① 双向可控硅调压电路
可以的,可控硅需要用3Q BTA41-800BW ,但这么大功率的调节不能用这种简单的电路,这个电路只适合小功率调节。
② 超大电流双向可控硅驱动电路
具体可看下双向可控硅触发电路,有4象限触发方式,且只有一个控制脚,该电路直接用交流降压作为触发信号
③ AC/DC电源电路
题附复图中电路,只是一个受制控交流降压电路单元(AC),并不具有DC功能。其工作原理为:
1、由单片机输出控制电平,通过光耦元件隔离,控制双向可控硅调整输出交流电压;
2、可控硅输入端接220V交流电,输出端将已被调控的交流输出电压,送到整流电路;
3、后面的DC没有没画出,具体电路结构、功能不得而知,不分析了。
④ 求:3.3V转5V的双向电平转换电路
说说所有的电平转换方法,你自己参考~
(1) 晶体管+上拉电阻法
就是一个双极型三极管或 MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。
(2) OC/OD 器件+上拉电阻法
跟 1) 类似。适用于器件输出刚好为 OC/OD 的场合。
(3) 74xHCT系列芯片升压 (3.3V→5V)
凡是输入与 5V TTL 电平兼容的 5V CMOS 器件都可以用作 3.3V→5V 电平转换。
——这是由于 3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而 CMOS 的输出电平总是接近电源电平的。
廉价的选择如 74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列 (那个字母 T 就表示 TTL 兼容)。
(4) 超限输入降压法 (5V→3.3V, 3.3V→1.8V, ...)
凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。
这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制 (改变了输入级保护电路)。
例如,74AHC/VHC 系列芯片,其 datasheets 明确注明"输入电压范围为0~5.5V",如果采用 3.3V 供电,就可以实现 5V→3.3V 电平转换。
(5) 专用电平转换芯片
最著名的就是 164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的 (俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。
(6) 电阻分压法
最简单的降低电平的方法。5V电平,经1.6k+3.3k电阻分压,就是3.3V。
(7) 限流电阻法
如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如 74HC 系列为 20mA),仍然是安全的。
(8) 无为而无不为法
只要掌握了电平兼容的规律。某些场合,根本就不需要特别的转换。例如,电路中用到了某种 5V 逻辑器件,其输入是 3.3V 电平,只要在选择器件时选择输入为 TTL 兼容的,就不需要任何转换,这相当于隐含适用了方法3)。
(9) 比较器法
算是凑数,有人提出用这个而已,还有什么运放法就太恶搞了。
那位说的可以~但我分析你也不是非要芯片不可吧?尽量节约成本啊~
⑤ 如何使用三极管实现5v和3.3v双向转换 2N3904
一,为降低能耗,基来极电阻取10K,集电极自电阻取5K就好了。这些三极管都工作在开关状态,所以很好估算工作电流的。
二,输出高电平为5V的,取统一的5V电源,输出高电平3.3V的电路,电源统一取3.3V。
三,其实,不需要这么麻烦的。3.3V的高电平信号送到5V电源的接口,根本就不需要提升电压,因为对比而言,3.3V就是高电平输入了。
而5V高电平的输入信号到3.3V接口,通过电阻分压降压即可。
⑥ 在二极管降压电路一般是是单向降压还是双向降压
一个二极管只能单向降压,双向就要用两个但是正负极反接。
⑦ 家用220V交流电如何变成12V直流电
买一个变压器12伏四肢整流管
⑧ 不用变压器讲220V交流转24V直流电路图
这是一种简单的双向可控硅和阻容实现的调压电路,使用了双向二极管和阻容来实现触发已经控制,参数可以看图来匹配,当然它的负载是一只灯泡,实际上可以接一个大电容上去滤波稳压的,这样调整电位器来满足输出的12伏电压。
直流输电采用两线制,以大地或海水作回线,与采用三线制三相交流输电相比,在输电线截面积相同和电流密度相同的条件下,即使不考虑趋肤效应,也可以输送相同的电功率,而输电线和绝缘材料可节约1/3.
如果考虑到趋肤效应和各种损耗(绝缘材料的介质损耗、磁感应的涡流损耗、架空线的电晕损耗等),输送同样功率交流电所用导线截面积大于或等于直流输电所用导线的截面积的1.33倍.因此,直流输电所用的线材几乎只有交流输电的一半.同时,直流输电杆塔结构也比同容量的三相交流输电简单,线路走廊占地面积也少.
⑨ 34063用于双向dcdc变换器分析优点及缺点
DC/DC转换器目录
一. 电荷泵
1. 工作原理2. 倍压模式如何产生3. 效率4. 电荷泵应用5. 电荷泵选用要点
二. 电感式DC/DC
1. 工作原理(BUCK)2. 整流二极管的选择3. 同步整流技术4. 电感器的选择5. 输入电容的选择6. 输出电容的选择7. BOOST 与 BUCK的拓扑结构一. 电荷泵
1. 工作原理2. 倍压模式如何产生3. 效率4. 电荷泵应用5. 电荷泵选用要点
二. 电感式DC/DC
1. 工作原理(BUCK)2. 整流二极管的选择3. 同步整流技术4. 电感器的选择5. 输入电容的选择6. 输出电容的选择7. BOOST 与 BUCK的拓扑结构
展开 DC/DC是开关电源芯片。 开关电源,指利用电容、电感的储能的特性,通过可控开关(MOSFET等)进行高频开关的动作,将输入的电能储存在电容(感)里,当开关断开时,电能再释放给负载,提供能量。其输出的功率或电压的能力与占空比(由开关导通时间与整个开关的周期的比值)有关。开关电源可以用于升压和降压。 我们常用的DC-DC产品有两种。一种为电荷泵(Charge Pump),一种为电感储能DC-DC转换器。本文详细讲解了这两种DC/DC产品的相关知识。编辑本段一. 电荷泵
电荷泵为容性储能DC-DC产品,可以进行升压,也可以作为降压使用,还可以进行反压输出。电荷泵消除了电感器和变压器所带有的磁场和电磁干扰。
1. 工作原理
电荷泵是通过外部一个快速充电电容(Flying Capacitor),内部以一定的频率进行开关,对电容进行充电,并且和输入电压一起,进行升压(或者降压)转换。最后以恒压输出。 在芯片内部有负反馈电路,以保证输出电压的稳定,如上图Vout ,经R1,R2分压得到电压V2,与基准电压VREF做比较,经过误差放大器A,来控制充电电容的充电时间和充电电压,从而达到稳定值。 电荷泵可以依据电池电压输入不断改变其输出电压。例如,它在1.5X或1X的模式下都可以运行。当电池的输入电压较低时,电荷泵可以产生一个相当于输入电压的1.5倍的输出电压。而当电池的电压较高时,电荷泵则在1X模式下运行,此时负载电荷泵仅仅是将输入电压传输到负载中。这样就在输入电压较高的时候降低了输入电流和功率损耗。
2. 倍压模式如何产生
以1.5x mode为例讲解:电压转换分两个阶段完成。 第一阶段 在第一阶段, C1和C2串联。假设C1=C2,则电容充电直到电容电压等于输入电压的一半 VC1+-VC1-=VC2+-VC2-=VIN/2 第二阶段 在第二阶段,C1和C2并联,连接在VIN和VOUT之间。 VOUT=VIN+VIN/2=1.5VIN
3. 效率
电荷泵的效率是根据电荷泵的升压模式,输入电压和输出电压所决定,如果是以2倍压模式进行升压,那么它的效率为Vout/2Vin。输入电压越小,效率越高。
4. 电荷泵应用
在我们的设计中,电荷泵经常被用作白光LED驱动,一般在手机中应用于并联LCD背光驱动芯片。而串联背光驱动芯片则应选择电感式的DC/DC,因为它对电压要求较高。
5. 电荷泵选用要点
选用电荷泵时考虑以下几个要素: · 转换效率要高 · 静态电流要小,可以更省电; · 输入电压要低,尽可能利用电池的潜能; · 噪音要小,对手机的整体电路无干扰; · 功能集成度要高,提高单位面积的使用效率,使手机设计的更小巧; · 足够的输出调整能力,电荷泵不会因工作在满负荷状态而发烫; · 封装尺寸小是手持产品普遍要求; · 按装成本低,包括周边电路少占PCB板面积小,走线少而简单; · 具有关闭控制端,可在长时间待机状态下关闭电荷泵,使供电电流消耗近乎为0。编辑本段二. 电感式DC/DC
它是通过电感不断的储能/放电,最后达到稳定电压/电流输出的转换器。根据输出电压与输出电压的高低比较,可以分为boost(输出电压远高于输入电压)和buck(输出电压低于输入电压)。它们的拓扑结构不同。 Boost一般用于lcd串联背光驱动以及oled驱动,一般使用得输出电压在十几伏。 Buck 用于多媒体协处理器的核电压。
1. 工作原理(BUCK)
上图降压转换器最基本的电路:是利用MOSFET开关闭合时在电感器中储能,并产生电流。当开关断开时,贮存的电感器能量通过二极管输出给负载。 输出电压值与占空比(开关开启时间与整个开关周期之间的比 )有关。
2. 整流二极管的选择
该二极管必须具有与输出电压相等或更大的反向额定电压。其平均额定电流必须比所期望的最大负载电流大得多。其正向电压降必须很低,以避免二极管导通时有过大的损耗。此外,因为MOSFET工作于高频开关模式,所以需要二极管具有从导通状态到非导通状态时,很快恢复。反应速度越快,DC/DC的效率越高。 肖特基二极管(而非传统的超快速二极管)具有更低的正向电压降和极佳的反向恢复特性。
3. 同步整流技术
同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 当输出电压降低时,二极管的正向电压的影响很重要,它将降低转换器的效率。物理特性的极限使二极管的正向电压降难以降低到0.3V以下。相反,可以通过加大硅片的尺寸或并行连接分离器件来降低MOSFET的导通电阻RDS(ON)。因此,在给定的电流下,使用一个MOSFET来替代二极管可以获得比二极管小很多的电压降。 在同步降压转换器中,通过用两个低端的MOSFET来替换肖特基二极管可以提高效率(图1b)。这两个MOSFET必须以互补的模式驱动,在它们的导通间隙之间有一个很小的死区时间(dead time),以避免同时导通。同步FET工作在第三象限,因为电流从源极流到漏极。
4. 电感器的选择
随着开关的打开和闭合,升压电感器会经历电流纹波。一般建议纹波电流应低于平均电感电流的20%。电感过大将要求使用大得多的电感器,而电感太小将引起更大的开关电流,特别在输出电容器中,而这又要求更大的电容器。 电感值的选择取决于期望的纹波电流。如等式1所示,较高的VIN或VOUT也会增加纹波电流。电感器当然必须能够在不造成磁芯饱和(意味着电感损失)情况下处理峰值开关电流。 由公式可以得出: (1) 开关频率越高,所需的电感值就可以减小; (2) 电感值增大,可以降低纹波电流和磁芯磁滞损耗。但电感值的增大,电感尺寸也相应的增大,电流变化速度也减慢。 为了避免电感饱和,电感的额定电流值应该是转换器最大输出电流值与电感纹波电流之和。 电感的直流电阻(RDC),取决于所采用的材料或贴片电感器的构造类型,在室温条件下通过简单的电阻测量即可获得。RDC的大小直接影响线圈的温度上升。因此,应当避免长时间超过电流额定值。 线圈的总耗损包括RDC中的耗损和下列与频率相关联的耗损分量:磁芯材料损耗(磁滞损耗、涡流损耗);趋肤效应造成的导体中的其他耗损(高频电流位移);相邻绕组的磁场损耗(邻近效应);辐射损耗。 将上述所有耗损分量组合在一起构成串联耗损电阻(Rs)。耗损电阻主要用于定义电感器的品质。然而,我们无法用数学方法确定Rs,一般采用阻抗分析仪在整个频率范围内对电感器进行测量。 电感线圈电抗(XL)与总电阻(Rs)之比称为品质因素Q,参见公式(2)。品质因素被定义为电感器的品质参数。损耗越高,电感器作为储能元件的品质就越低。 品质—频率图可以帮助选择针对特定应用的最佳电感器结构。如测量结果图2所示,可以将损耗最低(Q值最高)的工作范围定义为一直延伸到品质拐点。如果在更高的频率使用电感器,损耗会剧增(Q降低)。 良好设计的电感器效率降低微乎其微。不同的磁芯材料和形状可以相应改变电感器的大小/电流和价格/电流关系。采用铁氧体材料的屏蔽电感器尺寸较小,而且不辐射太多能量。选择何种电感器往往取决于价格与尺寸要求以及相应的辐射场/EMI要求。
5. 输入电容的选择
因为buck有跳跃的输入电流,需要低ESR的输入电容,实现最好的输入电压滤波。输入电容值必须足够大,来稳定重负载时的输入电压。如果用陶瓷输出电容,电容RMS纹波电容范围应该满足应用需求。 陶瓷电容具有低ESR值,表现出良好的特性。并且与钽电容相比,陶瓷电容对瞬时电压不敏感。
6. 输出电容的选择
输出电容器的有效串联电阻(ESR)和电感器值会直接影响输出纹波电压。利用电感器纹波电流((IL)和输出电容器的ESR可以简单地估测输出纹波电压。 输出电压纹波是由输出电容的ESR引起的电压值,和由输出电容冲放电引起的电压纹波之和 有些厂家的DC/DC产品的内部由补偿环路,以实现最佳的瞬态响应和环路稳定性。当然,内部补偿能够理想地支持一系列工作条件,而且能够敏感地响应输出电容器参数变化。
7. BOOST 与 BUCK的拓扑结构
如上图,BOOST 与 BUCK电路结构不一样, Boost 电路是电感在输入电源与升压整流管之间, 开关管接电源地. BUCK 是电感在开关管与出电源之间,续流二级管反向接开关管与电源地
⑩ 双向dc-dc变换电路为什么要有降压电路
DC/DC变换电路,在电路应用里非常广泛,很常用,我的设计里,隔离和非隔离都有用到的。回
一般地,答非隔离的DC/DC转换是用于同一控制板里,一个电源升压或降压去适应此板的IC工作,一般地会把单电源变为双电源,即正负电源。非隔离电源,我一般不作大功率,一般都是几瓦,大一些的也是10多瓦。
而隔离式的,生活里面就应该得非常多了!开关电源降压的,基本都是隔离的,安全!例如电脑的电源,笔记本的适配器,VCD开关电源,逆变式电焊机等等这些都是220V交流电先整流滤波后成为直流电,再用DC/DC逆变电路输出所需的稳定直流电压,而输出的功能与电路结构相关不大,确定输出功率的一般器件为:开关管,变压器,输出整流二极管,输入滤波电容也要适当地考虑容量。
转换电路也分为半桥和全桥之分,有正激还有反激式电路,有降压式也是升压器,较多的呀,得灵活应用……
总结一下你问的问题:隔离式的转换安全,但相对较为复杂;非隔离式的电路设计简单,应用灵活,但没有隔离会引起共地,在特殊情况时,不能使用此方案。