㈠ 运放电路的原理
【运放电路的原理】运放如图有两个输入端a(反相输入端),b(同相输入端)和一个输出端o。也分别被称为倒向输入端非倒向输入端和输出端。当电压U-加在a端和公共端(公共端是电压为零的点,它相当于电路中的参考结点。)之间,且其实际方向从a 端高于公共端时,输出电压U实际方向则自公共端指向o端,即两者的方向正好相反。当输入电压U+加在b端和公共端之间,U与U+两者的实际方向相对公共端恰好相同。为了区别起见,a端和b 端分别用"-"和"+"号标出,但不要将它们误认为电压参考方向的正负极性。电压的正负极性应另外标出或用箭头表示。反转放大器和非反转放大器如下图:
一般可将运放简单地视为:具有一个信号输出端口(Out)和同相、反相两个高阻抗输入端的高增益直接耦合电压放大单元,因此可采用运放制作同相、反相及差分放大器。
运放的供电方式分双电源供电与单电源供电两种。对于双电源供电运放,其输出可在零电压两侧变化,在差动输入电压为零时输出也可置零。采用单电源供电的运放,输出在电源与地之间的某一范围变化。
运放的输入电位通常要求高于负电源某一数值,而低于正电源某一数值。经过特殊设计的运放可以允许输入电位在从负电源到正电源的整个区间变化,甚至稍微高于正电源或稍微低于负电源也被允许。这种运放称为轨到轨(rail-to-rail)输入运算放大器。
运算放大器的输出信号与两个输入端的信号电压差成正比,在音频段有:输出电压=A0(E1-E2),其中,A0 是运放的低频开环增益(如 100dB,即 100000 倍),E1 是同相端的输入信号电压,E2 是反相端的输入信号电压。
【运放】是运算放大器的简称。在实际电路中,通常结合反馈网络共同组成某种功能模块。由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”,此名称一直延续至今。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。
㈡ 集成运放构成的基本运算电路主要有哪些
集成运放构成的基本运算电路主要有:
1、比例运算电路:包含同相比例放大、反相比例放大,差动比例放大。
2、微积分运算:微分电路、积分电路。
3、滤波电路:低通滤波电路,高通电路滤波,带通滤波电路。
㈢ 集成运算放大器的典型电路有哪些
集成运算放大器的典型电路有:
1、反相比例运算电路
反向比例运算电路如图2所示。根据电路分析,这种电路的输出电压为
向左转|向右转
图5 微分器
㈣ 运放电路的工作原理
运放电路的工作原理是把被控制的非电量(如温度、转速、压力、流量、照度等)用传感器转换为电信号,再与给定量比较,得到一个微弱的偏差信号。因为这个微弱的偏差信号的幅度和功率均不足以推动显示或者执行机构,所以需要把这个偏差信号放大到需要的程度,再去推动执行机构或送到仪表中去显示。
在传感器类型和(或)其使用环境带来许多特别要求时,例如超低功耗、低噪声、零漂移、轨到轨输入及输出、可靠的热稳定性和对数以千计读数和(或)在恶劣工作条件下提供一致性能的可再现性,运算放大器的选择就会变得特别困难。
在基于传感器的复杂应用中,设计者需要进行多方面考虑,以便获得规格与性能最佳组合的精密运算放大器,同时还需要考虑成本。具体而言,斩波稳定型运算放大器(零漂移放大器)非常适用于要求超低失调电压以及零漂移的应用。斩波运算放大器通过持续运行在芯片上实现的校准机制来达到高DC精度。
(4)运放经典电路扩展阅读
在没有特殊要求的场合,尽量选用通用型集成运放,这样既可降低成本,又容易保证货源。当一个系统中使用多个运放时,尽可能选用多运放集成电路,例如LM324、LF347等都是将四个运放封装在一起的集成电路。
评价集成运放性能的优劣,应看其综合性能。一般用优值系数K来衡量集成运放的优良程度,其定义为:式中,SR为转换率,单位为V/ms,其值越大,表明运放的交流特性越好;Iib为运放的输入偏置电流,单位是nA;VOS为输入失调电压,单位是mV。Iib和VOS值越小,表明运放的直流特性越好。
所以,对于放大音频、视频等交流信号的电路,选SR(转换速率)大的运放比较合适;对于处理微弱的直流信号的电路,选用精度比较的高的运放比较合适(既失调电流、失调电压及温飘均比较小)。
实际选择集成运放时,除优值系数要考虑之外,还应考虑其他因素。例如信号源的性质,是电压源还是电流源;负载的性质,集成运放输出电压和电流的是否满足要求;环境条件,集成运放允许工作范围、工作电压范围、功耗与体积等因素是否满足要求。
㈤ 经典运放电路的主要元件功能说明
这里介绍一个最简单的MOS两级运放。
如图所示
M11-M15构成第一级差分放大器,M12、M13是差分放大管,M14、M15组成电流镜作为差分管的负载。
M10和M11组成电流镜为差分放大器提供电流源(偏置电流)。
第二级是电流源负载CMOS共源放大器,M16是负载管(M10和M16组成电流镜,给M17提供偏置电流),M17是放大管。
另外,一般运放还会加个缓冲级,形成三级结构。最简单的来说,一个差分放大器就可以看成是一个运放了。第二级放大级,主要是↑放大倍数。第三级缓冲级,主要是↓输出阻抗。
㈥ 集成运算放大器由哪些基本电路构成
不同的运放他的原理是不同的但基本的方框图是差不多的
集成运算放大器(integrated
operational
amplifier)简称集成运放,是由多级直接耦合放大电路组成的高增益模拟集成电路。它的增益高(可达60~180db),输入电阻大(几十千欧至百万兆欧),输出电阻低(几十欧),共模抑制比高(60~170db),失调与飘移小,而且还具有输入电压为零时输出电压亦为零的特点,适用于正,负两种极性信号的输入和输出。
模拟集成电路一般是由一块厚约0.2~0.25mm的p型硅片制成,这种硅片是集成电路的基片。基片上可以做出包含有数十个或更多的bjt或fet、电阻和连接导线的电路。
运算放大器除具有+、-输入端和输出端外,还有+、-电源供电端、外接补偿电路端、调零端、相位补偿端、公共接地端及其他附加端等。它的闭环放大倍数取决于外接反馈电阻,这给使用带来很大方便。
按照集成运算放大器的参数分类折叠
1)、通用型运算放大器
通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指
标能适合于一般性使用。例ma741(单运放)、lm358(双运放)、lm324(四运放)及以场效应管为输入
级的lf356
都属于此种。它们是目前应用最为广泛的集成运算放大器。
2)、高阻型运算放大器
这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012)w,iib
为
几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大
器的差分输入级。用fet
作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,
但输入失调电压较大。常见的集成器件有lf356、lf355、lf347(四运放)及更高输入阻抗的ca3130、ca3140
等。
3)、低温漂型运算放大器
在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变
化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有op-07、op-27、ad508
及由mosfet
组成的斩波稳零型低漂移器件icl7650
等。
4)、高速型运算放大器
在快速a/d
和d/a
转换器、视频放大器中,要求集成运算放大器的转换速率sr
一定要高,单位增益带宽bwg
一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的
转换速率和宽的频率响应。常见的运放有lm318、ma715
等,其sr=50~70v/ms,bwg>20mhz。
5)、低功耗型运算放大器
由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用
低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有tl-022c、tl-060c
等,其工作电
压为±2v~±18v,消耗电流为50~250ma。目前有的产品功耗已达微瓦级,例如icl7600
的供电电源为1.5v,
功耗为10mw,可采用单节电池供电。
6)、高压大功率型运算放大器
运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,
输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如d41集成运放的电源电压可达±150v,ua791集成运放的输出电流可达1a。
㈦ 由集成运放构成的基本电路有哪些
比例运算放大器(分同向比例运算放大器和反向比例运算放大器)、相加器、相减器、积分器、微分器,还可以进行电压—电流转换和电流—电压转换。
㈧ 运算放大器内部电路分析
你的图纸 Q7 有错,看我贴的图,T7、T5、T6,T10、T11 是镜像电流源电路。
http://ke..com/view/4780270.htm?fr=aladdin
741 是经典的运放,电路分回析的文章很多,你百答度搜索:“运放741内部电路分析”,有不少优秀的技术资料网页会被网络判定有广告性质(多数确实有广告),我贴出链接帖子就会被毙了。
㈨ 运放电路分析
我将会用大约十篇文章把运放的最基本的知识介绍清楚,这是第一篇。
运放这个词既熟悉又陌生,既简单有不简单,说它熟悉,是因为它的应用非常广泛,经常听说它,说它陌生,是因为运放内部的电路结构非常复杂,很难搞清楚。说它简单,因为在设计运放电路时,可以避免晶体管电路的复杂参数计算,说它不简单,因为很多时候运放并不理想,若按理想运放来设计电路,会导致结果错误。
1、什么是运放
运放是运算放大器的简称。可以实现各种模拟电量的数学运算。但它不是用来做计算器上的加减乘除运算,而是在模拟信号处理过程中,可能需要将信号进行放大、加减乘除、积分、微分等操作。
①、运放的电路符号是:
pin 2、3为信号输入、pin 4、7为电源输入、pin 6为信号输出。
②、输入输出关系:Uo = A * (Up-Un)
A为运放的放大倍数,这个数值非常非常大,近似为无穷大,Up与Un几乎相等。Uo,Up,Un为正常的数值。这个表达式初看太奇怪了,但是它确实那么的有用,大大简化了电路的设计,后面会慢慢解释。
③、最重要的性质:“虚短”和“虚断”
虚短:因为上面表达式中Up与Un几乎相等,所以pin 2、3近似短路,但不是真的短路,所以叫虚短。
虚断:pin 2、3的输入阻抗非常大,至少在1Mohm。所以可以认为Pin2、3上的输入电流为零,所以叫虚断。
2、反相比例运放电路
只要记住Uo = A * (Up-Un)和“虚短”、“虚断”,理想运放的电路都能看懂。这里先不要纠结为什么会是这样,有机会后面会介绍。这里先介绍一个最简单的运放电路:反相比例放大电路。
①、根据虚断原理,运放输入端的两个管脚输入电流为零,所以不管R4阻值是多少,都有Up=0;
②、根据虚短原理,Un=Up,所以Un也等于零。
③、根据基尔霍夫定理就可以求出:Uo=-Rf/R1 * Ui
④、理论上,R2和RL的阻值不会影响放大倍数,但是实际的运放需要设计R2=R1 || Rf,因为这样一来,运放的同相端和反相端往外看的阻抗才一样大。
⑤、从仿真结果可以看出反向比例放大器的输出与输入波形ui是精确的5倍的关系。
3、总结
理想运放如此简单,我们根本不需要了解运放里面的东西,不需要像三极管那样考虑它到底工作在哪个区,不需要考虑密勒效应,输入输出阻抗等等,只需要用电阻分压的方法就能得到想要的精确的放大倍数。用起来简单,性能又好,这是运放广泛应用的重要原因。
反相比例运放是我们认识运放的第一个例子。也是最简单,最基础的应用,后面会慢慢介绍其他的电路,以及实际运放的应用。