导航:首页 > 电器电路 > 电与电路教案

电与电路教案

发布时间:2022-06-08 17:06:39

A. 初中物理电流与电压和电阻的关系教学设计

电压和电阻的数学关系式是: R=U/I, 即电阻=电压/电流。但要注意,在物理学中,电阻表示导
体对电流阻碍作用的大小。在温度一定的情况下,导体电阻的大小是由导体本身的材料、长度、
横截面积决定的。与是否接入电路、外加电压及通过电流的大小等因素均无关。
1
电阻在电路中的作用
1.电阻在电路中的限流作用。为使通过用电器的电流不超过额定值或实际工作需要的规定值,以
保证用电器的正常工作,通常可在电路中串联一个可变电阻。当改变这个电阻的大小时,电流的
大小也随之 改变。我们把这种可以限制电流大小的电阻叫做限流电阻。
2.电阻在电路中的分流作用。当在电路的干路上需同时接入几个额定电流不同的用电器时,可以
在额定电流较小的用电器两端并联接入一个电阻,这个电阻的作用是“分流”
3.电阻在电路中的分压作用。一般用电器上都标有额定电压值,若电源比用电器的额定电压高,
则不可把用电器直接接在电源上。在这种情况下,可给用电器串接一个合适阻值的电阻,让它分
担一部分电压,用电器便能在额定电压下工作。我们称这样的电阻为分压电阻。
2
影响电阻的因素
1.长度:当材料和横截面积相同时,导体的长度越长,电阻越大。
2.横截面积:当材料和长度相同时,导体的横截面积越小,电阻越大。
3.材料:当长度和横截面积相同时,不同材料的导体电阻不同。
4.温度:对大多数导体来说,温度越高,电阻越大,如金属等;对少数导体来说,温度越高,电
阻越小,如碳。

B. 电路基本知识的教案

可到网络文库中查找。

C. 《中级维修电工技术》教案

电气识图
本章要点
 电气图的分类
 详细介绍电气原理图的绘制。
 详细介绍电气原理图的识读。
本章难点
 电气图的绘制特点。
 电气原理图的识读。

电气控制系统是由电动机和若干电气元件按照一定要求连接组成,以便完成生产过程控制特定功能的系统。为了表达生产机械电气控制系统的组成及工作原理,同时也便于设备的安装、调试和维修,而将系统中各电气元件及连接关系用一定的图样反映出来,在图样上用规定的图形符号表示各电气元件,并用文字符号说明各电气元件,这样的图样叫做电气图。
第一节 电气图的常用符号
电气图,也称电气控制系统图。图中必须根据国家标准,用统一的文字符号、图形符号及画法,以便于设计人员的绘图与现场技术人员、维修人员的识读。在电气图中,代表电动机、各种电器元件的图形符号和文字符号应按照我国已颁布实施的有关国家标准绘制。如
GB4728—85 《电气图常用图形符号》
GB6988—86 《电气制图》
GB7159—87 《电气技术中的文字符号制订通则》
GB5094—85 《电气技术中的项目代号》
GB5226—85 《机床电气设备通用技术条件》
国家规定从1990年1月1日起,电气图中的文字符号和图形符号必须符合最新国家标准。表2—1给出了部分常用电气图形符号和文字符号。因为目前有些技术资料仍使用旧国标,所以表中给出了新、旧国标对照,以供参考。若需更详细的资料,请查阅最新国家标准。

表2—1 部分常用电气图形符号和文字符号的新旧对照表

一、 图形符号
图形符号通常用于图样或其他文件,用以表示一个设备或概念的图形、标记或字符。图形符号含有符号要素、一般符号和限定符号。常用图形符号见表2—1。
1.符号要素
它是一种具有确定意义的简单图形,必须同其他图形结合才构成一个设备或概念的完整符号。如接触器常开主触电的符号就由接触器触点功能符号和常开触点符号组合而成。
2.一般符号
用以表示一类产品和此类产品特征的一种简单的符号。如电动机可用一个圆圈表示。
3.限定符号
是一种加在其他符号上提供附加信息的符号。
运用图形符号绘制电气图时应注意:
① 符号尺寸大小、线条粗细依国家标准可放大与缩小,但在同一张图样中,统一符号的尺寸应保持一致,各符号之间及符号本身比例应保持不变。
② 标准中示出的符号方位,在不改变符号含义的前提下,可根据图面布置的需要旋转,或成镜像位置,但是文字和指示方向不得到置。
③ 大多数符号都可以附加上补充说明标记。
④ 对标准中没有规定的符号,可选取GB4728《电气图常用图形符号》中给定的符号要素、一般符号和限定符号,按其中规定的原则进行组合。
二、 文字符号
文字符号用于电气技术领域中技术文件的编制,也可以标注在电气设备、装置和元器件上或近旁,以表示电气设备、装置和元器件的名称、功能、状态和特性。
文字符号分为基本文字符号和辅助文字符号,常用文字符号见表2—1。
1.基本文字符号
基本文字符号有单字母符号与双字母符号两种。单字母符号按拉丁字母顺序将各种电气设备、装置和元器件划分为23大类,每一类用一个专用单字母符号表示,如“C”表示电容器类,“R”表示电阻器类等。
双字母符号由一个表示种类的单字母符号与另一个字母组成,且以单字母符号在前,另一个字母在后的次序排列,如“F”表示保护器件类,则“FU”表示为熔断器,“FR”表示为热继电器。
2.辅助文字符号
辅助文字符号用来表示电气设备、装置和元器件以及电路的功能、状态和特征。如“L”表示限制,“RD”表示红色等。辅助文字符号也可以放在表示种类的单字母符号之后组成双字母符号,如“YB”表示,“SP”表示压力传感器等。辅助字母还可以单独使用,如“ON”表示接通,“M”表示中间线, “PE”表示保护接地等。
三、 接线端子标记
1. 三相交流电路引入线采用L1、L2、L3、N、PE标记,直流系统的电源正、负线分别用L+、L―标记。
2. 分级三相交流电源主电路采用三相文字代号U、V、W的前面加上阿拉伯数字1、2、3等来标记。如1U、1V、1W、2U、2V、2W等。
3. 各电动机分支电路各接点标记采用三相文字代号后面加数字来表示,数字中的个位数表示电动机代号,十位数字表示该支路各结点的代号,从上到下按数值大小顺序标记。如U11表示M1电动机的第一相的第一个节点代号,U21表示M1电动机的第一相的第二个节点代号,以此类推。
4. 三相电动机定子绕组首端分别用U1、V1、W1标记,绕组尾端分别用U2、V2、W2标记,电动机绕组中间抽头分别用U3、V3、W3标记。
5.控制电路采用阿拉伯数字编号。标注方法按“等电位”原则进行,在垂直绘制的电路中,标号顺序一般按自上而下、从左至右的规律编号。凡是被线圈、触点等元件所间隔的接线端点,都应标以不同的线号。
第二节 电气图的绘制
常用的电气图包括:电气原理图、电器元件布置图、电气安装接线图。各种图纸的图纸尺寸一般选用297×210、297×420、297×630、297×840mm、四种幅面,特殊需要可按GB126—74《机械制图》国家标准选用其他尺寸。
一、 电气原理图
用图形符号、文字符号、项目代号等表示电路各个电气元件之间的关系和工作原理的图称为电气原理图。电气原理图结构简单、层次分明,适用于研究和分析电路工作原理、并可为寻找故障提供帮助,同时也是编制电气安装接线图的依据,因此在设计部门和生产现场得到广泛应用。
电气原理图是把一个电气元件的各部件以分开的形式进行绘制,现场也有将同一电器上各个零部件均集中在一起,按照其实际位置画出的电路结构图,如图2.1就是三相异步电动机的全压起动控制线路的电路结构图,其中用了刀开关QS、交流接触器KM、按钮SB、热继电器FR、熔断器FU等几种电器。

图2.1 全压起动控制线路结构图
结构图的画法比较容易识别电器,便于安装和检修。但是,当线路比较复杂和使用的电器比较多时,线路便不容易看清楚。因为同一电器的各个部件在机械上虽然联在一起,但是电路上并不一定相互关联。
而如图2.2所示的三相异步电动机的全压起动控制线路电气原理图中,根据工作原理把主电路和控制电路清楚地分开画出,虽然同一电器的各部件(譬如接触器的线圈和触点)是分散画在各处的,但它们的动作是相互关联的,为了说明它们在电气上的联系,也为了便于识别,同一电器的各个部件均用相同的文字符号来标注。例如,接触器KM1的触点、吸引线圈,都用KM1来标注;接触器KM2的触点和线圈,都用KM2来标注。

图2.2 全压起动控制电气原理图

1.电气原理图的绘制原则如下:
(1)电气原理图中的电器元件是按未通电和没有受外力作用时的状态绘制。
在不同的工作阶段,各个电器的动作不同,触点时闭时开。而在电气原理图中只能表示出一种情况。因此,规定所有电器的触点均表示在原始情况下的位置,即在没有通电或没有发生机械动作时的位置。对接触器来说,是线圈未通电,触点未动作时的位置;对按钮来说,是手指未按下按钮时触点的位置;对热继电器来说,是常闭触点在未发生过载动作时的位置等等。
(2)触点的绘制位置。
使触点动作的外力方向必须是:当图形垂直放置时为从左到右,即垂线左侧的触点为常开触点,垂线右侧的触点为常闭触点;当图形水平放置时为从下到上,即水平线下
方的触点为常开触点,水平线上方的触点为常闭触点。
(3)主电路、控制电路和辅助电路应分开绘制。主电路是设备的驱动电路,是从电源到电动机大电流通过的路径;控制电路是由接触器和继电器线圈、各种电器的触点组成的逻辑电路,实现所要求的控制功能;辅助电路包括信号、照明、保护电路。
(4)动力电路的电源电路绘成水平线,受电的动力装置(电动机)及其保护电器支路应垂直与电源电路。
(5)主电路用垂直线绘制在图的左侧,控制电路用垂直线绘制在图的右侧,控制电路中的耗能元件画在电路的最下端。
(6)图中自左而右或自上而下表示操作顺序,并尽可能减少线条和避免线条交叉。
(7)图中有直接电联系的交叉导线的连接点(即导线交叉处)要用黑圆点表示。无直接电联系的交叉导线,交叉处不能画黑圆点。
(8)在原理图的上方将图分成若干图区,并标明该区电路的用途与作用;在继电器、接触器线圈下方列有触点表,以说明线圈和触点的从属关系。
例如,图2.3就是根据上述原则绘制出的某机床电气原理图。
图2.3 某机床电气原理图

2.电气原理图图面区域的划分
图面分区时,竖边从上到下用英文字母,横边从左到右用阿拉伯数字分别编号。分区代号用该区域的字母和数字表示,如A3、C6等。图面上方的图区横向编
号是为了便于检索电气线路,方便阅读分析而设置的。图区横向编号的下方对应文字(有时对应文字也可排列在电气原理图的底部)表明了该区元件或电路的功能,以利于理解全电路的工作原理。
3.电气原理图符号位置的索引
在较复杂的电气原理图中,对继电器、接触器线圈的文字符号下方要标注其触
点位置的索引;而在其触点的文字符号下方要标注其线圈位置的索引。符号位置的索引,用图号、页次和图区编号的组合索引法,索引代号的组成如下:

当与某一元件相关的各符号元素出现在不同图号的图样上,而每个图号仅有一页图样时,索引代号可以省去页次;当与某一元件相关的各符号元素出现在同一图号的图样上,而该图号有几张图样时,索引代号可省去图号。依次类推。,当与某一元件相关的各符号元素出现在只有一张图样的不同图区时,索引代号只用图区号表示。
如图2.3的图区9中,继电器KA触点下面的8即为最简单的索引代号,它指出继电器KA的线圈位置在图区8。图区5中,接触器KM主触点下面的7,即表示继电器KM的线圈位置在图区7。
在电气原理图中,接触器和继电器的线圈与触点的从属关系,应当用附图表示。即在原理图中相应线圈的下方,给出触点的图形符号,并在其下面注明相应触点的索引代号,未使用的触点用“X”表明。有时也可采用省去触点图形符号的表示法,如图2.3图区8中KM线圈和图区9中KA线圈的下方的是接触器KM和继电器 KA 相应触点的位置索引。

在接触器KM触点的位置索引中,左栏为主触点所在的图区号(有两个主触点在图区4,另一个主触点在图区5),中栏为辅助常开触点所在的图区号(一个触点在图区6,另一个没有使用),右栏为辅助常闭触点所在的图区号(两个触点都没有使用)。
在继电器KA触点的位置索引中,左栏为常开触点所在的图区号(一个触点在图区9,另一个触点在图区13),右栏为常闭触点所在的图区号(四个都没有使用)。

二、电器元件布置图
电器元件布置图主要是表明电气设备上所有电器元件的的实际位置,为电气设备的安装及维修提供必要的资料。电器元件布置图可根据电气设备的复杂程度集中绘制或分别绘制。图中不需标注尺寸,但是各电器代号应与有关图纸和电器清单上所有的元器件代号相同,在图中往往留有10%以上的备用面积及导线管(槽)的位置,以供改进设计时用。
电器元件布置图的绘制原则:
(1)绘制电器元件布置图时,机床的轮廓线用细实线或点划线表示,电器元件均用粗实线绘制出简单的外形轮廓。
(2)绘制电器元件布置图时,电动机要和被拖动的机械装置画在一起;行程开关应画在获取信息的地方;操作手柄应画在便于操作的地方。
(3)绘制电器元件布置图时,各电器元件之间,上、下、左、右应保持一定的间距,并且应考虑器件的发热和散热因素,应便于布线、接线和检修。
图2.4为某车床电器元件布置图,图中FU1~FU4为熔断器、KM为接触器、FR为热继电器、TC为照明变压器、XT为接线端子板。

图2.4 某机床电气元件布置图
2.2.3 电气安装接线图
电气安装接线图主要用于电气设备的安装配线、线路检查、线路维修和故障处理。在图中要表示出各电气设备、电器元件之间的实际接线情况,并标注出外部接线所需的数据。在电气安装接线图中各电器元件的文字符号、元件连接顺序、线路号码编制都必须与电气原理图一致。
电气安装接线图的绘制原则:
(1)绘制电气安装接线图时,各电器元件均按其在安装底板中的实际位置绘出。元件所占图面按实际尺寸以统一比例会址。
(2)绘制电气安装接线图时,一个元件的所有部件绘在一起,并用点划线框起来,有时将多个电器元件用点划线框起来,表示它们是安装在同一安装底板上的。
(3)绘制电气安装接线图时,安装底板内外的电器元件之间的连线通过接线端子板进行连接,安装底板上有几条接至外电路的引线,端子板上就应绘出几个线的接点。
(4)绘制电气安装接线图时,走向相同的相邻导线可以绘成一股线。
例如,图2.5就是根据上述原则绘制出的某机床电气安装接线图。

图2.5 某机床电气安装接线图
第三节 电气原理图的识读
电气原理图是表示电气控制线路工作原理的图形,所以熟练识读电气原理图,是掌握设备正常工作状态、迅速处理电气故障的必不可少的环节。
生产机械的实际电路往往比较复杂,有些还和机械、液压(气压)等动作相配合来实施控制。因此在识读电气原理图之前,首先要了解生产工艺过程对电气控制的基本要求,例如需要了解控制对象的电动机数量、各台电动机是否有起动、反转、调速、制动等控制要求,需要哪些连锁保护、各台电动机的起动、停止顺序的要求等等具体内容,并且要注意机、电、液(气)的联合控制。
一、读图要点
在阅读电气原理图时,大致可以归纳为以下几点:
1. 必须熟悉图中各器件符号和作用。
2. 阅读主电路。应该了解主电路有哪些用电设备(如电动机、电炉等),以及
这些设备的用途和工作特点。并根据工艺过程,了解各用电设备之间的相互联系,采用的保护方式等。在完全了解主电路的这些工作特点后,就可以根据这些特点再去阅读控制控制电路。
3.阅读控制电路。控制电路有各种电器组成,主要用来控制主电路工作的。在阅读控制电路时,一般先根据主电路接触器主触点的文字符号,到控制电路中去找与之相应的吸引线圈,进一步弄清楚电机的控制方式。这样可将整个电气原理图划分为若干部分,每一部分控制一台电动机。另外控制电路以办事依照生产工艺要求,按动作的先后顺序,自上而下、从左到右、并联排列。因此读图时也应当自上而下、从左到右,一个环节、一个环节地进行分析。
4.对于机、电、液配合得比较紧密的生产机械,必须进一步了解有关机械传动和液压传动的情况,有时还要借助于工作循环图和动作顺序表,配合电器动作来分析电路中的各种联锁关系,以便掌握其全部控制过程。
5.阅读照明、信号指示、监测、保护等各辅助电路环节。
对于比较复杂的控制电路,可按照先简后繁,先易后难的原则,逐步解决。因为无论怎样复杂的控制线路,总是由许多简单的基本环节所组成。阅读时可将他们分解开来,先逐个分析各个基本环节,然后再综合起来全面加以解决。
概括地说,阅读的方法可以归纳为:从机到电、先“主”后“控”、化整为零、连成系统。
二、读图练习
例1.如图2.6所示为C620—1型普通车床的电气原理图,试分析该线路的组成和各部分的功能。

图2.6 C620-1型普通车床电气原理图
1. 电气原理图分析:
C620—1型车床是常用的普通车床之一,M1为主轴电动机,拖动主轴旋转,并通过进给机构实现车床的进给运动。M2为冷却泵电动机,拖动冷却泵为车削工件时输送冷却液。
将电路分作主电路、控制电路、照明电路三大部分来分析:
(1)主电路。
电源由转换开关SA1引入。
M1为小于10KW的小容量电动机,所以采用直接起动。由于M1的正反转由摩擦离合器改变传动链来实现,操作人员只需扳动正反转手柄,即可完成主轴电动机的正反转,因此,在电路中仅仅是通过接触器KM的主触点来实现单方向旋转的起动、停止控制。
M2冷却泵电动机容量更小,大约只有0.125KW因此可由转换开关SA2直接操纵,实现单方向旋转的控制,这样既经济,操纵又方便。但是M2的电源由接触器KM的主触点控制,所以必须在主轴电动机起动后方可开动,具有顺序联锁关系。
(2)控制电路。
由起动按钮SB1、停止按钮SB2、热继电器FR1、FR2的常闭触点和接触器KM的吸引线圈组成,完成电动机的单向起停控制。
工作过程如下:闭合电源开关SA1,按下起动按钮SB1,接触器KM的吸引线圈通电,KM主触点和自锁触点闭合,M1主轴电动机起动并运行。如需车床停止工作,只要按下停止按钮SB2即可。
(3)照明和保护环节
① 照明环节:
由变压器副绕组供给36V安全电压经照明开关SA3控制照明灯EL。照明灯的
一端接地,以防止变压器原、副绕组间发生短路时可能造成的触电事故。
② 保护环节:
过载保护:由热继电器FR1、FR2实现M1和M2两台电动机的长期过载保护。
短路保护:由FU1、FU2、FU3实现对冷却泵电动机、控制电路及照明电路的短路保护。由于进入车床电气控制线路之前,配电开关内已装有熔断器做短路保护,所以,主轴电动机未另加熔断器作短路保护。
欠压与零压保护:当外加电源过低或突然失压,由接触器KM实现欠压与零压保护。
2.常见故障分析:
(1)主轴电动机不能起动。
首先应该重点检查电源是否引入,若配电开关内熔丝完好,则检查FU2 是否完好;FR1、FR2常闭触点是否复位。这类故障检查与排除较为简单,但更为重要的是应查明引起短路或过载的原因并将其排除。
此外,还可检查接触器KM吸引线圈接线端是否松动;三对主触点是否良好;再者,检查按钮SB1、SB2接点接触是否良好;各连接导线有无虚接或断线。
(2)主轴电动机缺相运行。
发生缺相运行时,按下起动按钮SB1,电动机会发出嗡嗡声,不能起动。此时应检查配电开关内是否有一相熔丝熔断;接触器KM是否有一对主触点接触不良;电动机接线是否有一处断线。发生这种故障时,应当尽快切断电源,排除故障后再重新起动电动机。
(3)主轴电动机能起动,但不能自锁。
这是由于接触器KM自锁触点闭合不上,或自锁触点未接入的缘故。
(4)按下停止按钮SB2主轴机M1不停止。
检查接触器KM主触点是否熔焊、被杂物卡住或有剩磁不能复位;停止按钮常闭触点被卡住,不能分断。
(5)局部照明灯EL不亮。检查变压器副绕组侧有无36V电压;开关SA3是否良好。

例2.如图2.7所示为电动葫芦的电气控制线路,试分析该线路的组成和各部分的功能。

图2.7 电动葫芦电气原理图
1. 电气原理图分析:
电动葫芦是一种起重量小、结构简单的起重机,它广泛应用于工矿企业中,尤其在修理和安装工作中,用来吊运重型设备。
将电路分作主电路、控制电路、保护环节三大部分来分析:
(1)主电路。
电源由转换开关SA1引入。
升降电动机M1由上升、下降接触器KM1、KM2的主触点控制,移行电动机M2由向前、向后接触器KM3、KM4的主触点来控制。两台电动机均需实现双向运行控制。
升降电动机M1转轴上装有电磁抱闸YB。它在断电停车时,能抱住M1的转轴,使重物不能自行坠落。
(2)控制电路。
由4个复合按钮SB1、SB2、SB3、SB4和4个接触器KM1、KM2 、KM3、KM4的吸引线圈以及接触器的常闭互锁触点组成,完成两台电动机的双向起停控制。
工作过程如下:闭合电源开关SA1,按下上升起动按钮SB1,接触器KM1的吸引线圈通电,KM1主触点闭合,M1主轴电动机起动,重物上升。在上升过程中,SB1的常闭触点和KM1的互锁常闭触点始终断开,断开了下降控制回路,此时,下降按钮SB2无效。如需停止上升,只要松开按钮SB1即可,同时下降控制电路恢复原状。
按下下降起动按钮SB2,接触器KM2的吸引线圈通电,KM2主触点闭合,M1主轴电动机起动,重物下降。在下降过程中,SB2的常闭触点和KM2的互锁常闭触点始终断开,断开了上升控制回路,此时,上升按钮SB1无效。如需停止下降,只要松开按钮SB2即可,同时上升控制电路恢复原状。
前后移动控制与此相似,由SB3、SB4控制向前、向后接触器KM3、KM4,使移行电动机M2正反向运行,带动重物前后移动。
由此可见,电动机M1、 M2均采用点动控制及接触器常闭触点和复合按钮的双重互锁的正反转控制方式。这种点动控制方式,保证了操作人员离开工作现场时,所有电动机均自行断电。
(3)保护环节
为了防止吊钩上升到过高位置撞坏电动葫芦,电路中设置了提升机构的行程开关SQ,用以实现提升位置的极限保护。
2. 常见故障分析:
(1)升降电动机不能起吊重物。
首先应该重点检查电源是否正常,是否有电压过低或电动机有故障。
此外,检查按钮SB1、SB2接点接触是否良好;各连接导线有无虚接或断线。
(2)电动机缺相运行。
电源接通后,接触器虽闭合,但电动机发出嗡嗡声。应当检查接触器KM三对主触点中是否有一对主触点接触不良;电动机接线是否有一处断线。发生这种故障时,应当尽快切断电源,排除故障后再重新起动电动机。
(3)制动电磁铁线圈发热。
检查电磁铁线圈匝间是否发生短路。

本 章 小 结
本章讲述了电气图的统一符号以及电气图的分类,着重介绍了电气原理图的绘制原则和识读要点。
电气原理图的主要部分是主电路和控制电路,主电路是从电源到电动机的电路,控制电路是控制主电路工作的电路。图中所有电器的触点都是在线圈未通电或触点未受到机械外力作用时的状态。同一电器的各个部件在图中均用同一文字符号标注。
识读电气原理图时首先要弄清电气控制的基本要求和运行条件。在此基础上先读主电路,了解主电路中有哪些被控制的电动机和电器,主电路一般以接触器的主触点为中心,搞清楚各电器的作用和工作情况。然后识读控制电路,控制电路以接触器的线圈为中心,包括和它相串联电器或电器中的部分元件。识读时,应将控制电路从上到下、从左到右弄清每个环节,然后再分析各环节之间的联系。
学习和掌握这些环节,对后面内容的学习是非常有帮助的。

习 题
1.电气图中为什么要规定统一的文字符号和图形符号?
2.电气图分作哪几类?各有什么用途?
3.电气原理图中文字符号QS、FU、KM、KA、KT、FR、SB、SQ分别代表
什么含义?
3. 阅读电气原理图中的控制电路部分时,应当注意什么问题?
4. 简述电气原理图分析的一般步骤。
5. 电气原理图的阅读方法归纳起来有16个字,是哪16个字?如何理解其含
义?

实 训
一、实训目的
1. 熟悉电气图的常用符号。
2. 了解电气原理图的组成。
3. 了解电气图中三个图之间的关系及绘图原则。

二、 实训要求
1. 熟记电气图常用的图形符号与文字符号。
2. 能对电气原理图进行图面分区和接点标记。
3. 能根据给定的电气原理图绘制电器元件布置图。

三、 实训内容
1.电气图的图形符号与文字符号
(1)画出两种时间继电器的线圈与两种触点的图形符号

线圈 瞬时触点 延时触点 文字符号

通电延时
时间继电器

断电延时
时间继电器

(2)画出热继电器热元件与触点的图形符号
热元件 常闭触点 文字符号

热继电器

(3)画出交流接触器线圈与触点的图形符号
线圈 主触点 辅助触点 文字符号

接触器

2.如图2.8为某机床的电气原理图,要求:
(1)试对该图进行图面分区和接线标记。
(2)绘制出电气元件位置图。
(3)列出元器件清单。

图2.8 某机床的电气原理图

D. 电路与电子技术实验

1.用交流毫伏表测量交流信号时,仪器正常的频响范围内,信号频率的高低对读数没有影响。不能用交流毫伏表来测量直流电压和5Hz 以下的交流电压,因为交流毫伏表的内部用二极管进行单向导电处理,直流电会被断路。之所以不用普通万用表来测量高频信号电压,是因为普通万用表中所用元器件的同频带较低,对高频信号的处理会产生频率失真。 2.函数信号发生器一般都有三角波、正弦波、方波这三种输出,有些功能多一点的还有这三种波形的变形输出。其输出端可以断路但不能短路。 3.频率、幅度、灰度、聚焦四个旋钮是最常用的,但一定要注意通道的正确选择。信号千万不能选择为“地”。

希望采纳

E. 怎样控制电路优秀教案设计与教学反思

上节课学习了电路的组成和电路连接过程中的可能出现的几种情况,在解决了如何使一个灯亮起来的问题后,进一步深入探讨怎样使两个灯亮起来的问题。本节课从生活中的情景“在房间里需要安装吊灯和壁灯”引入,如何把两只灯接入电路?由学生自己动手动脑把两只灯可能的连接方式找出来,并区分寻找它们的特点,分别命名为串联电路和并联电路.再利用连接好的电路进一步比较两种电路中的电流路径、电灯的工作状况,从而总结出串并联电路的区别,尤其是开关分别在串联电路和并联电路中的不同作用。最后应用前面总结出的串并联的知识来识别实际电路的连接状况。整节课从生活情景出发,最终落脚点还是落在解决生活中的实际问题。

教材分析

教材的地位和作用:《电路连接的基本方式》是在学生学习了简单电路知识以后贯穿于整个电学部分的一个重要内容,是学生学习电学知识的一个基础,如果无法正确连接电路图,后边的学习将无法进行,它对学生认识串联和并联电路的特点,培养学生连接电路的技能有着重要的作用。本节内容是学生在学习了电路的连接方法和学会了画电路图的基础上进一步学习有关电路连接的不同方式——串联和并联。它既是对前一节内容的深入研究,又为学生学习后面的有关内容做了准备。

学情分析

学生在上节刚学习了电路,知道组成电路的元件,也了解了家用电器,但家用电器以及电路的连接方式并不了解,根本不知道串联和并联,对于不善于观察生活的学生来说,更不了解这些家用电器相互的工作情况,所以本节由理论到实际,从纸面到生活,从电路图到实物元件,一步步对学生进行引导,有利于学生对串、并联电路特点的掌握。

教学目标

1、知识与技能:通过实际的独立操作能连接简单的串联电路和并联电路,能根据设计的串联电路图和并联电路图连接实际的电路,同时尽可能自己动手设计一些有应用价值的串、并联电路。能说出生活、生产中采用简单串联或并联的实例。
2、过程与方法:通过探究,实验的方法了解串、并联电路的区别。
3、情感、态度与价值观:能说出生活、生产实际中串联或并联电路的实例,提高观察能力,认识科学技术对社会发展和人类生活的影响。

教学重点和难点

教学重点:知道两种电路的基本特点。
教学难点:串联、并联电路的识别及电路连接的方式的判断和应用。

教学过程

教学环节

教师活动

预设学生行为

设计意图

复习

1、 干电池、发电机、太阳能电池在工作时的能量转化。
2、 洗衣机、电饭锅、电灯在工作时的能量转化。
3、 什么是电路?

学生举手回答,教师给予肯定。

复习巩固,为引入新课作铺垫

引入新课

如果给你一个开关、一个电源、两个小灯泡,你如何连接它们?请画出电路图。
教师指出:这是两种不同的电路,是电路连接的两种基本方式,一种是串联,一种是并联,这节来研究电路连接的基本方式。

学生在练习本设计,并让设计出不同电路图的两个学生板演。

激发学生的兴趣,开拓学生思维

新授

1:串联电路

PPT展示串联和并联的电路图,讲解定义:把元件逐个顺次连接组成的电路叫做串联电路;把元件并列连接组成的电路叫做并联电路。
活动1:桌上现有两个带灯座的小电灯、电池、开关和导线若干,同桌合作,按展示的电路图组成串联电路。

活动2:
a.同桌讨论:沿着电流方向看,电流由正极到负极有几条路可以走?
b.同桌合作,取下一个灯泡,观察另一个灯泡是否发光。
c.同桌合作,改变开关的位置,闭合、断开开关,观察开关的作用是否改变。

讨论:串联电路有哪些特点?
引导:1.有几条电流路径?2.各元件是否相互影响?3.开关位置对其作用有无影响?
讨论完毕后PPT展示串联电路的特点:
1.整个电路只有一条电流路径。
2.各元件相互影响。
3.整个电路只需一个开关,且开关位置改变其控制作用不变。

学生积极动手,互相协作,连好电路,闭合开关,灯泡发光,学生露出成功的喜悦。

学生边实验边讨论并用笔记录观察到的现象。

培养学生的动手能力、合作能力及观察能力,让他们感受到物理实验的重要。

2:并联电路

活动3:同桌合作,把桌上的元件按并联电路图组成并联电路。
活动2:
a.同桌讨论:沿着电流方向看,电流由正极到负极有几条路可以走?
b.同桌合作,取下一个灯泡,观察另一个灯泡是否发光。
c.教师演示:随机用一组学生已连好的电路,给支路各加一个开关,分别闭合、断开三个开关,观察各开关的作用。

讨论:并联电路有哪些特点?
引导:1.有几条电流路径?2.各元件是否相互影响?3.让学生了解并联电路中的干路和支路,开关位置对其作用有无影响?
讨论完毕后PPT展示并联电路的特点:
1.整个电路至少有两条电流路径。
2.各元件相不影响。
3.干路开关控制整个干路,支路开关只控制本支路。

学生积极动手,互相协作,连好电路,闭合开关,灯泡发光。

学生边实验边讨论并用笔记录观察到的现象。

培养学生的动手能力、合作能力及观察能力,让他们感受到物理实验的重要。

课堂练习

根据串并联电路的特点分析:
1、房间里的两个灯是如何连接的?为什么?
2、请你判断教室里的日光灯是如何连接的?为什么?
3、街道的路灯是串联还是并联呢?为什么?
4、你家里的各种用电器之间是如何连接的?
生活、物理、社会:
节日小彩灯是怎样连接的?
冰箱的压缩机和冷藏室的照明灯之间是怎样连接的?

同桌讨论、分组讨论。

活跃课堂气氛、巩固本节新知,让他们参与实践、从物理走向生活,激发他们的学习热情。做到学以致用,培养学生的创新能力。

布置作业

1、画出房间里两盏灯连接的电路图。
2、教室里有六盏灯,三个开关,画出它们连接的电路图。

独立或合作完成

拓展视野,培养观察生活的能力。

板书设计

一、串联电路
1.定义:把元件逐个顺次连接组成的电路叫做串联电路;。
2.电路图:

3.特点:
a.整个电路只有一条电流路径。
b.各元件相互影响。
c.整个电路只需一个开关,且开关位置改变其控制作用不变。
二、并联电路
1.定义:把元件并列连接组成的电路叫做并联电路
2.电路图:

3.特点:
a.整个电路至少有两条电流路径。
b.各元件相不影响。
c.干路开关控制整个干路,支路开关只控制本支路。

学生学习活动评价设计

自我评价表

我学到的知识

在生活中的应用

串联电路的定义:
串联电路的特点:




并联电路的定义:
并联电路的特点:




教学反思

通过本节教学发现,串、并联电路的特点学生理解较快,而且很快用于解决实际生活问题,但部分学生的动手能力较差,串联电路几乎所有学生都能连接,但并联电路在规定时间内连好的却不足一半,使整堂课进度在此耽搁时间较长,所以在以后的教学中,我将注重从以下两方面入手:
1.加强学生动手能力的培养,在实验的过程中教师加强指导,同时注重学生中间互相帮助。
2.如果时间比较紧张,将组成并联电路这一学生实验改为演示实验,给学生留有充足的观察、思考、讨论的时间。

F. 九年级物理《电流与电压和电阻的关系》教学

一、电流与电路是电学的入门,电流的概念比较抽象,讲解时学要用形象的身边的事例(如:水流)类比电流,这样学生才能理解电流,掌握电流。
二、对简单的电路连接及画电路图,采用先教方法再让学生探索,然后教师纠错的教学方法,能起以下几方面作用:
1.能充分曝露学生学习上的问题,使教学更有针对性;
2.不约束学生的思维,适合中学生好表现的年龄特点,有助于激发学生的求知欲,培养终身探索的兴趣;
3.避免学生以为学生内容简单而掉以轻心;
4.让学生在探索并解决问题过程中,体味成功的快乐。
三、让学生寻找生活中的电路元件,使学生充分体现物理源于生活,用于生活。
四、让学生了解生活中的简单电路,帮助学生了解生活中的物理学道理,有助于学生活用所学知识,对培养学生的兴趣及创造性思维很有帮助。

G. 五年级科学上册教案 湘教版怎样控制电路教案

教材的地位和作用:《电路连接的基本方式》是在学生学习了简单电路知识以后贯回穿于整个电学部答分的一个重要内容,是学生学习电学知识的一个基础,如果无法正确连接电路图,后边的学习将无法进行,它对学生认识串联和并联电路的特点,培养学生连接电路的技能有着重要的作用。本节内容是学生在学习了电路的连接方法和学会了画电路图的基础上进一步学习有关电路连接的不同方式——串联和并联。它既是对前一节内容的深入研究,又为学生学习后面的有关内容做了准备。

H. 电子线路教案下载

是老师的话就自己写吧!给你一点参考,图和表格没法复制。自己讲课一定要自己写哦!不要误己误人!
第一章直流电路

在生产自动化控制系统中,时常可能会出现一些由于电气控制设备故障引起的失控问题,以致影响正常的生产秩序,如何对这些电气控制设备故障进行维修?首先要了解电路的控制原理,然后对有关的电路参数进行检测,将检测的参数与标准参数比较,从而判断故障所处的位置并排除,整个过程就这么简单。这就是维修技术。所谓检测电路参数,就是测量电路中某段电路两端的电压和流过它的电流,以及其阻抗。在实际工作中,如何掌握检测维修技能,是我们学习本课程的目的。
本章学习目标
(1)了解电路的基本物理量的意义、单位和符号,电流与电压正方向的确定方法;
(2)了解电路的基本定律的意义及其应用、电路的工作状态以及负载额定值的意义;
(3)了解电源的等效变换的条件,掌握电路的等效变换方法。
(4)掌握电路的分析的基本原理及电路参数的检测方法。
1.1 电路的基本概念
1.1.1 电路与电路基本物理量
1.电路图
(1)电路
电路就是电流所流过的路径,它为了实现某种功能由一些电气设备或元构成的。,就其功能而言,可以分为两大类:一是实现能量的转换、传送与分配(如电力系统电路等);二是实现信号的传送和处理(如广播电视系统),
(2)电路模型
由于电能的传输和转换,或是信号的传递和处理,都是通过电流、电压和电动势来实现的,因此下面介绍电路的基本物理量。如图1-1所示

图1-1理想电路元件及其图形符号
2.电流及参考方向
电流是一种物理现象,是带电粒子有规则的定向运动形成的,通常将正电荷移动的方向规定为电流正方向。电流的大小用电流强度来衡量,其数值等于单位时间内通过导体某一横截面的电荷量。根据定义有
(1-1)
式中,i为电流,其单位为安培 (A);dq为通过导体截面的电荷量,电荷量的单位为库仑(C);dt为时间(s)。
上式表明,在一般情况下,电流是随时间变化的。如果电流不随时间而变化,即dq/dt=常数,则这种电流就称为恒定电流 (简称直流)。直流时,不随时间变化的物理量用大写字母表示,式 (1-1)可写成
(1-2)
电流的方向是客观存在的,但在电路分析中,一些较为复杂的电路,有时某段电流的实际方向难以判断,甚至有时电流的实际方向还在随时间不断改变,于是要在电路中标出电流的实际方向较为困难。为了解决这一问题,在电路分析时,常采用电流的“参考方向”这一概念。电流的参考方向可以任意选定,在电路图中用箭头表示。当然,所选的参考方向不一定就是电流的实际方向。当参考方向与电流的实际方向一致时,电流为正值(i>0);当参考方向与电流的实际方向相反时,电流为负值(i<0)。这样,在选定的参考方向下,根据电流的正负,就可以确定电流的实际方向。在分析电路时,先假定电流的参考方向,并以此去分析计算,最后用求得答案的正负值来确定电流的实际方向。
3.电压及参考方向
(1)定义:单位正电荷在电场力作用下,由a运动到b电场力所做的功,称为电路中a到b间的电压,即
(1-3)
式中,uab为a到b间的电压,电压的单位为伏特 (V); 为 的正电荷从a运到b所做的功,功的单位为焦耳 (J)。
在直流时,式 (1-3)可写成
(1-4)
(2)单位:1千伏特(KV)=1000伏(V)
1伏特(KV)=1000毫伏(mV)
1毫伏(mV)=1000微伏(μV)
(3)实际方向:高电位指向低电位
(4)参考方向:任意选定某一方向作为电压的正方向,也称参考方向。
(5)电压参考方向的表示方法
在电路分析时,也需选取电压的参考方向,当电压的参考方向与实际方向一致时,电压为正 (u>0);相反时,电压为负 (u<0)。电压的参考方向可用箭头表示,也可用正
(+)、负 (-)极性表示
4.电位
在电路中任选参考点0,该电路中某点。到参考点0的电压就称为a点的电位。电位的单位为伏特 (V),用V表示。电路参考点本身的电位V0=0,参考点也称为零电位点。根据定义,电位实际上就是电压,即
Va=Ua0 (1-5)
可见,电位也可为正值或负值,某点的电位高于参考点,则为正,反之则为负。任选参考点0,则a、b两点的电位分别为Va=Ua0、Vb=Ub0。按照做功的定义,电场力把单位正电荷从a点移到b点所做的功,等于把单位正电荷从a点移到0点,再移到b点所做的功的和,即
Uab=Ua0+U0b=Ua-Ub0=Va-Vb
或 Uab=Va-Vb (1-6)
式 (1-6)表明,电路中a、b两点间的电压等于a、b两点的电位差,因而电压也称为电位差。
注意!同一点的电位值是随着参考点的不同而变化的,而任意两点之间的电压却与参考点的选取无关。
举例:例1-1
总结:
电压、电流的参考方向是事先选定的一个方向,根据电压、电流数值的正、负,可确定电压、电流的实际方向。引入参考方向后,电压、电流可以用代数量表示。电路或元件的伏安关系是电路分析与研究的重点。
复习:
1、简述电流及电压参考方向的含义
2、电压与电位有何区别?
1.1.2 电路基本元件及其伏安特性
电路中的元件,如不另加说明,都是指理想元件。分析研究电路的一项基本内容就是分析电路或元件的电压、电流及其它们之间的关系。电压与电流的关系称为伏安关系或伏安特性,在直角平面上画出的曲线称为伏它特性曲线。下面讨论电路基本元件及其伏安特性。
1.电阻元件及其伏安特性
电阻元件的伏安特性,如图1-2所示,为过原点的
一条直线,它表示电压与电流成正比关系,这类
电阻元件称为线性电阻元件,其两端的电压与电流
服从欧姆定律关系,即
图1-2电阻元件的伏安特性曲线
或 (1-7)
在直流电路中,欧姆定律可表示为
或U=RI (1-8)
式中电压U的单位是V,电流I的单位是A,电阻R的单位是 。常用的电阻单位还有行千欧(k )和兆欧(M )他们之间的关系为
1M =103k =106
值得注意的是,导体的电阻不随其端电压的大小变化,是客观存在的。当温度一定时,导体的电阻与导体的长度l成正比,与导体的横截面积S成反比,还与导体的材料性质(电阻率 )有关,即
(1-9)
式中,R的单位是 , 的单位是 m,l的单位是m,S的单位是m2。若令G=1/R,则G称为电阻元件的电导,电导的单位是西[门子](S)。
在(1-8)式中,当电压与电流的参考方向一致时,电压为正值。反之,则电压为负值。
2.电压源
电源是电能的来源,也是电路的主要元件之一。电池、发电机等都是实际的电源。在电路分析时,常用等效电路来代替实际的部件。一个实际的电源的外特性,即电源端电压与输出电流之间的关系[U=f(I)],可以用两种不同的电路模型来表示。一种是电压源;一种是电流源。
(1)理想的电压源——恒压源
一个电源没有内阻,其端电压与负载电流的变化无关,为常数,则这个电源称为理想的电压源,用Us表示,它是一条与I轴平行的直线。通常用的稳压电源、发电机可视为理想的电压源。
(2)电压源
实际的电源都不会是理想的,总是有一定的
内阻,因此,在电路分析时,对电源可以用
一个理想的电压源与内阻相串联的电路模
型——电压源来表示,如图1-3所示。直流电
压源的外特性为
图1-3 电压源外特性曲线
U=Us-R0I (1-10)
图中斜线与纵座标轴的交点,为负载开路时,电源的端电压(电压源的最高端电压),即I=0,U=U0=Us。而与横座标轴的交点则是电源短路时的最大电流Is,即U=0,Is=Us/R0。

3.电流源
(1)理想电流源——恒流源
当一个电源的内阻为无穷大,其输出电流与负载的变化无关,为常数,则这个电源称为理想电流源,用Is表示。其外特性曲线是一条与纵轴U平行的直线。常用的光电池与一些电子器件构成的稳流器,可以认为是理想的电流源。
(2)电流源
理想电流源实际上是不存在。对于一个实际的电源,也可以用一个理想的电流源与内阻并联的电路模型——电流源来替代,如图1-4所示,由式(1-10)得直流电流源的外特性为

图1-4 电流源外特性曲线
(1-11)
的曲线,图中斜线与纵轴的交点表示负载开路时,I=0,U=U0=R0Is=Us;斜线与横轴的交点则是电流源短路时,U=0,I=Is。

4.电压源与电流源的等效变换
如果电压源和电流源的外特性相同,则在相同电阻R上产生相等的电压U与电流I。如图1-5所示。
在图1-5(a)的电压源模型中

图1-5 实际电压源与实际电流源等效变换
(1-12)
在图1-5(b)的电流源模型中

(1-13)
比较以上两式,得
或 (1-14)
式(1-14)就是实际的电压源与电流源之间等效变换公式。
在等效变换时还需注意:
1)电压源是电动势为E的理想电压源与内阻R0相串联,电流源是电流为Is的理想电流源与内阻R0相并联,是同一电源的两种不同电路模型。
2)变换时两种电路模型的极性必须一致,即电流源流出电流的一端与电压源的正极性端相对应。
3)等效变换仅对外电路适用,其电源内部是不等效的。
4)理想电压源的短路电流Is为无穷大,理想电流源的开路电压U0为无穷大,因而理想电压源和理想电流源不能进行这种等效变换。
5)扩展内阻R0的内涵,即当有电动势为E的理想电压源与某电阻R串联的有源支
路,都可以变换成电流为Is的理想电流源与电阻R并联的有源支路,反之亦然。其相互变换的关系是

式 (1-15)中电阻R可以是电源的内阻,也可以是与电压源串联或与电流源并联的任意电阻。
举例:例1-2

1.1.3 电路的三种状态
(1)额定工作状态
在图1-6所示的电路中,如果开关闭合,电源则向负载RL提供电流,负载RL处于额定工作状态,这时电路有如下特征:
① 电路中的电流为:

图1-6 电路的有载与空载
(1-15)
式中,当Us与R0一定时,I的值取决于RL的大小。
② 电源的端电压等于负载两端的电压(忽略线路上的压降),为:
U1= Us-R0I=U2 (1-16)
③ 电源输出的功率则等于负载所消耗的功率(不计线路上的损失),为:
P1=U1I=(Us-R0I)I=U2I=P2 (1-17)

(2)空载状态
图1-6所示的电路,为开关断开或连接导线折断时的开路状态,也称为空载状态。电路在空载时,外电路的电阻可视为无穷大。因此电路具有下列特征:
① 电路中的电流为零,即
I=0 (1-18)
② 电源的端电压为开路电压U0,并且有
U1=U0=Us-R0I=Us (1-19)
③ 电源对外电路不输出电流,因此有
P1=U1I=0,P2=U2I=0 (1-20)

(3)短路状态
如图1-6所示的电路中,电源的两输出端线,因绝缘损坏或操作不当,导致两端线相接触,电源被直接短路,这就叫短路状态。
当电源被短路时,外电路的电阻可视为零,这时电路具有如下特征:
① 电源中的电流最大,但对外电路的输出电流为零,即
,I=0 (1-21)
式中Is称为短路电流。因为一般电源的内阻R0很小,所以Is很大。
② 电源和负载的端电压均为零,即
U1= Us-R0I=0,U2=0 (1-22)
上式表明,电源的恒定电压,全部降落在内阻上,两者的大小相等,方向相反,因此无输出电压。
③ 电源输出的功率全部消耗在内阻上,因此,电源的输出功率和负载所消耗的功率均为零,即

(1-23)

举例:例1-3
总结:
1、简单电路的分析可以采用电阻串、并联等效变换的方法来化简。实际电压源与实际电流源可以互相等效变换。
2、无源二端线性网络可以等效为一个电阻。有源二端线性网络可以等效为一个电压源与电阻串联的电路或一个电流源与电阻并联的电路,且后两者之间可以互相等效变换。等效是电路分析与研究中很重要而又很实用的概念,等效是指对外电路伏安关系的等效。

复习:
1、电源在等效变换时需注意哪几点?
2、电路的三种状态各有什么特点?
1.2 直流电路的基本分析方法
电路分析是指在已知电路结构和元件参数的条件下,确定各部分电压与电流的之间的关系。实际电路的结构和功能多种多样,如果对某些复杂电路直接进行分析计算,步骤将很繁琐,计算量很大。因此,对于复杂电路的分析,必须根据电路的结构和特点去寻找分析和计算的简便方法。本节主要介绍电路的等效变换、支路电流法、结点电压法、叠加定理、戴维南定理、非线性电阻电路图解法等分析电路的基本方法。这些方法既可用于分析直流电路,也适用于分析线性交流电路。
1.2.1 电路的等效电阻
1.二端网络
二端网络是指具有两个输出端的电路,如果
电路中含有电源就叫有源二端网络,不含电源则
叫无源二端网络。二端网络的特性可用其端口上
的电压U和电流I之间的关系来反映,图1-7中
的端口电流I与端口电压U的参考方向 图1-7 二端网络
对二端网络来说是关联参考方向。
如果一个二端网络的端口电压与电流关系和另一个二端网络的端口电压与电流关系相同,则这两个二端网络对同一负载(或外电路)而言是等效的,即互为等效网络。

2.电阻的串联
如图1-8所示,为几个电阻依次连接,当中无分支电路的串联电路。串联电路的特点:
(1)流过各电阻中的电流相等,即
图1-8 电阻串联及其等效
I=I1=I2 (1-24)
(2)电路的总电压等于各电阻两端的电压之和,即
U=U1+U2 (1-25)
由此可得,电路取用的总功率等于各电阻取用的功率之和,即
IU=IU1+IU2 (1-26)
(3)电路的总电阻等于各电阻之和,即
R=R1+R2 (1-27)
(4)电路中每个电阻的端电压与电阻值成正比,即

(1-28)

(5)串联电阻电路消耗的总功率P等于各串联电阻消耗的功率之和,即
(1-29)
串联电路的实际应用主要有:
① 常用电阻的串联来增大阻值,以达到限流的目的;
② 常用几个电阻的串联构成分压器,以达到同一电源能供给不同电压的需要;
③ 在电工测量中,应用串联电阻来扩大电压表的量程。

3.电阻的并联
如图1-9所示,为几个电阻的首尾分别连接在电路中相同的两点之间的并联电路。
并联电路有如下特点:
(1)各并联电阻的端电压相等,且等于电路两端的电压,即

图1-9 电阻并联及其等效
U=U1=U2 (1-30)
(2)并联电路中的总电流等于各电阻中流过的电流之和,即
I=I1+I2 ` (1-31)
(3)并联电路的总电阻的倒数等于各并联电阻的倒数之和,即

即 (1-32)
(4)并联电路中,流过各电阻的电流与其电阻值成反比,阻值越大的电阻分到的电流越小,各支路的分流关系为
(1-33)
可见,在电路中,通过并联电阻能达到分流的目的。
(5)并联电阻电路消耗的总功率等于各电阻上消耗的功率之和,即
(1-34)
可见,各并联电阻消耗的功率与其电阻值成反比。
并联电路的实际应用有:
(1)工作电压相同的负载都是采用并联接法。对于供电线路中的负载,一般都是并联接法,负载并联时各负载自成一个支路,如果供电电压一定,各负载工作时相互不影响,某个支路电阻值的改变,只会使本支路和供电线路的电流变化,而不影响其他支路。例如工厂中的各种电动机、电炉、电烙铁与各种照明灯都是采用并联接法,人们可以根据不同的需要起动或停止各支路的负载。
(2)利用电阻的并联来降低电阻值,例如将两个1000 的电阻并联使用,其电阻值则为500 。
(3)在电工测量中,常用并联电阻的方法来扩大电流表量程。

4.电阻的混联
在实际的电路中,经常有电阻串联和并联相结合的连接方式,这就称为
电阻的混联。对于能用串、并联方法逐步化简的电路,仍称为简单电路。有些电阻电路既不是串联,也不是并联,无法用串、并联的公式等效化简,只有寻找其他的方法求解,如电阻的星形联接与三角形联接的求解。
举例:例1-4
1.2.2 基尔霍夫定律
用串并联的方法能够最终化为单一回路的简单电路,可以用欧姆定律来求解。用串并联的方法,不能将电路最终化为单一回路的复杂电路,其求解规律,反映在基尔霍夫定律中。基尔霍夫定律是电路的基本定律之一,它包含有两条定律,分别称为基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。
1. 电路结构的基本名词
在基尔霍夫定律中,常要用到如下几个电路名词:
支路:在电路中通过同一电流的分支电路叫做支路。如图1-10的电路中,有三条支路,分别是I1、I2和IL流过的支路。
节点:有三条或三条以上支路的连接点叫做节点。如图1-10的电路中,有b、e两个节点。回路:闭合的电路叫做回路。回路可由一条或多条支路组成,但是只含一个闭合回路的电路叫网孔。如图1-10的电路中,有abcdef、abef和bcde三个回路,两个网孔,即abef和bcde。

图1-10 电路名词定义示意图
2.基尔霍夫电流定律(KCL)
根据电流连续性原理,在电路中任一时刻,流入节点的电流之和等于流出该节点的电流之和,节点上电流的代数和恒等于零,即
或 (1-35)
这一关系叫节点电流方程,是基尔霍夫电流定律,也称为基尔霍夫第一定律。该定律的应用可以由节点扩展到任一假设的闭合面。在应用KCL时,必须先假定各支路电流的参考方向,再列电流方程求解,根据计算结果,确定电流的实际方向。如果指定流入节点的电流为正(或负),则流出节点的电流为负(或正)。
3.基尔霍夫电压定律(KVL)
根据电位的单值性原理,在电路中任一瞬时,沿回路方向绕行一周,闭合回路内各段电压的代数和恒等于零,即回路中电动势的代数和恒等于电阻上电压降的代数和,其数学式为
或 (1-36)
这一关系叫回路电压方程,是基尔霍夫电压定律,也称为基尔霍夫第二定律。该定律的应用可以由闭合回路扩展到任一不闭合的电路上,但必须将开口处的电压列入方程中。在应用KVL时,必须先假定闭合回路中各电路元件的电压参考方向和回路的绕行方向,当两者的假定方向一致时,电压取“+”号;反之则电压取“-”号。
举例:例1-6

总结:
欧姆定律和基尔霍夫定律是电路分析的最基本定律。它们分别体现了元件和电路结构对电压、电流的约束关系。

复习:
1、什么是串联分压?什么是并联分流?举例说明。
2、简述基尔霍夫定律的内容

1.2.3 支路电流法
支路电流法是利用基尔霍夫两个定律列出电路的电流和电压方程,求解复杂电路中各支路电流的基本方法。支路法的解题步骤为:
(1)先标出电路中各支路电流、电压的参考方向和回路的绕行方向。
(2)如果电路中有n个节点,根据KCL列出n-1个独立的节点电流方程。
(3)如果电路中有m个回路,根据KVL列出m-(n-1)个独立回路电压方程。通常选电路中的网孔来列回路电压方程。
(4)代入已知数,解联立方程组,求出各支路电流。根据需要还可以求出电路中各元件的电压及功率。

1.2.4 叠加原理
在线性电路中,如果有多个电源供电(或作用),任一支路的电流(或电压)等于各电源单独供电时在该支路中产生电流的代数和。这就是叠加原理。它是分析线性电路的一个重要定理。它的应用可以由线性电路扩展到产生的原因和结果满足线性关系的系统中,但不能用叠加原理计算功率,因为功率是电流(或电压)的二次函数(P=RI2),不是线性关系。
在应用叠加定理时,应注意以下几点:
1)在考虑某一电源单独作用时,要假设其他独立电源为零值。电压源用短路替代,电动势为零;电流源开路,电流为零。电源有内阻的都保留在原处,其他元件的联接方式不变。
2)在考虑某一电源单独作用时,可将其参考方向选择为与原电路中对应响应的参考方向相同,且在叠加时用响应的代数值代入。也可以原电路中电压和电流的参考方向为准,分电压和分电流的参考方向与其一致时取正号,不一致时取负号。
3)叠加定理只能用于计算线性电路的电压和电流,不能计算功率等与电压或电流之间不是线性关系的量。
4)受控源不是独立电源,必须全部保留在各自的支路中。
举例:例1-7

1.2.5 戴维南定理和诺顿定理
1. 戴维南定理

图1-11 有源二端网络的等效电路
在图1-11的电路中,在电路分析计算中,有时只需计算电路中某一支路的电流,如果用前面介绍的方法,计算比较复杂,为了简化计算,可采用戴维南定理进行计算。戴维南定理表述如下:任何一个线性有源二端网络,对于外电路,可以用一个理想电压源和内阻串联组合的电路模型来等效。该电压源的电压等于有源二端网络的开路电压;内阻等于将有源二端网络变成相应的无源二端网络的等效电阻。此电路模型称为戴维南等效电路,二端网络即具有两个端钮与外电路联接的网络。二端网络的内部含有电源时称为有源二端网络,否则称为无源二端网络。所谓相应的无源二端网络的等效电阻,就是原有源二端网络所有的理想电源 (理想电压源或理想电流源)均除去时网络的二端电阻。除去理想电压源,即E=0,理想电压源所在处短路;除去理想电流源,即Is=0,理想电流源所在处开路。戴维南定理把有源二端网络用电压源来等效代替,故戴维南定理又称为等效电压源定理。
解题步骤: (1)断开支路求有源二端网络的开路电压U0
(2)将有源二端网络变为无源二端网络求等效电阻Rab。
(3)根据戴维南定理画出等效电压源电路。
(4)把断开的支路拿回来,求未知电流。
2. 诺顿定理
由于电压源与电流源可以等效变换,因此有源二端网络也可用电流源来等效代替。诺顿定理叙述如下:任一线性有源二端网络,对其外部电路来说,可用一个理想电流源和内阻相并联的有源电路来等效代替。其中理想电流源的电流Is等于网络的短路电流,内阻R0等于相应的无源二端网络的等效电阻。诺顿定理又称为等效电流源定理,它和戴维南定理一起合称为等效电源定理。
举例:例1-8

总结:
1、支路电流法是分析电路的基本方法。如果电路结构复杂,因电路方程增加使得支路电流法不太实用。
2、叠加定理适用于线性电路,是分析线性电路的基本定理。注意,叠加定理只适用于线性电路中的电压和电流。
3、戴维南定理和诺顿定理是电路分析中很常用的定理,运用它们往往可以简化复杂的电路。
复习:
1、支路电流法有什么特点?
2、简述叠加定理的解题方法
3、简述应用戴维南定理的解题步骤

阅读全文

与电与电路教案相关的资料

热点内容
液压缸密封圈如何更换维修 浏览:720
厦门海尔售后服务部 浏览:616
米莱克家具实体店 浏览:131
高密买家具砍价砍多少合适 浏览:439
正则家具 浏览:729
苏州电脑维修哪里能修显卡 浏览:398
家用小型家电有哪些 浏览:867
老木房子翻新改造预算怎么做 浏览:666
塘沽戴尔售后服务 浏览:848
公共维修金按照什么比例交 浏览:800
莱西网通维修电话 浏览:539
济南容声冰箱维修点售后维修 浏览:287
2020年什么时候家电下乡 浏览:444
兴华家电商场怎么样 浏览:720
太原祥龙电动车维修在哪里 浏览:625
珠海家具城哪里最好 浏览:242
应聘手机外观维修要注意什么 浏览:610
国家电网公司章在哪里 浏览:163
d级危房只维修不重建什么意思 浏览:822
定制的家具开裂了怎么办 浏览:453