Intel公司生产的CPU的超频性能最好,一般都可以稳定地向上超两个等级;而其他几家的产品超频性则弱的多,有些甚至根本不能超。因为超频会使CPU和电脑的其它部件在超额状态下工作,所以选用质量好的部件是超频成功的关键。

为了超频,一般来说名牌主板是你最好的选择,如升技的BH6、BX2,技嘉的GBBX2000,华硕的P2B等,他们不仅做工精良,且支持多种外频。名牌主板虽然性能优异,但价格昂贵,如果囊中羞涩,则可选择较便宜的主板,如华基、麒麟等,它们也有不错的超频能力。此外,在选择主板时,最好选择具有软跳线功能的主板。使用软跳线的主板在改变CPU工作频率时就不用在复杂的主板电路上寻觅那些不起眼的跳线了。

超频的另一瓶颈就是内存,早期的72线EDO内存超频能力一般,最多能上到75Mhz外频,能跑83Mhz外频的少之又少。现在的168线SDRAM内存又分为PC100和非PC100两种。一般来说PC100的要比非PC100的贵几十元。不过为了机器能够稳定地运行在100MHz或更高频率上,PC100内存是必不可少的。PC100内存又有不同的规格,它们的速度不一样。从理论上说,CPU要想稳定地运行在100MHz外频下,内存速度必须是-10以上的。(所谓-10就是指内存的工作周期为10ns,以下同理。)因为1秒除以100M等于10纳秒。同理,你若想使用125MHz外频,则内存速度必须是-8以上的。现在市面上的内存有不少标称自己是-7的,但实际上只有三星的KMXXXSXXXXBT-G7等几个名牌型号才是真正的7ns的,其它的则都是奸商们通过打磨,使10ns的 SDRAM产品披上了7ns的外衣。

硬盘也是超频路上的一道坎。总的来说,各种硬盘的较新型号都有较强的超频能力,而早期产品则超频性能不佳。在各种硬盘中,笔者向大家推荐昆腾系列硬盘,一直以来昆腾就以较强的超频能力著称于世。尤其是其火球七代和火球八代超频性能更是出众。

超频成功与否还与其他设备密切相关。在一台计算机中还有各种各样的板卡。它们采用不同的总线接口,如现在流行的AGP显卡。AGP接口的标准频率是66.6MHz,它的工作频率与CPU的外部总线频率之比是1:1或1.5:1。当CPU工作在133MHz外频时,它的工作频率将会高达88.6MHz,这对AGP显卡来说无疑是一种考验。当使用 PCI卡时,如工作频率达到100MHz,则会使用3分频,既100除以3,等于33.3MHz。所以在133MHz下,PCI卡的工作频率将是44.3MHz,高于标准的33.3MHz达30%,如此苛刻的条件并不是每一种PCI卡都能承受的。

如果你的电脑配件都能达到上述条件,那么恭喜你,你已经达到了超频的基本条件。但这并不意味着你的超频一定成功。使电脑各部件超负荷运转,必然会产生大量的热。而热则是各种电子部件的大敌,当温度达到80摄氏度,就会发生电子转移现象,从而损坏设备。用手摸摸你的CPU吧,如果它的表面温度已达到了50至60摄氏度,则它的内部温度已经到了80摄氏度,这已经是危险温度了。所以好的降温设备是超频者必不可少的。

阅读全文

与cpu的电路图相关的资料

热点内容
家具用啥木 浏览:383
26张马六甲板可以做多少家具 浏览:873
株洲长虹空调售后维修 浏览:229
售后公房维修资金余额 浏览:165
开一家家具店多少钱 浏览:887
有钱人家里都怎么摆放家具效果图 浏览:223
液压缸密封圈如何更换维修 浏览:720
厦门海尔售后服务部 浏览:616
米莱克家具实体店 浏览:131
高密买家具砍价砍多少合适 浏览:439
正则家具 浏览:729
苏州电脑维修哪里能修显卡 浏览:398
家用小型家电有哪些 浏览:867
老木房子翻新改造预算怎么做 浏览:666
塘沽戴尔售后服务 浏览:848
公共维修金按照什么比例交 浏览:800
莱西网通维修电话 浏览:539
济南容声冰箱维修点售后维修 浏览:287
2020年什么时候家电下乡 浏览:444
兴华家电商场怎么样 浏览:720