『壹』 时钟电路的工作原理以及作用是什么菜鸟求解释
时钟电路的工作原理是单片机外部接上振荡器(也可以是内部振荡器)提供高频脉冲经过分频处理后,成为单片机内部时钟信号,作为片内各部件协调工作的控制信号。作用是来配合外部晶体实现振荡的电路,这样可以为单片机提供运行时钟。
以MCS一5l单片机为例随明:MCS一51单片机为l2个时钟周期执行一条指令。也就是说单片机运行一条指令,必须要用r2个时钟周期。没有这个时钟,单片机就跑不起来了,也没有办法定时和进行和时间有关的操作。
时钟电路是微型计算机的心脏,它控制着计算机的二个节奏。CPU就是通过复杂的时序电路完成不同的指令功能的。
MCS一51的时钟信号可以由两种方式产生:一种是内部方式,利用芯片内部的振荡电路,产生时钟信号:另一种为外部方式,时钟信号由外部引入。
如果没有时钟电路来产生时钟驱动单片机,单片机是无法工作的。
(1)时钟电路在哪扩展阅读
在内部方式时钟电路中,必须在XTAL1和XTAL2引脚两端跨接石英晶体振荡器和两个微调电容构成振荡电路,通常C1和C2一般取30pF,晶振的频率取值在1.2MHz~12MHz之间。
对于外接时钟电路,要求XTAL1接地,XTAL2脚接外部时钟,对于外部时钟信号并无特殊要求,只要保证一定的脉冲宽度,时钟频率低于12MHz即可。
晶体振荡器的振荡信号从XTAL2端送入内部时钟电路,它将该振荡信号二分频,产生一个两相时钟信号P1和P2供单片机使用。
时钟信号的周期称为状态时间S,它是振荡周期的2倍,P1信号在每个状态的前半周期有效,在每个状态的后半周期P2信号有效。CPU就是以两相时钟P1和P2为基本节拍协调单片机各部分有效工作的。
『贰』 时钟电路在硬件上是如何实现的
时钟电路在硬件上就是由振荡电路,加稳频的石英晶体,产生时钟的基准频率。
振荡电路也就开环增益大于1的放大器再由正反馈组成的电路。
『叁』 AT89S51单片机外部时钟电路由什么构成时钟电路起什么作用
单片机外部时钟电路通常由一个晶振配两个片电容构成,时钟电路是为单片机提供时钟脉冲信号,单片机必须有时间信号才能正常工作。
『肆』 什么是时钟电路是时钟产生振荡,还是晶振产生振荡,进
如果时钟电路采用的是有源晶振,那么这个时钟电路就是振荡电路。AT89C51时钟电路是由晶体版振荡器(石英晶权振)与AT89C51内部门电路组成才能产生振荡。单独的石英晶振如果没有门电路组成不能产生振荡,时钟电路一般都由振荡电路构成,才能有振荡信号输出,这个振荡信号就是时钟信号。
『伍』 时钟电路的简介
时钟电路一般由晶体振荡器、晶震控制芯片和电容组成。
时钟电路应用十分广泛,如电脑的时钟电路、电子表的时钟电路以及MP3MP4的时钟电路。
『陆』 时钟电路基本原理
一、时钟电路原理- -简介
时钟电路,就是产生象时钟一样准确的振荡电路。时钟电路主要由晶体振荡器、晶震控制芯片和电容三部分构成,具有价格低廉、接口简单、使用方便等特点,目前已有了很广泛的应用,如电子表的时钟电路、电脑的时钟电路、MP3/4的时钟电路等。目前流行的串行时钟电路有DS1302、DS1307、PCF8485等,其中,DS1302是DALLAS公司的一种具有涓细电流充电能力的电路,采用串行数据传输,并为掉电保护电源提供可编程的充电功能。本文我们就以DS1302为例来对时钟电路原理进行详细的讲解。
二、时钟电路原理- -引脚
实时时钟电路DS1302包括VCC1、VCC2、X1、X2、SCLK、I/O、RST、GND八个引脚。其中,VCC1用作主电源,VCC2用作备用电源,当满足VCC1>VCC2时,由主电源向DS1302供电,当满足VCC2>VCC1+0.2时,由备用电源向DS1302进行供电;X1和X2是32867Hz的晶振管脚,主要用于为芯片提供时钟脉冲;SCLK为串行时钟,主要用于提供时钟信号以控制数据的输入与输出;I/O为输入输出设备,用作三线接口时的双向数据线;RST主要提供复位功能,其在数据的读写过程中,必须保持为高电位;GND引脚用于和大地相连。
三、时钟电路原理
DS1302的控制字节的最高有效位即位7必须是逻辑1,若该位为0,则不能把该数据写入进DS1302中;位6为1表示存取RAM数据,为0表示存取日历时钟数据;位5至位1表示操作单元的地址;最低有效位即位0为1表示要进行读操作,为0表示要进行写操作;其控制字节总是从最低位开始进行输出。
在控制指令字输入后的下一个SCLK时钟的上升沿时,数据被写入DS1302,数据输入从最低有效位即位0开始。同样,在紧跟8位的控制指令字后的下一个SCLK脉冲的下降沿读出DS1302的数据,数据输出时也是从最低有效位即位0开始。
『柒』 时钟电路原理及原理图
时钟电路就是一个振荡器,给单片机提供一个节拍,单片机执行各种操作必须在这个节拍的控制下才能进行。因此单片机没有时钟电路是不会正常工作的。时钟电路本身是不会控制什么东西,而是你通过程序让单片机根据时钟来做相应的工作。 在MCS-51单片机片内有一个高增益的反相放大器,反相放大器的输入端为XTAL1,输出端为XTAL2,由该放大器构成的振荡电路和时钟电路一起构成了单片机的时钟方式。根据硬件电路的不同,单片机的时钟连接方式可分为内部时钟方式和外部时钟方式,如图1所示。
内部时钟原理图 (就是一个自激振荡电路) 在内部方式时钟电路中,必须在XTAL1和XTAL2引脚两端跨接石英晶体振荡器和两个微调电容构成振荡电路,通常C1和C2一般取30pF,晶振的频率取值在1.2MHz~12MHz之间。对于外接时钟电路,要求XTAL1接地,XTAL2脚接外部时钟,对于外部时钟信号并无特殊要求,只要保证一定的脉冲宽度,时钟频率低于12MHz即可。 晶体振荡器的振荡信号从XTAL2端送入内部时钟电路,它将该振荡信号二分频,产生一个两相时钟信号P1和P2供单片机使用。时钟信号的周期称为状态时间S,它是振荡周期的2倍,P1信号在每个状态的前半周期有效,在每个状态的后半周期P2信号有效。CPU就是以两相时钟P1和P2为基本节拍协调单片机各部分有效工作的。
『捌』 手机的" 时钟电路"是起什么作用的
手机中的时钟大致分为逻辑电路主时钟和实时时钟两大类。逻辑电路的主时钟通常有13M、26M、和19.5M等;实时时钟一般为32.768KHz。无论是逻辑电路的主时钟还是实时时钟,均是手机正常工作的必要条件,由于手机各厂家设计思路和电路结构不同,主时钟和实时时钟电路若不正常时,反映出的故障现象也不尽相同。
一、时钟频率的产生
1、 逻辑电路主时钟的产生
大多数GSM手机的主时钟是13M(CDMA为19.68M,小灵通19.2M);摩托罗拉手机多采用26M,三星手机A系列手机多采用19.5M,经分频后获得13M供逻辑电路。13M作为逻辑电路的主时钟(好比人按照北京时间安排作息),逻辑电路按时序进行有规律的工作。
手机中13M的频率是否准确,决定于AFC电压,AFC电压的产生,是基站根据手机传送的频率信息与网络系统高精度、高稳定的频率鉴相后,把信息传给手机,由CPU处理后产生直流电压,去控制13M的振荡频率,使手机中13M与基站保持严格同步。
13M产生电路分为纯石英晶振和13M组件两种。石英晶体是与其他电路共同组成振荡产生13M;13M组件电路只要加电即可产生13M频率。
在手机电路中,无论纯石英晶体或13M组件电路,均需要电源正常工作输出供电,13M电路才能产生13M输出。
2、 实时时钟频率的产生
手机中的实时时钟频率基本上都是32.768KHz,是由32.768KHz晶体配合其他电路产生。为了维持手机中时间的连续性, 32.768KHz不能间断工作,关机或去下电池后,由备用电池供电工作(有的手机去下电池一段时间后,开机需再调整时间,是机内没有备用电池或备用电池需要更换)。
二、时钟频率的作用
1、逻辑电路主时钟的作用
13M作为逻辑电路的主时钟,是逻辑电路工作的必要条件。开机时需要有足够的幅度(9—15M范围内均可开机)。
开机后,13M作为射频电路的基准频率时钟,完成射频系统共用收发本振频率合成、PLL锁相以及倍频作为基准副载波用于I/Q调制解调。因此,信号对13M的频率要求精度较高(应在12.9999M—13.0000M之间,±误差不超过150Hz),只有13M基准频率精确,才能保证收发本振的频率准确,使手机与基站保持正常的通讯,完成基本的收发功能。
2、实时时钟电路的作用
32.768KHz实时时钟的作用一般有两个,一是保持手机中时间的准确性,二是在待机状态下,作为逻辑电路的主时钟(目的是为了节电,待机时13M间隔工作的周期延长,基本处于休眠,逻辑电路主要由32.768KHz作为主时钟)。
由于各厂家设计思路不同,32.768KHz的具体作用也有所不同,如摩托罗拉手机中32.768KHz损坏,直接影响开机;诺基亚、三星、松下、西门子等手机中32.768KHz不正常影响开机和信号。
三、时钟电路的故障
1、逻辑电路主时钟故障
众所周知,13M出现停振或振荡幅度过小,逻辑电路不工作造成不开机,大部分手机13M不正常的故障现象是开机电流很小(一般在10mA左右)。
逻辑电路正常工作的经典电流是50mA左右,当开机电流小于50mA时,重点检查逻辑电路正常工作的所必要条件电路,如电源、13M、复位、软件电路等。若开机后13M停振,会造成手机自动关机。
如果13M出现频偏较小,使收发本振和混频后的中频以及调制解调出的I/Q基带信号均产生偏离,形成信号时有时无;若13M偏离较大,造成无信号;如13M偏离太远,还会出现死机、定屏、开机困难、自动关机等故障。
检修13M是否正常,可用示波器或频率计测量,正常时示波器可测量到密集正弦波形成的亮带,调低示波器的频率可见到规律的正弦波;频率计可直接读到13M的具体频率数值(若停振什么也测不到)。一般情况下,13M停振或频偏,只要供电正常,多为晶振问题,更换即可。
2、实时时钟故障
32.768KHz不正常时,由于机型不同反映出的故障现象也不同,开机电流比13M主时钟不正常稍大(一般在20mA左右)。
如摩托罗拉手机中的32.768KHz与电源块构成振荡,是作为逻辑电路工作的一个前提条件,如果32.768KHz不工作,逻辑电路就不能工作出现不开机;诺基亚手机中的32.768KHz作为逻辑电路CPU数据传输的时钟,损坏后不开机,拆下后可以开机但无时间显示,若性能不良会引起信号时有时无(信号条逐渐消失);松下、西门子部分手机32.768KHz损坏可以开机,但无时间显示或时间不准;三星部分手机32.768KHz损坏不开机,拆下可以开机但无时间显示或开机后灯灭关机;还有部分手机如夏新A8,32.768KHz作为CPU的启动时钟,若损坏同样造成不开机。
测量32.768KHz的方法与13M相同,也是用示波器和频率计测亮带和读数,如不起振,通常是备用电池短路或晶体损坏引起,更换即可。
『玖』 时钟产生电路
时抄钟电路就是产生象时袭钟一样准确的振荡电路。任何工作都按时间顺序。用于产生这个时间的电路就是时钟电路。
产品:
现在流行的串行时钟电路很多,如DS1302、DS1307、PCF8485等。这些电路的接口简单、价格低廉、使用方便,被广泛地采用。实时时钟电路DS1302是DALLAS公司的一种具有涓细电流充电能力的电路,主要特点是采用串行数据传输,可为掉电保护电源提供可编程的充电功能,并且可以关闭充电功能。采用普通32.768kHz晶振。
『拾』 什么是时钟电路
在电子电路中,实时时钟电路通常简称时钟电路,实时时钟的缩写是RTC(Real_Time Clock).实时时钟电路内通常由一个容时钟集成电路和外围的32.768KHZ晶体、匹配电容组成。实时时钟集成电路内部实现自动计时,产生年月日及闹铃等相关数据,通过IIC接口和单片机等中央处理系统连接。常用的实时时钟集成电路型号:DS1302,HT1380,HT1381,PCF8563等。还有的厂家直接把集成电路、晶体、电容、电池等做成一个小电路板,然后封装起来,行成一个模块,通常称为时钟模块。