1. 串联电路中存在热效应吗
电流在流过导体时候发热的现象叫做电流热效应.简称电热
电热的多少跟 电流 电阻 通电时间三个因素有关
由于任何导体都有电阻
所以电流流过任何导体都会产生电热 只是多少不同而已
2. 高频电路里地线的电感效应是什么意思,请具体解释一下
电感量的大小与导线的长度有关,通常把电感绕制成线圈就是要增加导线的长度。
感抗与电感量的大小及使用的频率的乘积成正比,请记住这里的频率。
当高频应用时,即使很小的电感量,也就是很短的导线,也有可能产生很大的感(阻)抗。
3. 什么是Latch-up效应,试分析CMOS电路产生Latch-up效应的原因,通常使用哪些方法来防止或抑制Latch-up效应
Latch up 的定义
Latch up 最易产生在易受外部干扰的I/O电路处, 也偶尔
发生在内部电路
Latch up 是指cmos晶片中, 在电源power VDD和地线
GND(VSS)之间由于寄生的PNP和NPN双极性BJT相互
影响而产生的一低阻抗通路, 它的存在会使VDD和
GND之间产生大电流
随着IC制造工艺的发展, 封装密度和集成度越来越高,
产生Latch up的可能性会越来越大
Latch up 产生的过度电流量可能会使芯片产生永久性的
破坏, Latch up 的防范是IC Layout 的最重要措施之一
Latch up 的原理图分析
Latch up 的原理分析Q1为一垂直式PNP BJT, 基极(base)是nwell, 基极到
集电极(collector)的增益可达数百倍;Q2是一侧面式的
NPN BJT,基极为P substrate,到集电极的增益可达数
十倍;Rwell是nwell的寄生电阻;Rsub是substrate电
阻。
以上四元件构成可控硅(SCR)电路,当无外界干
扰未引起触发时,两个BJT处于截止状态,集电极电流
是C-B的反向漏电流构成,电流增益非常小,此时
Latch up不会产生。当其中一个BJT的集电极电流受外
部干扰突然增加到一定值时,会反馈至另一个BJT,从
而使两个BJT因触发而导通,VDD至GND(VSS)间
形成低抗通路,Latch up由此而产生。
CMOS电路中的寄生双极型晶体管部分出现闩锁,必须满足以下几个条件:
(1) 电路要能进行开关转换,其相关的PNPN结构的回路增益必须大于1
即 βnpn*βpnp >1,在最近的研究中,把闩锁产生的条件用寄生双极晶体管的有效注入效率和小信号电流增益来表达。即
(2) 必须存在一种偏置条件,使两只双极型晶体管导通的时间足够长,以使
通过阻塞结的电流能达到定义的开关转换电流的水平。一般来说,双极管的导通都是由流过一个或两个发射极/基极旁路电阻的外部激发电流所引起的。
(3) 偏置电源和有关的电路,必须能够提供至少等于PNPN结构脱离阻塞态
所需开关转换电流和必须能提供至少等于使其达到闩锁态的保持电流。
闩锁的触发方式:
(1) 输入或输出节点的上冲或下冲的触发,使第一个双极型晶体管导通,然
后再使第二个双极型晶体管导通。当流入寄生PNPN结构的总电流达到开关转换电流时,闩锁就发生。
(2) 当流过阱-衬底结的雪崩电流,光电流及位移电流,,同时通过两个旁路
电阻RW,RS时,旁路电阻较大的晶体管先导通。然而要使闩锁发生,第二个双极型晶体管必须导通。同时通过PNPN结构的总电流必须达到开关转换电流。
(3) 当出现穿通,场穿通时,低阻通路一般发生在电源和地线之间,或者发
生在电源和衬底发生器之间。在源-漏发生雪崩击穿的情况下,低阻通路发生在电源和信号线之间,或者发生在信号线和衬底发生器之间。这些来源于穿通,场穿通或漏结雪崩的电流,一旦PNPN结构的电流达到用取消被激发晶体管旁路电阻形成的三极管结构计算的开关转换电流时,至少会发生瞬时闩锁,若总电流也能达到四极管结构开关转换电流,即闩锁将维持下去。
闩锁的防止技术:
体硅CMOS中的闩锁效应起因于寄生NPN和PNP双极晶体管形成的PNPN
结构,若能使两只晶体管的小信号电流增益之和小于1,闩锁就可防止。一是将双极型晶体管的特性破坏掉,即通过改进CMOS制造工艺,用减少载流子运输或注入的方法来达到破坏双极型晶体管作用的目的,例如,掺金,中子辐射形成基区阻碍电场以及形成肖特基源/漏势垒等。二是将两个双极型晶体管间的耦合去掉,即防止一只双极管导通另一只双极管,这可通过版图设计和工艺技术来实现。版图设计去耦技术包括:
版图级抗闩锁措施:
(1) 加粗电源线和地线,合理布局电源接触孔,减小横向电流密度和串联电阻.
采用接衬底的环形VDD电源线,并尽可能将衬底背面接VDD.增加电源VDD和VSS接触孔,并加大接触面积.对每一个接VDD的孔都要在相邻的阱中配以对应的VSS接触孔,以便增加并行的电流通路.尽量使VDD和VSS的接触孔的长边相互平行.接VDD的孔尽可能安排得离阱远些.接VSS的孔尽可能安排在p阱的所有边上.
(2) 加多子保护环或少子保护环。其中多子保护环主要可以减少RS和RW;
少子环可以预先收集少子,减小横向三极管的β值,从而到达减小闩锁效应的目的。
工艺级抗闩锁措施:
(1) 降低少数载流子的寿命可以减少寄生双极型晶体管的电流增益,一般使
用金掺杂或中子辐射技术,但此方法不易控制且也会导致漏电流的增加。
(2) 倒转阱技术,可以减小寄生三极管的阱电阻,防止寄生三极管EB结导
通。倒转阱如下图所示:
(3) 另一种减少闩锁效应的方法,是将器件制作于重掺杂衬底上的低掺杂外
延层中。重掺杂衬底提供一个收集电流的高传导路径,降低了RS,若在阱中加入重掺杂的p+埋层(或倒转阱),又可降低RW。实验证明,此方法制造的CMOS电路有很高的抗闩锁能力。
(4) 闩锁亦可通过沟槽隔离结构来加以避开。在此技术中,利用非等向反应
离子溅射刻蚀,刻蚀出一个比阱还要深的隔离沟槽。接着在沟槽的底部和侧壁上生长一热氧化层,然后淀积多晶硅或二氧化硅,以将沟槽填满。因为n沟道与p沟道MOSFET被沟槽所隔开,所以此种方法可以消除闩锁。
以上措施都是对传统CMOS工艺技术的改造,更先进的工艺技术如SOI(Silicon on Insulator)等能从根本上来消除闩锁产生,但工艺技术相对来讲要复杂一些。
电路应用级抗闩锁措施:
(1) 要特别注意电源跳动。防止电感元件的反向感应电动势或电网噪声窜入CMOS电路,引起CMOS电路瞬时击穿而触发闩锁效应.因此在电源线较长的地方,要注意电源退耦,此外还要注意对电火花箝位。
(2) 防止寄生晶体管的EB结正偏。输入信号不得超过电源电压,如果超过这个范围,应加限流电阻。因为输入信号一旦超过电源电压,就可能使EB结正偏而使电路发生闩锁。输出端不宜接大电容,一般应小于0.01uF.
(3) 电流限制。CMOS的功耗很低,所以在设计CMOS系统的电源时,系统实际需要多少电流就供给它多少电流,电源的输出电流能力不要太大。从寄生可控硅的击穿特性中可以看出,如果电源电流小于可控硅的维持电流,那么即使寄生可控硅有触发的机会,也不能维持闩锁,可通过加限流电阻来达到抑制闩锁的目的。
综上所述,CMOS电路具有其它电路无法比拟的低功耗的优点,是在ULSI领域最有前途的电路结构。但传统CMOS电路的工艺技术会产生与生俱来的闩锁效应(当然必须满足闩锁形成的三个条件),从而限制了它的应用。一般可以从版图设计,工艺过程及电路应用等方面采取各种技术措施,尽可能地避免,降低或消除闩锁的形成,从而为CMOS电路的广泛应用奠定基础。
版图设计时,要尽量降低电路密度,衬底和阱的串联电阻,伪收集极的引入,可以切断形成闩锁的回路。设计工艺时,可以采用适量的金掺杂,深阱,高能离子注入形成倒转阱,低阻外延技术等来降低寄生晶体管的电流增益和串联电阻;沟槽隔离基本上可以完全切断形成闩锁的回路;更先进的SOI技术可以完全消除闩锁的形成。电路应用时,要尽量避免噪声的引入,附加限流电阻等措施。
防止闩锁效应方法的发展
掺金,中子辐照(会增加泄漏电流和影响成品率)——》介质隔离(增加成本)——》优化版图措施(多子或少子保护环,电源与地线布线技术)——》重掺杂衬底外延加重掺杂掩埋层技术
4. 什么是COMS电路的锁定效应
这种效应就是锁定效应。当产生锁定效应时,COMS的内部电流能达到40mA以上,很容易 烧毁芯片。 防御措施: 1)在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。 2)芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。 3)在VDD和外电源之间加线流电阻,即使有大的电流也不让它进去。 4)当系统由几个电源分别供电时,开关要按下列顺序:开启时,先开启COMS电路得电 源,再开启输入信号和负载的电源;关闭时,先关闭输入信号和负载的电源,再关闭COMS 电路的电源。
5. 电的几大效应
电流的效应有:热效应、化学效应、磁效应
一、热效应
正面:加热(电炉,加热器等),发光(白炽灯等)
反面:电能浪费(电路的不必要发热)
二、化学效应
正面:电池(可充电电池的充电过程)
反面:金属的电化学腐蚀对金属制品有很强的破坏能力(船舶,水管等)
三、磁效应
正面:通信(手机,对讲机等),动力源(电机,电磁铁等),制热(这属于电的磁效应而非热效应,如微波炉,电磁炉等)
反面:干扰通信(电站附近手机几乎无法使用等)损害健康(最近研究表明过强的磁场会对人造成伤害)
我就只能说这么多了,自己多观察自己身边的电器就有了
6. 请教高人何谓电路中的di/dt效应电路中为何要降低此效应
单位电流在单位时间内的变化量
也可理解为电流的波动变化率。如果在电路中的di/dt过大
会导致某些敏感器件的误导通
比如IGBT管的控制极等。
7. 什么叫模拟电路中的秘勒效应
反相放大电路中,输入与输出之间的分布电容或寄生电容由于放大器的放大作版用,其等效权电容值会扩大1+K倍,此即“密勒效应”。
对电子管,屏极与栅极之间的电容;
对晶体管,集电极与基极之间的电容;
对场效应管,漏极与栅极之间的电容;
这些管子作共阴极(共发射极、共源极)放大器时,输出端与输入端电压反相,使得该电容的充电放电电流增大,从输入端看进去,好像该电容增大了k倍,k是放大倍数。
这种现象叫密勒效应。
8. 关于数字电路中的累积效应
你提的问题不太具体,是关于电路哪一部分的累积效应?如果有具体的电路,你可以在时域内分析暂态效应对时间的积分与平均值,比如电火花是有震荡和放电电路,这就存在暂态与稳态的过程,分析累积效应应该是分析这个。这是执行电路的暂态与结果(稳态)的分析,至于控制部分,一般是不需考虑累积效应的。
9. 二极管的直流等效模型中的线性模型是怎么回事
二极管的直流等效模型,就是在直流电路中,以一个与二极管的电路效应相同的假想负载来分析电路的模型。二极管是一个非线性元件,对于非线性电路的分析与计算是比较复杂的。为了使电路的分析简化,可以用线性元件组成的电路来模拟二极管。使线性电路的电压、电路关系和二极管外特性近似一致,那么这个线性电路就称为二极管的等效电路。显然等效电路是在一定条件下的近似。所谓线性电路,就是电流与电压成线性(正比)关系的电路。
二极管应用于直流电路时,常用一个理想二极管模型来等效,可把它看成一个理想开关。正偏时,相当于"开关"闭合(ON),电阻为零,压降为零;反偏时,相当于"开关"断开(OFF),电阻为无限大,电流为零。由于理想二极管模型突出表现了二极管最基本的特性--单向导电性,所以广泛应用于直流电路及开关电路中。
10. 电流的三大效应对实际生活有什么作用
电流的效应有:热效应、化学效应、磁效应
一、热效应
正面:加热(电炉,加热器等),发光(白炽灯等)
反面:电能浪费(电路的不必要发热)
二、化学效应
正面:电池(可充电电池的充电过程)
反面:金属的电化学腐蚀对金属制品有很强的破坏能力(船舶,水管等)
三、磁效应
正面:通信(手机,对讲机等),动力源(电机,电磁铁等),制热(这属于电的磁效应而非热效应,如微波炉,电磁炉等)
反面:干扰通信(电站附近手机几乎无法使用等)损害健康(最近研究表明过强的磁场会对人造成伤害)
呵呵,我就只能说真么多了,自己多观察自己身边的电器就有了