导航:首页 > 电器电路 > 驱动电路缺点

驱动电路缺点

发布时间:2022-06-13 22:13:47

❶ h桥驱动电路与电机驱动芯片L293E比有什么优缺点

L293E也是4路输出,等于就是H桥电路

❷ 直流电机的驱动方法有哪些各有什么优点和缺点

直流电机的驱动方法有有刷驱动和无刷驱动,驱动电路有线性功放驱动和脉冲方波驱动。

  1. 线性功放驱动不存在高频的开关动作,输出电压稳定,电磁干扰和噪音小,缺点是功耗大效率低。

  2. 脉冲方波驱动功耗低效率高,缺点是存在较大的电磁干扰和噪音。

  3. 有刷驱动是经电刷装置的将电能转换成机械能,存在电火花和易耗的碳刷、换向器。

  4. 无刷直流电机是近几年来随着微处理器技术的发展和高开关频率、低功耗新型电力电子器件的应用,以及控制方法的优化和低成本、高磁能级的永磁材料的出现而发展起来的一种新型直流电动机。


❸ 在逆变电路中,单端式、推挽式、半桥式、全桥式电路,各有什么优缺点

1、单端式

主要优点:分反激和正激两种。反激的是在开关导通时先将能量送到电感,开关断开时再将能量送至负载;正激的是在开关导通时就把能量送至负载。

主要缺点:电源侧不连续,谐波含量大,对电源不利。

2、推挽式

主要优点:高频变压器磁芯利用率高(与单端电路相比)、电源电压利用率高(与后面要叙述的半桥电路相比)、输出功率大、两管基极均为低电平,驱动电路简单。

主要缺点:变压器绕组利用率低、对开关管的耐压要求比较高(至少是电源电压的两倍)。

3、半桥式电路

主要优点:具有一定的抗不平衡能力,对电路对称性要求不很严格;适应的功率范围较大,从几十瓦到千瓦都可以;开关管耐压要求较低;电路成本比全桥电路低等。

主要缺点:电源利用率比较低,因此半桥式变压器开关电源不适宜用于工作电压较低的场合。另外,半桥式变压器开关电源中的两个开关器件连接没有公共地,与驱动信号连接比较麻烦。半桥式开关电源会出现半导通区,损耗大。

4、全桥式电路

主要优点:与推挽结构相比,原边绕组减少了一半,开关管耐压降低一半。

主要缺点:使用的开关管数量多,且要求参数一致性好,驱动电路复杂,实现同步比较困难。这种电路结构通常使用在1KW以上超大功率开关电源电路中。

❹ 电力电子器件的优缺点

电力二极管:结构和原理简单,工作可靠;
晶闸管:承受电压和电流容量在所有器件中最高
IGBT:开关速度高,开关损耗小,具有耐脉冲电流冲击的能力,通态压降较低,输入阻抗高,为电压驱动,驱动功率小;缺点:开关速度低于电力MOSFET,电压,电流容量不及GTO
GTR:耐压高,电流大,开关特性好,通流能力强,饱和压降低;缺点:开关速度低,为电流驱动,所需驱动功率大,驱动电路复杂,存在二次击穿问题
GTO:电压、电流容量大,适用于大功率场合,具有电导调制效应,其通流能力很强;缺点:电流关断增益很小,关断时门极负脉冲电流大,开关速度低,驱动功率大,驱动电路复杂,开关频率低
MOSFET:开关速度快,输入阻抗高,热稳定性好,所需驱动功率小且驱动电路简单,工作频率高,不存在二次击穿问题;缺点:电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。
制约因素:耐压,电流容量,开关的速度。

❺ 求问几种LED路灯驱动电路及其优缺点

在节能省电的前提下,LED路灯取代传统路灯的趋势越来越明显。市面上,LED路灯电源的设计有很多种。本文主要是针对几种不同LED路灯的应用,提出了适合的架构,并对其优缺点进行分析,以便让读者能根据具体状况和设计的路灯种类,找到最合适的方案。
方案一:直接AC输入,对6串LED 分别做恒流控制
在本文介绍的几种方案之中,这一种方案应该是目前效率最高、电路成本最低的方案(图1)。直接用光电 耦合器对初级侧电路进行回溯控制,调节输出电压。相对于其它传统方案,该方案的开关 损耗少。将CS的电压固定在0.25V,对6串LED分别做恒流控制。IC 会侦测FB的位置,将电压最低那串LED固定在 0.5V。此时由于各串LED的Vf值的总和不同,产生的压降会落在MOS管上,导致一些损耗。如果是一般对Vf分BIN筛选过后的LED,损耗应该可以控制在2%以内,少于一般的开关损耗。该方案的优点是效率高、成本低,缺点是AC输入、需要较多的研发成本。该方案适用于可以用AC直接输入的路灯。方案二:DC或电池输入,对6串LED分别做恒流控制
它采用多串的升压结构设计,LED驱动 的方式与前一种类似,差别在于由AC输入改为DC或是由电池输入(图2)。低压侧传感的设计只要选择适当的MOS管,LED可以串相当多的颗数。相对于AC输入的方案,其设计较为简单。但由于多了一次升压的开关,效率相对较低。方案的优点是设计简单、电路成本低,缺点是效率较低。它适合太阳能电池 或通过适配器输入的路灯。方案三:单串降压结构
有些厂商仍喜欢用单串的设计,优点是维修容易,而且可以做模块化设计。不同功率 的路灯可以使用相同的灯条,只要更换面板 ,插上不同数目的灯条,就可以组合出各种不同功率的路灯。但它的缺点是每一串都需要独立的电源模块 ,成本较高,而降压的结构会让LED的数目受限于IC的耐压。在图3所示的例子中,LED最多串到 14颗,如果要设计20W的灯条,就需要使用700mA的LED。为了使效率达到最高,必需针对LED的数目来调节输入电压,也就是适配器的输出电压。以 10颗LED为例,如果要达到最高效率,就必须把输入电压调到约42V左右。
该方案的优点是降压结构效率较高、单串设计、配置较为灵活,缺点是电路成本较高、LED串联数目受限于IC耐压。它适合通过适配器输入的路灯方案四:同样的单串设计,升压结构(图4)会较降压结构的效率低,但是LED串联的数目不再受限于IC的耐压,而是由MOS来决定,因而可以串联较多的LED。由于大多数的太阳能电池的输出电压都不高,因此太阳能路灯 较适合使用升压结构。而选用电流模式的恒流设计,可以让输出电流较不受输入电压变化的影响,在电池满载以及快没电时,都能让路灯维持相同的亮度。
该方案的优点是串联LED数目不受IC耐压限制,缺点是电路成本较高,效率较降压结构稍低。它适合太阳能路灯。

❻ LED驱动器的不足

LED驱动电源存在不足的原因:(1) 生产LED照明及相关产品的公司的技术人员对开关电源的了解不够,做出的电源是可以正常工作,但一些关键性的评估及电磁兼容的考虑不够,还是有一定得隐患;(2) 大部分LED电源生产企业都是从普通的开关电源转型过来做LED电源,对LED的特点及使用认识还不够;(3) 关于LED的标准几乎没有,大部分都是参考开关电源和电子整流器的标准;(4) 大部分LED电源没有统一,所以量大部分都比较小。采购量小,价格就偏高,而且元器件供应商也不太配合;(5) LED电源的稳定性:宽电压输入,高温和低温工作,过温、过压保护等问题都没有一一解决;首先是驱动电路整体寿命,尤其是关键器件如:电容在高温下的寿命直接影响到电源的寿命;其次是LED驱动器应挑战更高的转换效率,尤其是在驱动大功率LED时更是如此,因为所有未作为光输出的功率都作为热量耗散,电源转换效率的过低,影响了LED节能效果的发挥;在功率较小(1-5W)的应用场合,恒流驱动电源成本所占的比重已经接近1/3,已经接近了光源的成本,一定程度上影响了市场推广。 一、设计特色
1、作环境温度高(75度)
2、高能效
3、合EU CoC/CEC 2008/能源之星2.0要求,带载模式效率高(可达86%,要求为79.6%);在265 VAC输入时的空载输入功率< 250 mW,要求为300 mW
4、滞过热关断保护
5、载断开保护
6、足EN55015B传导EMI限制,EMI裕量>8 dB微伏
二、工作原理
图所示为一个典型的20 V、14 W恒压(CV)、恒流(CV)输出的电源电路。LED阵列的光输出量与所流经的电流量成正比。因此,LED驱动器应具有恒流输出,而不是恒压输出。在本设计中,DC输出未与AC输入隔离,因而LED阵列和外壳应与用户安全地隔离开来。

AC输入由BR1、C1和C2进行整流和滤波。电感L1与C1和C2一起构成一个π形滤波器,并提供EMI滤波。保险丝F1在发生严重故障时提供保护。为使电源在空载下正常工作而不受损坏,使用齐纳二极管VR2进行恒压调整并使电压保持在约21 V。
通过检测电流检测电阻R7上的压降来实现恒流特性。并联稳压器IC U3与R9、R8和R8A一起来在运算放大器U2的反向输入端生成0.07 V的精确电压参考。达到设定电流时,R7上的电压将超过参考电压,这样会使运算放大器的输出增大。此时会正向偏置D4,驱动Q1的基极,进而将电流从U1的EN/UV引脚拉出。电容C7和电阻R11提供环路补偿。使用运算放大器的限流方式使电流采样电压最小化,从而降低了损耗,使效率最高。
只要EN/UV引脚拉出的电流超过115 μA,U1中的MOSFET都会以逐周期的方式被禁止(开/关控制)。通过调整使能与禁止开关周期的比例,反馈环路可以调节输出电压或电流。开/关控制方式同时优化了不同负载情况下的转换器效率,使之符合能效标准。
由于环境温度高,U1将在降低的电流限流点模式下进行工作。这样可以提高电源的整体效率并改善其散热性能。初级箝位(D1、VR1、C3及R3)将最大峰值漏极电压控制在内部
MOSFET的700 V BVDSS击穿电压之下。电阻R23减小高频漏感振荡,从而降低EMI。次级侧的输出通过二极管D2、D3和C6进行整流和滤波。
三、设计要点
1、要选择快速二极管而不能选择超快二极管,通过恢复部分漏感能量来提高效率。
2、容C3用于改善EMI性能。
3、择电阻R10,用于在最低输出电压为6 V时向U3提供1 mA的供电电流。
4、U1可选电流限流点允许对电流限流点和器件大小进行优化选择,以适应环境温度。例如,为了降低耗散,可以通过将C3从1μF更改为0.1 μF来在相同设计中使用TNY280GN器件。或者,在散热性能较高的环境中,可以通过将C3从1μF更改为10μF来使用TNY278GN器件。
5、源在LED灯串电压介于6 V至20 V之间时均可正确工作。但由于输出电流恒定不变,灯串电压越低,输出功率就越低。 虽然在输出电压可能高于也可能低于输入电压时,峰值电流模式控制的非连续升降压转换器是LED驱动器的一个不错选择。但是,采用这种升降压转换器来设计驱 动器时,LED电压的变化会改变LED电流,LED开路将导致输出端产生过高的电压,从而损坏转换器。本文将详细讨论这种用于LED的转换器设计,并给出多种克服其固有缺点的方法。
发光二极管(LED)的应用已有很多年,随着最新技术的进步,它们正逐渐成为照明市场中强有力的竞争者。新的高亮度LED具有很长的寿命(约10万小时)和很高的效率(约30流明/瓦)。过去三十多年来,LED的光输出亮度每l8~24个月便会翻一番,而且这种增长势头还会持续下去,这种趋势称为Haitz定律,相当于LED的摩尔定律。
从电气上来说,LED与二极管类似,它们也是单向导电(尽管它们的反向阻断能力并不太好,高的反向电压很容易损坏(LED),并具有与常规二极管类似的低动态阻抗V-I特性。另外,LED一般都有安全导通时的额定电流(高亮度LED的额定电流一般为350mA或700mA)。通过额定电流时,LED正向压降的差异可能比较大,通常350mA白光LED的压降在3~4V之间。
驱动LED需要受控的DC电流。为了使LED的使用寿命长些,LED电流中的纹波必须很低,因为高纹波电流会使LED产生较大的阻性功耗,降低LED使用寿命。LED驱动电路需要更高效率,因为总体效率不仅取决于LED本身,也与驱动电路有关。而工作于电流控制模式的开关转换器是满足LED应用 的高功率及高效率要求的理想驱动方案。
驱动多个LED也需要仔细考虑。图1是LED的串并联连接电路。其中图1(a)为LED的并联连接电路。图1(h)是LED的串联连接电路。由于各个LED的动态阻抗和正向压降不相同,因此,如果没有外部均流电路(如电流镜像),就不可能保证流过LED上的电流相同;此外,由于一个LED 出现故障将使LED串断开,从而致使所有LED电流在剩下的LED串之间分配,这将导致LED串上的电流增大,从而可能损坏LED。因此,出于上面两个原因,设计时一般不用如图1(a)那样的并联LED电路。

因此,更好的做法是将LED串联起来。但该方法的缺点是,如果一个LED 出现故障,则整个LED串将停止工作。让剩下的LED串继续工作的一个简单办法是将一个齐纳二极管(其额定电压大于LED的最高电压)与每个(或每组) LED并联,如图1(b)所示。这样,任何一个LED发生故障后,其电流都会流到相应的齐纳二极管上,LED串的其余部分仍可正常工作。
基本的单阶开关转换器可分为三类:降压转换器、升压转换器和升降压转换器。当LED串的电压低于输入电压时,降压转换器图2(a)是理想的选 择;当输入电压总是低于串输出电压时,则使用升压转换器比较合适图2(b);当输出电压可能高于也可能低于输入电压时(由输出或输入变化引起),则采用升降压转换器图2(c)比较合适。升压转换器的缺点是,输入电压的任何瞬变(可使输入电压升高并超过输出电压)都会导致LED上流过很大电流(由于负载的低动态阻抗),从而损坏LED。升降压转换器也可代替升压转换器,因为输入电压的瞬变不会影响LED电流。

升降压转换器的工作原理
对于低电压应用中的LED驱动器,升降压转换器是一种不错的选择。其原因有它们可用高于和低于输入电压的电压来驱动LED串(升压和降压)、效率很高(很容易到达85%以上)、非连续工作模式可抑制输入电压的变化(提供优良的线电压调节)、峰值电流控制模式允许转换器调节LED电流,而无需复杂的补偿(简化设计)、很容易实现线性和PWM LED亮度调节、开关晶体管失效不会损坏LED等等。图2给出了降压、升压和升降压转换器与LED串的连接电路。
但是,这种方法仍有缺点:一是峰值电流受控问题,因为采用非连续电流模式的升降压转换器是一种功率恒定的转换器。因此,LED串电压的任何变化都会引起LED电流的相应改变;另一个问题是LED开路状态会在电路中产生损坏转换器的高电压;此外,还需要额外的电路将恒定功率转换器转变为恒定电流转换器,并需要在无负载情况下保护转换器。

图3所示为具体的升降压转换器应用电路,该控制器内置了用于设定开关频率的振荡器。在开关周 期之初,Q1导通。由于输入电压VIN加在电感上,电感电流(iL(t))开始从零(初始稳定状态)开始上升。当感应电流上升至预先设定的电流值 (ipk)时,Q1关闭。开关导通时间(ton)由下式确定:
ton=ipkL/VIN
此时,存储在电感内的总能量(J)为:
J=Li2pk/2
这样,尽管此时开关会关闭,但流经电感的电流并不会中断。这会使二极管D1导通,并在电感两端产生输出电压(-Vo),这个负电压会导致电感电流迅速下降。经过一定时间tOFF后,电感电流趋于零。此时间可通过下列公式来计算:
tOFF=ipkL/VO
为使转换器工作在非连续导通模式下,开关导通时间与电感电流下降时间的总和必须小于或等于开关周期TS,以便确保在下一个开关周期时,电感电流能够从零开始。
事实上,在输入电压最小和输出电压最大的情况下,(tON+tOFF)可取得最大值。因此,确保在这些电压下转换器工作于非连续导通模式可保证在任何情况下都能满足下式所列的条件: tON+tOFF≤Ts
转换器从输入端获得的功率(Pin)电感中的能量与开关频率f的乘积:即:
Pin=fsLi2pk/2
假设LED串的电压(VO)恒定且效率为100%,那么LED的电流(iLED)为:
iLED=PIN/VLED=Li2pkfs/2V
在峰值电流控制模式下,ipk通常是一个固定值。因此,LED电流完全独立(理论上)于输入电压。在固定的ipk下,输入电压的上升(下降)会引起晶体管的导通时间成反比例减少(增加),这将提供很好的线电压调节。在实际应用中,从控制IC检测到电流峰值到GATE引脚实际关断之间的延迟会引起 输入功率变化。导通时间较短会由于延迟时间而出现更多误差,因为延迟时间将会占导通时间相当大的部分。
实际上,LED电流与LED串的电压成反比。一个标称输出为20 V和350 mA的电路,将在10V输出电压时产生700 mA的电流,这显然不是期望的结果。但是,通过使开关频率与输出电压成正比,上述公式提供了一种将恒定功率转换器转换为恒定电压转换器的方法。
假设fs=KVO,其中K是常数,那么有:
iLED=kLi2pk/2
这样,iLED将独立于输入和输出电压。
回扫转换器的另一个缺点是它易受输出开路状态的影响。当LED开路时,存储在电感内的能量在每次开关导通时间的最后都会被转移到输出电容里。这样,缺少电容放电的负载将导致电容两端的电压逐渐上升,最后超过器件的标称值并损坏功率级。因此,可通过增加额外电路来提供输出电压反馈及过压保护。
输出电压反馈
图4是一个可实现过压保护和LED开路保护的额外电路。实际上,很多峰值电流模式控制器IC都具有专用的RT引脚。与该引脚相连的电阻可用来设 置内部电流,其内部电流用来给振荡器电容(可以是内部或外部)充电。振荡器电容上的斜坡电压控制开关频率,这样,开关频率与RT引脚的输出电流成正比。电阻越小(大),电流就越大(小),开关频率也就越高(低)。基于这一原理,可利用输出电压反馈来调整开关频率。

在图4所示电路中,电阻R3和R4构成一个分压器。R4上的电压减去晶体管Q2基极和发射极之间的压降(Vbe)就是R5上的电压。因此,流经R5的电流(IR5)为:

该电流是利用匹配的晶体管对从控制IC的引脚RT获得的。
图4中的电阻R2用于启动转换器。在启动状态下,输出电压为零,因而IR5也为零。由于没有来自控制器RT引脚的电流,所以转换器无法启动。增加电阻R2可以在启动状态下获得一小部分电流,并使R2的大小满足:
IR5>>V(RT)/R2
其中V(RT)是控制器RT引脚上的电压。满足该条件可确保转换器的启动,并将R2带来的误差降至最低。如选R3=R4,则有:
IR5>>VO/2R5
这里假定输出电压比Q2的基极-发射极压降大得多。
这样,根据以上各公式便可以得到输出LED电流为:
iLED=KICLi2pk/(2×2R5)
这样,LED电流将不再决定于输入或输出电压。采用电阻R6、晶体管Q3和齐纳二极管D2可增加过压保护功能。在LED开路状态下,当开关导通时,电感存储能量,当开关关闭时,该能量转移到输出电容上。因为没有足够的负载供电容放电,输出电压在每个周期都会逐渐升高。当电压升高到超过齐纳二极管的导通电压时,由D2和R6组成的齐纳二极管分支电路开始导通。这也提供了一条通过Q3基极电流的路径,使Q3导通。此时,电阻R4实际上被短路。因此,Q2的基极发射极的PN结将关闭,导致R5上的电流为零。这将停止控制器的内部振荡直到输出电压降到齐纳二极管电压以下,以上过程继续进行。这种猝发模式可将LED开路状态下的平均功率降至最小。这种过压保护方法将强制控制IC进入低频、低功率的工作模式。
齐纳二极管电阻分支电路上的电流必须能在R6上产生足够大的电压,以便为晶体管基极-发射极之间的PN结提供偏置。
结束语
在带有输出电流反馈的开关LED驱动器中,一般还需要反馈补偿来稳定转换器,并调节电流以达到期望的电流值。这些反馈方案的瞬态响应性能是有限的,无法满足LED的PWM亮度调节所需要的快速开/关瞬态响应。然而,本文所描述的转换器并不要求任何反馈补偿。该控制方案所用的唯一反馈信息是通过传感电阻获得流经MOSFET的峰值电流。因为转换器在每个周期都存储所需的能量,所以它可以对瞬态做出即时响应。因此它可以很方便地与PWM亮度调节方案 一起工作。
升降压转换器是低直流电压输入LED驱动器的有效解决方案,无论输出电压高于还是低于输入电压,它都可以驱动LED串。此外,还可在转换器中增 加小型而低廉的额外电路以克服负载调节和无负载状态下的问题。该转换器易于实现,且在峰值电流模式控制时无需进行反馈补偿没计。它所具有的开环特性也使之成为那些需要PWM亮度调节的应用中的理想选择。

❼ MOSFET驱动电路有哪些,各有什么优缺点

其驱动电路通常包括开通驱动电路,关断驱动电路和门极反偏电路三部分。 电力MOSFET驱动电路的特点:要求驱动电路具有较小的输入电阻,驱动功率小且电路简单。

❽ LED驱动器有多少种各有什么优缺点

LED驱动器按照驱动方式,可以分为恒流式、稳压式。
1、恒流驱动电路输出的电流是恒定的,不怕负载短路,但严禁负载完全开路,是LED较为理想的驱动类型,但相对而言价格较高。
2、稳压式输出的电压是固定的,不怕负载开路,但严禁负载完全短路,每串需要加上合适的电阻方可使每串LED显示亮度平均。

LED驱动器按照电路结构方式,可以分为电阻电容降压方式、电阻降压方式、常规变压器降压方式、电子变压器降压方式、RCC降压方式、PWM控制方式。
1、电阻、电容降压方式:通过电容降压,在闪动使用时,由于充放电的作用,通过LED的瞬间电流极大,容易损坏芯片。易受电网电压波动的影响,电源效率低、可靠性低
2、电阻降压方式:通过电阻降压,受电网电压变化的干扰较大,不容易做成稳压电源,降压电阻要消耗很大部分的能量,所以这种供电方式电源效率很低,而且系统的可靠也较低。
3、常规变压器降压方式:电源体积小、重量偏重、电源效率也很低、一般只有45%~60%,所以一般很少用,可靠性不高。
4、电子变压器降压方式:电源效率较低,电压范围也不宽,一般180~240V,波纹干扰大。
5、RCC降压方式开关电源:稳压范围比较宽、电源效率比较高,一般可以做到70%~80%,应用也较广。由于这种控制方式的振荡频率是不连续,开关频率不容易控制,负载电压波纹系数也比较大,异常负载适应性差。
6、PWM控制方式开关电源:电源效率极高,一般可以做到80%~90%,输出电压、电流稳定。一般这种电路都有完善的保护措施,属高可靠性电源。

LED驱动器按电源安装位置分类,可分为外置电源和内置电源。
1、外置电源就是把电源安装在外面的。一般电压比较高,对人有安全危险的,就需要外置电源。与内置电源的区别就是电源加了一个外壳,常见的有路灯。
2、内置电源就是把电源安装在灯具内,一般都是电压比较低,12v到24v,对人没什么安全隐患。

❾ GTO、GTR、MOSFET和IGBT四种晶体管有何优点和缺点

IGBT 开关速度高,开关损耗小,具有耐脉冲电流冲击的能力,通态压降较低,输入阻抗高,为电内压驱动,驱容动功率小 开关速度低于电力MOSFET,电压,电流容量不及GTO

GTR 耐压高,电流大,开关特性好,通流能力强,饱和压降低 开关速度低,为电流驱动,所需驱动功率大,驱动电路复杂,存在二次击穿问题

GTO 电压、电流容量大,适用于大功率场合,具有电导调制效应,其通流能力很强 电流关断增益很小,关断时门极负脉冲电流大,开关速度低,驱动功率大,驱动电路复杂,开关频率低

MOSFET 开关速度快,输入阻抗高,热稳定性好,所需驱动功率小且驱动电路简单,工作频率高,不存在二次击穿问题 电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置

❿ 在电桥联接的方式中,半桥和全桥各大有什么优缺点

半桥电路的优复缺点:

半桥整流输出电制压的峰峰值只有输入电压的一半,因此在输出功率相同的情况下,半桥整流需要承担两倍于全桥整流的反向电压或者电流,因此半桥整流对二极管的规格有较高的要求。

半桥整流不仅需要中心抽头型的变压器,而且变压器的原边线径一般要粗一些。

全桥电路的优缺点:

全桥整流需要使用4只主开关管,但是存在同时通断的问题,因此在驱动电路的设计上要花更多的心思。全桥整流则需要变压器线圈匝数更多一些。

(10)驱动电路缺点扩展阅读:

桥式整流电路的工作原理如下:

输入电压u2为正半周时,对D1、D3加正向电压,D1、D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成u2、D1、Rfz 、D3通电回路,在Rfz 上形成上正下负的半波整流电压;

输入电压u2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成u2、D2、Rfz 、D4通电回路,同样在Rfz 上形成上正下负的另外半波的整流电压。

参考资料来源:网络--半桥电路

阅读全文

与驱动电路缺点相关的资料

热点内容
固始家具店 浏览:388
惠而浦售后为什么打不通 浏览:841
家居自动控制系统 浏览:1000
墙面翻新扇灰要多少次 浏览:154
小蚁4k运动相机售后维修 浏览:113
厚街家具城什么时候开门 浏览:301
酒店储藏室有什么家具 浏览:123
广西哪里有坚果售后服务店 浏览:520
实木家具好劣如何分辨 浏览:425
苹果系统王者什么时候维修完 浏览:248
销售后发生降价怎么处理 浏览:597
江苏华日家居有限公司招聘 浏览:998
大庆家具维修 浏览:54
芜湖卫生间防水施工多少钱 浏览:8
三星阳江维修点 浏览:270
套购家电是什么意思 浏览:617
二手车的车漆怎么翻新 浏览:126
海福乐五金厂家电话多少 浏览:938
霍山国家电网电话多少 浏览:817
天津集美家居 浏览:881