导航:首页 > 电器电路 > 牵引LC电路

牵引LC电路

发布时间:2022-06-15 20:56:38

A. 什么是石英晶体振荡器

石英晶体振荡器

本词条由“科普中国”网络科学词条编写与应用工作项目审核 。


石英晶体振荡器又名石英谐振器,简称晶振,是利用具有压电效应的石英晶体片制成的。这种石英晶体薄片受到外加交变电场的作用时会产生机械振动,当交变电场的频率与石英晶体的固有频率相同时,振动便变得很强烈,这就是晶体谐振特性的反应。利用这种特性,就可以用石英谐振器取代LC(线圈和电容)谐振回路、滤波器等。由于石英谐振器具有体积小、重量轻、可靠性高、频率稳定度高等优点,被应用于家用电器和通信设备中。石英谐振器因具有极高的频率稳定性,故主要用在要求频率十分稳定的振荡电路中作谐振元件。



石英晶体振荡器的结构及原理

石英晶体振荡器是晶体振荡器的主要类型,下面介绍一下石英晶体振荡器的结构及原理。

石英晶体振荡器一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。石英晶体的压电效应:若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。

注意,这种效应是可逆的。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。

在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。

石英晶体,有天然的也有人造的,是一种重要的压电晶体材料。石英晶体本身并非振荡器,它只有借助于有源激励和无源电抗网络方可产生振荡。SPXO主要是由品质因数(Q)很高的晶体谐振器(即晶体振子)与反馈式振荡电路组成的。

石英晶体振子是振荡器中的重要元件,晶体的频率(基频或n次谐波频率)及其温度特性在很大程度上取决于其切割取向。石英晶体谐振器的基本结构、(金属壳)封装及其等效电路。

只要在晶体振子板极上施加交变电压,就会使晶片产生机械变形振动,此现象即所谓逆压电效应。当外加电压频率等于晶体谐振器的固有频率时,就会发生压电谐振,从而导致机械变形的振幅突然增大。


石英晶体振荡器的种类

1.按精度分类 石英晶体振荡器按精度(或频率稳定度)可分为普通石英晶体振荡器,精密石英晶体振荡器、中精密石英晶体振荡器和高精密石英晶体振荡器。

2.按封装结构及外形分类 石英晶体振荡器按封装结构及外形可分为金属外壳晶体振荡器、玻璃外壳晶体振荡器、胶木壳晶体振荡器和塑料外壳晶体振荡器。金属外壳封装的石英晶体振荡器又有锡焊、冷压焊和电阻焊三种。

3.按引出电极数目分类 石英晶体振荡器按引出电极数目可分为双电极(二端)型晶体振荡器、三电极(三端)型晶体振荡器和四电极(四端)型晶体振荡器。

4.按用途分类 石英晶体振荡器按用途可分为彩色电视机用晶体振荡器、影碟机用晶体振荡器、无线通信用晶体振荡器、电子钟表用晶体振荡器等多种类型。

5.按基本谐振电路分类 石英晶体振荡器按基本谐振电路可分为并联晶体振荡器和串联晶体振荡器两种类型。

石英晶体谐振器的命名方法

石英晶体振荡器的主要参数

石英晶体振荡器的主要参数有标称频率、负载电容、激励电平、工作温度范围及温度频差等。

1.标称频率 标称频率是指石英晶体振荡器的振荡频率,它与负载电容的容量值有关。

2.负载电容 负载电容是指与石英晶体振荡器各引脚相关联的总有效电容(包括应用电路内部与外围各电容)之和。负载电容常用的标准值有16PF、20PF、30PF、50PF、100PF。

3.激励电平 激励电平是指石英晶体振荡器工作时所消耗的有效功率。该值决定电路工作频率的确良稳定程度。激励电平常用的标准值有0.1 mW、0.5 mW、1 mW、2 mW、4 mW。

4.工作温度范围 工作温度范围是指石英晶体振荡器正常工作时所允许的最低温度至最高温度(环境温度)。

5.温度频差 温度频差是指石英晶体振荡器在工作温度范围内的工作频率相对于基准温度下工作频率的最大偏离值,它用来反映石英晶体振荡器的频率温度特性。

石英晶体振荡器的结构原理

石英晶体振荡器一般由外壳、晶片、支架、电极板、引线等组成。外壳材料有金属、玻璃、胶木、塑料等,外形有圆柱形、管形、长方形、正方形等多种。

晶片是从一块晶体上按一定的方位角切下的薄片,可以是圆形或正方形,矩形等。按切割晶片的方位不同,可将晶片分为AT、BT、CT、DT、X、Y等多种切型。不同切型的晶片其特性也不尽相同,尤其是频率温度特性相差较大。

晶片的两个对应表面上涂敷银层,由晶片支架固定并引出电极。晶片支架分为焊线式和夹紧式两种。通常,中、低频晶体振荡器采用焊线式晶片支架,而高频晶体振荡器采用夹紧式晶片支架。

石英晶体振荡器的工作原理基于晶片的压电效应(晶片两面加上不同极性的电压时,晶片的几何尺寸将压缩或伸张,此现象即为压电效应)。当晶片两面加上交变电压时,晶片将随着交变信号的变化而产生机械振动。当交变电压的频率与晶片的固有频率(只与晶片几何尺寸相关)相同时,机械振动最强,电路中的电流也最大,这即是晶体谐振特性。

B. LC谐振和无功补偿的关系

无功补偿,利用了LC谐振的原理。

【LC谐振】
L是电感,C是电容
在含有电容和电感的电路中,如果电容和电感并联,可能出现在某个很小的时间段内:电容的电压逐渐升高,而电流却逐渐减少;与此同时电感的电流却逐渐增加,电感的电压却逐渐降低。而在另一个很小的时间段内:电容的电压逐渐降低,而电流却逐渐增加;与此同时电感的电流却逐渐减少,电感的电压却逐渐升高。电压的增加可以达到一个正的最大值,电压的降低也可达到一个负的最大值,同样电流的方向在这个过程中也会发生正负方向的变化,此时我们称为电路发生电的振荡。
电容和电感串联,电容器放电,电感开始有有一个逆向的反冲电流,电感充电;当电感的电压达到最大时,电容放电完毕,之后电感开始放电,电容开始充电,这样的往复运作,称为谐振。而在此过程中电感由于不断的充放电,于是就产生了电磁波。
电路振荡现象可能逐渐消失,也可能持续不变地维持着。当震荡持续维持时,我们称之为等幅振荡,也称为谐振。
谐振时间电容或电感两端电压变化一个周期的时间称为谐振周期,谐振周期的倒数称为谐振频率。所谓谐振频率就是这样定义的。它与电容C和电感L的参数有关,即:f=1/(2π√LC)(Hz)。
【无功补偿】
无功功率补偿Reactive power compensation,简称无功补偿,在电力供电系统中起提高电网的功率因数的作用,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少电网的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。

C. 无源晶振的两个管脚分别接两个电容,这两个电容有什么作用

  1. 无源晶振称为石英晶体谐振器。它在工作电路中引脚上接的电容称为负载电容CL,单位为pF,在接有负载电容时,晶振的谐振频率称为有载谐振频率FL。

  2. 晶振谐振频率Fr与有载谐振频率的关系为:

    FL=Fr+CL*Ts

    其中:Ts为石英晶体谐振器的牵引量,单位为ppm/pF

  3. 负载电容与的晶振的关系:负载电容越大,晶振谐振电阻越小,电路越容易起振,超过一定值电路会失去振荡平衡而停振。反之,负载电容越小,晶振谐振电阻越大,电路越不容易起振。当然最理想的环境是不加负载电容,晶振直接工作在自身的谐振频率上。但在实际电路中,设计这样的电路相对不容易,PCB自身会有一定的杂散电容Cy存在,这个电容值很小,且不稳定。造成电路起振难并工作不稳定。设计时加一个负载电容,使晶振工作在FL=Fr+(CL+Cy)Ts状态中,由于杂散电容很小,它变化对负载电容影响不大,因此电路工作更稳定。

  4. 当电路的工作频率与所设计的频率有一点小偏差时,根据上面的公式,微调一个负载电容,可以使电路的工作频率达到设计值。

D. LC起步控制系统

LC是F1赛车电子发车控制系统Launch control的英文缩写。
LC是F1赛车配置的一种电子辅助装置,F1赛车发车起步时每分钟转速高达15000多转,车手按下LC按钮,LC系统就会自动平衡离合器和引擎转速,从而反应到驱动轮,有防止驱动轮在动力接通的情况下打滑,以得到更平顺的静止起步效果以及最佳的发车线路。

F1从今年开始禁用的电子辅助装置,其中就有不允许使用(LC- Launch control)发车控制系统和 (TC)牵引力控制系统。

E. 牵引变流器直流环节lc滤波器的原因和作用

在电力牵引交流传动系统中,由于牵引网单相供电和单相PWM整流器的工作特性,牵引变流器直流环节的电压会产生脉动。高速动车组为实现轻量化,其牵引变流器取消了LC谐振滤波电路,导致直流环节中脉动电压无法被有效的吸收,影响牵引变流器的稳定运行。鉴于此,本文以无LC谐振滤波电路的牵引变流器为对象,研究脉动电压对牵引变流器影响的抑制策略。首先,研究了脉动电压产生的机理,并定量分析了脉动电压对网侧电流和牵引电机的影响。其次,为抑制网侧低次谐波电流,电压外环采用直流侧电压动态补偿和后置数字滤波器的方法,研究了低通滤波器、陷波器和滤波器组合的参数设计及离散方法,滤除给定电流中的脉动分量。

F. 高一物理问题!

物理定理、定律、公式表
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
2)匀速圆周运动
1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
三、力(常见的力、力的合成与分解)
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
七、功和能(功是能量转化的量度)
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加) W合=mvt2/2-mvo2/2或W合=ΔEK {W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出}
6.热力学第二定律
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
九、气体的性质
1.气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,
热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
十、电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2: 两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器〔见第二册P111〕
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
十一、恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+ U总=U1=U2=U3
功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成 (2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法:
电压表示数:U=UR+UA
电流表外接法:
电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真
Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真
选用电路条件Rx>>RA [或Rx>(RARV)1/2]
选用电路条件Rx<<RV [或Rx<(RARV)1/2]
12.滑动变阻器在电路中的限流接法与分压接法
限流接法
电压调节范围小,电路简单,功耗小
便于调节电压的选择条件Rp>Rx
电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp<Rx
十二、磁场
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m
2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3.洛仑兹力f=qVB(注V⊥B);质谱仪 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV /qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);?解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
十三、电磁感应
1.[感应电动势的大小计算公式]
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}
十四、交变电流(正弦式交变电流)
1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)
2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总
3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻);
6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);
S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。
十五、电磁振荡和电磁波
1.LC振荡电路T=2π(LC)1/2;f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}
2.电磁波在真空中传播的速度c=3.00×108m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率}
十六、光的反射和折射(几何光学)
1.反射定律α=i {α;反射角,i:入射角}
2.绝对折射率(光从真空中到介质)n=c/v=sin /sin {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速, :入射角, :折射角}
3.全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n
2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角
十七、光的本性(光既有粒子性,又有波动性,称为光的波粒二象性)
1.两种学说:微粒说(牛顿)、波动说(惠更斯)
2.双缝干涉:中间为亮条纹;亮条纹位置: =nλ;暗条纹位置: =(2n+1)λ/2(n=0,1,2,3,、、、);条纹间距 { :路程差(光程差);λ:光的波长;λ/2:光的半波长;d两条狭缝间的距离;l:挡板与屏间的距离}
3.光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的传播速度与介质有关,光的颜色按频率从低到高的排列顺序是:红、橙、黄、绿、蓝、靛、紫(助记:紫光的频率大,波长小)
4.薄膜干涉:增透膜的厚度是绿光在薄膜中波长的1/4,即增透膜厚度d=λ/4
5.光的衍射:光在没有障碍物的均匀介质中是沿直线传播的,在障碍物的尺寸比光的波长大得多的情况下,光的衍射现象不明显可认为沿直线传播,反之,就不能认为光沿直线传播
6.光的偏振:光的偏振现象说明光是横波
7.光的电磁说:光的本质是一种电磁波。电磁波谱(按波长从大到小排列):无线电波、红外线、可见光、紫外线、伦琴射线、γ射线。红外线、紫外、线伦琴射线的发现和特性、产生机理、实际应用
8.光子说,一个光子的能量E=hν {h:普朗克常量=6.63×10-34J.s,ν:光的频率}
9.爱因斯坦光电效应方程:mVm2/2=hν-W {mVm2/2:光电子初动能,hν:光子能量,W:金属的逸出功}
十八、原子和原子核
1.α粒子散射试验结果a)大多数的α粒子不发生偏转;(b)少数α粒子发生了较大角度的偏转;?极少数α粒子出现大角度的偏转(甚至反弹回来)
2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)
3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:hν=E初-E末{能级跃迁}
4.原子核的组成:质子和中子(统称为核子), {A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数}
5.天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长极短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的
6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}
7.核能的计算ΔE=Δmc2{当Δm的单位用kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uc2;1uc2=931.5MeV}。

G. 高中物理实用公式

物理定理、定律、公式表
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
三、力(常见的力、力的合成与分解)
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N•m2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F´{负号表示方向相反,F、F´各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N•s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’´也可以是m1v1+m2v2=m1v1´+m2v2´
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1´=(m1-m2)v1/(m1+m2) v2´=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
注:
(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;
(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;
(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);
(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;
(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。
七、功和能(功是能量转化的量度)
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}
6.热力学第二定律
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

十一、恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω•m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+ U总=U1=U2=U3
功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成 (2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法: 电流表外接法:

电压表示数:U=UR+UA 电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真
选用电路条件Rx>>RA [或Rx>(RARV)1/2] 选用电路条件Rx<<RV [或Rx<(RARV)1/2]
12.滑动变阻器在电路中的限流接法与分压接法
限流接法

电压调节范围小,电路简单,功耗小 电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp>Rx 便于调节电压的选择条件Rp<Rx
注:(1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。
十二、磁场
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位:(T),1T=1N/A•m
2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下:(a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
注:
(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;
(2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P144〕;(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P150〕/回旋加速器〔见第二册P156〕/磁性材料
十三、电磁感应
1.[感应电动势的大小计算公式]
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
*4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,∆t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}
注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。
十四、交变电流(正弦式交变电流)
1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)
2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总
3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失:P损´=(P/U)2R;(P损´:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;
6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);
S:线圈的面积(m2);U:(输出)电压(V);I:电流强度(A);P:功率(W)。
注:
(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;
(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;
(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;
(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;
(5)其它相关内容:正弦交流电图象〔见第二册P190〕/电阻、电感和电容对交变电流的作用〔见第二册P193〕。
十五、电磁振荡和电磁波
1.LC振荡电路T=2π(LC)1/2;f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}
2.电磁波在真空中传播的速度c=3.00×108m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率}
注:
(1)在LC振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大;
(2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;
(3)其它相关内容:电磁场〔见第二册P215〕/电磁波〔见第二册P216〕/无线电波的发射与接收〔见第二册P219〕/电视雷达〔见第二册P220〕。

H. 这个电路中晶振旁边没有22pf电容,这个可以吗

<p>晶体旁边不加电容是可以的。</p><p>晶体旁边加的这个电容被我们称之为晶体负载电容。晶体的谐振频率为Fr,加了电容的谐振频率为有载谐振频率FL。晶体谐振频率Fr与晶体有载谐振频率FL的关系为:</p>
<p>FL=Fr
+
Ts*CL</p>
<p>式中Ts为晶体的牵引量,单位为ppm/pF。CL为晶体的负载电容,即晶体旁边加的那个电容,单位为pF。</p><p>如果电路不加负载电容,则电路会工作在晶体谐振频率上。所以电路中是可以不加负载电容的。</p><p>晶体发生谐振后,会呈现为纯电阻,即谐振阻抗。在有载谐振中,谐振电阻一般会与负载电容呈反比例关系。也就是说负载电容越小,电路的谐振阻抗越高,就越不容易起振,输出波形幅度就越小。</p><p>而事实上,电路直接工作在晶体谐振频率的状态是非常理想化的。我们一般的电路都或多或少的有一些杂散电容。当电路振荡时,这些杂散电容便被视为晶体的负载电容进行工作。由于这些杂散电容一般都很小,且不稳定,这就造成晶体振荡频率不稳定,且谐振阻抗增高。这就是网友“大烙铁”所说的“可能工作不稳定,频率不准确”。当然,如果你的振荡电路较为简单,而且PCB走线设计的又十分合理,PCB上的杂散电容小到可以忽略不计且十分稳定,那么就如网友“ny_peter”所说不加电容。</p><p>那么在设计电路时该如何加这个负载电容呢?首先你要明白FL这个有载谐振频率就是你的电路所要的频率。电路中的杂散电容为Cy的话,根据上面的公式,你所设计的电路频率应为:</p>
<p>FL
=
Fr
+
Ts*(Cy+CL)</p>
<p>设计时,你的负载电容CL可以用可调电容替代,调整CL值直到电路工作在你所要的频率上。一般时候这个负载电容CL值不要太小,上面说过电容太小,谐振阻抗会变高,不利于起振且输出幅度小。所以这个电容值一般选取在10至30pF之间。此时由于负载电容CL值远远大于杂散电容Cy值,因此对杂散电容的不稳定性可以忽略不计。这就是网友“大烙铁”所说的加了负载电容的电路会更稳定,频率更准确。</p><p>说了这么多,都是我个人多年工作经验总结出来的,希望对你有用。</p>

I. 已知某一并联谐振回路的谐振频率为1MHz,要求对990KHz的干扰信号有足够的衰减,问并

不同的制造商提供各种形状与大小的石英晶体,其性能指标也各不一样。这些指标包括谐振频率、谐振模式、负载电容、串联阻抗、 管壳电容以及驱动电平。本应用笔记帮助读者理解这些指标参数,并允许用户根据应用选择合适的晶体以及在MAX1470超外差接收机电路应用中获得最佳效果。 不同的制造商提供各种形状与大小的石英晶体,其性能指标也各不一样。这些指标包括谐振频率、谐振模式、负载电容、串联阻抗、管壳电容以及驱动电平。本篇应用笔记帮助读者理解这些指标参数,并允许用户根据应用选择合适的晶体以及在MAX1470超外差接收机电路应用中获得最佳效果。晶体的等效电路见图1。图中包括了动态元件:电阻Rs、电感Lm、电容Cm和并联电容Co。这些动态元件决定了晶体的串联谐振频率和谐振器的Q值。并联电容Co是晶体电极、管壳和引腿作用的结果。图1. 晶体模型以下详细给出主要的性能指标。 谐振频率晶体频率可以根据接收频率指定。由于MAX1470使用低端注入的10.7MHz中频,晶体频率可由下式给出(单位为MHz):对于315MHz应用,晶体的频率可为4.7547MHz,而在433.92MHz应用时需要6.6128MHz晶体。仅基频模式的晶体需要指定(无需泛音)。 谐振模式晶体具有两种谐振模式:串联(两个频率中的低频率)和并联(反谐振,两个频率中的高频率)。所有在振荡电路中呈现纯阻性时的晶体都表现出两种谐振模式。在串联谐振模式中,动态电容的容抗Cm、感抗Lm相等且极性相反,阻抗最小。在反谐振点。阻抗却是最大的,电流是最小的。在振荡器应用中不使用反谐振点。通过添加外部元件(通常是电容),石英晶体可振荡在串联与反谐振频率之间的任何频率上。在晶体工业中,这就是并联频率或者并联模式。这个频率高于串联谐振频率低于晶体真正的并联谐振频率(反谐振点)。图2给出了典型的晶体阻抗与频率关系的特性图。图2. 晶体阻抗相对频率 负载电容和可牵引性在使用并联谐振模式时负载电容是晶体一个重要的指标。在该模式当中,晶体的总电抗呈现感性,与振荡器的负载电容并联,形成了LC谐振回路,决定了振荡器的频率。当负载电容值改变后,输出频率也随之改变。因而,晶体的生产商必须知道振荡器电路中的负载电容,这样可以在工厂中使用同样的负载电容来校准。如果使用谐振在不同的负载电容上的晶体,那么晶体频率将偏离额定的工作频率,这样参考频率将引入误差。因而,需要添加外部电容,改变负载电容,使晶体重新振荡到需要的工作频率上。图3给出MAX1470评估板电路里的晶体图。在这个电路中,C14和C15是串联牵引电容,而C16是并联牵引电容。Cevkit为等效的MAX1470芯片加上评估PCB的寄生电容。Cevkit约为5pF。图3. 评估板晶体等效电路串联牵引电容会加快晶体振荡,而并联电容会减缓振荡。Cevkit为5pF,如果使用负载电容为5pF的晶体,会振荡到需要的频率上,因而无需外部的电容(C16不接,同时C14和C15在板上短接)。评估板本身使用3pF负载电容的晶体,需要两个15pF电容串联加速振荡。负载电容的计算如下:在这个例子中,如果不使用两个串联电容,4.7547MHz晶体会振荡在4.7544MHz,而接收机将调谐在314.98MHz而不是315.0MHz,频率误差约为20kHz,也就是60ppm。因而,关键是使用串联或者并联或者两种形式匹配晶体的负载容抗(取决于电容的值)。例如,1pF并联电容是6pF负载电容所需要的(或者以下的结合形式:C14 = C15 = 27pF, C16 = 5pF)。谨慎使用大电容值的C16,因为它会增大谐振电路的电流,导致晶体停振,图4给出了并联电容和振荡器电流的关系图。图4. 晶体振荡器电流与附加的并联负载电容的关系在定制的PCB板中,如果Cevkit未知,可以使用频谱分析仪监测中频(在信号进入频谱分析仪之前确保使用隔直电容),然后使用串联和并联电容调谐中频频率至10.7MHz。 串联电阻普通晶体的典型串联电阻为25Ω至100Ω。晶体制造商通常给出该电阻的特性并指定了其最大值。在MAX1470振荡电路中该电阻不要超过100Ω。 管壳或者并联电容这个便是晶体电极、管壳和引脚的电容。典型值范围为2pF至7pF。 驱动电平必须限制晶体的功耗,在过分机械振动的条件下石英晶体会停振。由于非线性,晶体

阅读全文

与牵引LC电路相关的资料

热点内容
双丰牌家具 浏览:863
防水涂料脱层是怎么回事 浏览:803
山东滨州创维维修电话是多少钱 浏览:879
空压机售后服务如何考核 浏览:318
荣事达售后电话合肥 浏览:89
红米4x维修要多久 浏览:865
淘宝店铺怎么找商家电话 浏览:597
徐州哪里做宜家家具 浏览:36
浙江最大的家具厂有多少人 浏览:278
空调售后安装服务费怎么做账 浏览:915
杜菲尼唐山售后电话 浏览:335
闽威电路板 浏览:18
周大福铂金钻戒翻新多少钱 浏览:948
飘板电路 浏览:280
胆iv电路 浏览:709
光辉家居企业集团 浏览:650
卫生间涂了防水后做什么 浏览:476
坐北朝南的屋子家具放哪个方向 浏览:378
控制电路并联 浏览:832
开五金家具厂需要多少投入 浏览:551