㈠ 光敏二极管控制继电器电路,试说明其原理
光敏二极管的特性有五个:光谱特性、伏安特性、光照特性、温度特性以及频率响应特性。光敏二极管和普通二极管相似,都对电流有放大的作用,不同的是它的集电极电流不只是受基极电路和电流控制,它还要受光辐射的控制。一般情况下基极不引出,但有些的基极有引出,引出的基极有温度补偿和附加控制等作用。当具有光敏特性的PN结受到光辐射时,就会形成光电流,产生的光生电流由基极进入到发射极,进而在集电极回路中得到一个放大了的信号电流。用不同材料制作而成的光敏极管具有不同的光谱特性。
典型光敏二极管电路图(一)
典型光敏二极管电路图(二)
图是光敏二极管的应用电路实例。因(a)是对数压缩电路,反馈电路中采用对数二极管VD,可以对输出电压进行对数压缩,测光范围较宽,一股用于模拟光信号电路。图(b)是定位用传感器电路.采用对偶型光敏二极管,放大VD1与VD2的差动信号。图(c)是与FE丁(VT)组合的调制光传感器电路.用于光控电路,响应速度快,噪声低,它是一种调制光等的交流专用放大器,但不适合于模拟信号电路中。
典型光敏二极管电路图(三)
典型光敏二极管电路图(四)
图4-5是光敏二极管VD与运放A组合应用实例.图4-5(a)为无偏置方式,图4-5(b)为反向偏置方式。
无偏置电路可以用于测量宽范围的入射光,例如照度计等,但响应特性比不上反向偏置的电路,可用反馈电阻Rf调整输出电压,如果Rf用对数二极管替代.则可以输出对数压缩的电压。反向偏置电路的响应速度快.输出信号与输入信号同相位
典型光敏二极管电路图(五)
典型光敏二极管电路图(六)
如下图电路中通过压电元件传感器S将压力转换为电信号送至SD3或SD3A集成电路,并通过发光二极管显示。图中虚线框内两个等效电阻分别为工作室和补偿室(双电离室)。
典型光敏二极管电路图(七)
LM358该测试器可对发光二极管进行不区分极性地检测,从而判定其发光性能。在批量检测中,与用万用表等测试手段相比,省时省力、简单直观。
电路如下图所示,一路运算放大器接成低频自激振荡器,在输出端间歇输出高电平或低电平。另一路运放接成反相器形式。当振荡电路输出高电平时,反相器则输出低电平;振荡电路输出低电平时,反相器输出高电平。若在两输出端跨接一支发光二极管,不论跨接的极性如何,发光二极管总是要随着振荡电路的振荡频率,间歇地导通发光。LED为电源指示管,兼作发光强度的比较管。运放IC可选用LM358或LM324。
㈡ 海信32寸电视电源板电路图
注:本文以海信2264电源板为例讲述。
RSAG7.820.2264板正面图
五、LED背光驱动电路:
LED背光驱动部分采用OZMicro公司的OZ9902方案,OZ9902为双路驱动芯片,本电路采用2片OZ9902,也就是本电路采用了4路驱动.单路驱动简易图如下:
图17、LED背光驱动电路方框图示
表三 N906OZ9902引脚功能
图18、LED背光驱动控制部分电路原理图示
1、驱动电路升压过程:
驱动芯片OZ9902第2脚得到12V工作电压,第3脚得到高电平开启电平,第9脚得到调光高电平,第1脚欠压检测到4V以上的高电平时,OZ9902开始启动工作,从OZ9902的第23脚输出驱动脉冲,驱动V919工作在开关状态.
1、电路开始工作时,负载LED上的电压约等于输入VIN电压.
2、正半周时,V919导通,储能电感L909、L913上的电流逐渐增大,开始储能,在电感的两端形成左正右负的感应电动势.
3、负半周时,V919截止,电感两端的感应电动势变为左负右正,由于电感上的电流不能突变,与VIN叠加后通过续流二极管VD926给输出电容C900进行充电,二极管负极的电压上升到大于VIN电压.
4、正半周再次来临,V919再次导通,储能电感L909、L913重新
储能,由于二极管不能反向导通,这时负载上的电压仍然高于
VIN上的电压.正常工作以后,电路重复3、4步骤完成升压过[Page]
程.
R919、R923、R929组成电流检测网络,检测到的信号送入芯片的20脚ISW11,在芯片内部进行比较,来控制V919的导通时间.
R909、R911、R914和R924是升压电路的过压检测电阻.连接至N905的第19脚的内部基准电压比较器.当升压的驱动电压升高时,其内部电路也会切断PWM信号的输出,使升压电路停止工作.
在N905内部还有一个延时保护电路,即由N905第10脚的内部电路和外接的电容C899组成.当各路保护电路送来起控信号时,保护电路不会立即动作,而是先给C899充电.当充电电压达到保护电路的设定阈值时,才输出保护信号.从而避免出现误保护现象,也就是说只有出现持续的保护信号时,保护电路才会动作.
2、PWM调光控制电路:
调光控制电路由V920等电路组成,V920受控于7脚的PWM调光控制,当第7脚为低电平时,第18脚的PROT1也为低电平,V920不工作.当第7脚为高电平时,第18脚的PROT11信号不一定为高电平,因为假如输出端有过压或短路情形发生,内部电路会将PROT1信号拉为低电平,使LED与升压电路断开.
R920、R926、R1025组成电流检测网络,检测到的信号送入芯片的第17脚ISEN1,第17脚为内部运算放大器+输入端,检测到的ISEN1信号在芯片内部进行比较,来控制V920的工作状态.
第11脚外接补偿网络,也是传导运算放大器的输出端.此端也受PWM信号控制,当PWM调光信号为高,放大器的输出端连接补偿网络.当PWM调光信号为低时,放大器的输出端与补偿网络被切断,因此补偿网络内的电容电压一直被维持,一直到PWM调光信号再次为高电平时,补偿网络才又连接放大器
的输出端.这样可确保电路工作正常,以及获得非常良好
的PWM调光反应.
其他三路电路工作过程同上,这里不在阐述.
六、故障实例
故障现象:不定时三无
分析检修:因该机不定时出现三无现象,大部分时间可以正常工作,无规律可循,有时几天出现一次.当故障出现时,测得无5VS电压,确定故障在5V产生电路.检测5V电路,N831(STR-A6059H)检测数据如下:第1脚:0V;2脚:6.2V;3脚:0V;4脚:开机瞬间有摆动随后0V;5脚:8-10V摆动;7、8脚300V.从检测结果可知N831启动后因4脚电压降低进入保护状态锁定电路无输出.能引起4脚电压降低进入保护状态的原因只有5VS稳压控制电路和4脚外围元件.对稳压控制电路相关元件在路检测正常,因为及其大部分时间能正常工作,故从故障形成机理和统计的角度看,这类故障多与原件性能参数不良或自身特性变差有
关,怀疑4脚外接电容C832不稳定漏电所致,试更换C832长
时间试机未见异常,故障排除.
故障点实物图示
故障现象:开机一分钟后屏幕二分之一处发黑
分析检修:由于故障现象是半面亮光发黑,因此判断是一组背光驱动电路异常所致。
开机检查,测得LED4+、LED4-输出端子电压为195V,而LED3+、LED3-输出端子只有108V.从电路图中可以看出,V925和V926这组输出未能正常升压形成LED所需的电压要求.什么原因会造成此故障呢?一、未有正常的驱动信号送至V925,使V925处于截止状态而形成不了升压;二、开机瞬间已有驱动信号驱动了V925,并形成升压过程,但由于LED负载异样使反馈信号异常迫使驱动块保护而停止输出输出驱动信号,而使V925截止输出,升压停止.
为了验证这个问题,再次监测LED3+、LED3-电压时,发现其开机电压瞬间会达到300V!从欧姆定律不难看出,当负载减轻时,电流则会减小,电源此时处于空载状态,电压自然会上升.由此判断此故障是由于LED灯
组断路而使输出电压过高引起的保护.更换屏后故障排除。
实物检测点标示
㈢ 交通灯电路图
本设计中选用目前应用较广泛的VHDL硬件电路描述语言,实现对路口交通灯系统的控制器的硬件电路描述,在Altera公司的EDA软件平台MAX+PLUSⅡ环境下通过了编译、仿真,并下载到CPLD器件上进行编程制作,实现了交通灯系统的控制过程。 关键词:EDA;VHDL;控制器;CPLD
引言
EDA技术是用于电子产品设计中比较先进的技术,可以代替设计者完成电子系统设计中的大部分工作,而且可以直接从程序中修改错误及系统功能而不需要硬件电路的支持,既缩短了研发周期,又大大节约了成本,受到了电子工程师的青睐。
实现路口交通灯系统的控制方法很多,可以用标准逻辑器件、可编程序控制器PLC、单片机等方案来实现。但是这些控制方法的功能修改及调试都需要硬件电路的支持,在一定程度上增加了功能修改及系统调试的困难。因此,在设计中采用EDA技术,应用目前广泛应用的VHDL硬件电路描述语言,实现交通灯系统控制器的设计,利用MAXPLUSⅡ集成开发环境进行综合、仿真,并下载到CPLD可编程逻辑器件中,完成系统的控制作用。
交通灯系统控制器设计要求
路口交通灯控制系统与其他控制系统一样,划分为控制器和受控电路两部分。控制器使整个系统按设定的工作方式交替指挥车辆及行人的通行,并接收受控部分的反馈信号,决定其状态转换方向及输出信号,控制整个系统的工作过程。
按照路口交通运行的实际情况,在本系统中,设定系统的工作情况如下。
路口交通灯控制系统的东西路有交通灯R(红)、Y(黄)、G(绿);东西人行安全通道灯:RXR(红)、RXG(绿)。南北路有交通灯:r1(红)、y1(黄)、g1(绿);南北人行安全通道灯:rxr1(红)、rxg1(绿),所有灯均为高电平点亮。设置15s的通行时间和5s转换时间的变模定时电路,由预置输入整数cnt决定是模15还是模5,输入逻辑cx是用来决定计数到4时清零还是到14时清零。Clk是外部提供的基准秒脉冲信号。x0、x1、x2、x3是由控制器输出的表示计数时间的四位二进制数。图1是该系统控制器的符号框图。
控制器的程序设计
* 控制器的ASM图
根据系统设计要求,得到控制器的ASM图,如图2所示。在这里,所有输入信号均为高电平有效。该ASM图反映了交通灯系统的不同状态的转换过程及持续时间。
* 控制器的VHDL程序设计
根据所分析的系统的ASM图,结合系统的设计要求,用VHDL语言对各个模块进行编程,最后形成顶层文件,在MAX+PLUSⅡ环境下进行编译与仿真,检查所编程序是否运行正确。如果出现错误,需要进行修改,直到完全通过为止。需要说明的是,在进行程序编译时,要先从底层程序开始,所有底层程序都正确后,才能开始顶层程序的编译。这是因为顶层程序是对底层程序的概括,它是把底层程序各个模块连接起来,就相当于把每个模块的功能汇聚到一起,实现整个系统的控制功能,所以底层程序的正确与否,关系到顶层程序的运行结果。
在控制器的程序设计中,在定义结构体时,有两种程序设计方法均可以通过编译及仿真,但在进行时序分析时结果却不同。
(1)如果这样定义:
...
ARCHITECTURE con1_arc of con1 IS
SIGNAL current_state:state;
BEGIN
...
在进行程序调试时,均通过了编译及仿真,但在进行时序分析中,却出现了不按设定的计数顺序工作的结果:14, 13, 2,1, 0...。经过反复修改调试,对程序进行了修改,如(2)所定义的。
(2)
ARCHITECYTURE con1_arc OF con1 IS
SIGNAL current_state:state;
SIGNAL TEMP_STATE:state;
...
TEMP STATE<=current_state;
BEGIN
...
在这种设计方法中,多定义了一个信号变量,从而使得程序能按设定的状态14,13,12...进行转换。通过这个实例,可以看出EDA技术作为电子设计工具的功能修改及调试的方便快捷,即不需要硬件电路的支持就可以找到问题所在并进行修改,体现了它的优越性。
硬件电路实现
根据交通灯系统的控制要求,图3所示为本系统的硬件电路图。该电路包含了1个CPLD芯片,2个七段LED数码显示器,20个分别表示各个方向上的红、黄、绿灯,以及相应的限流电阻。这个电路与其他控制方法相比,所用器件可以说是比较简单经济的。经过实验,实现了预定的交通灯系统的控制功能。
㈣ 这个电路图怎样分析尽量详细点,谢谢。初学者
这个电路图是典型串联稳压电路,
作用是把输入的12Ⅴ直流电压转换成输出稳定的直流电压5V,
电阻为稳压二极管和调整三极管提供偏置,
稳压二极管工作在反向击穿区,产生5.6V基准电压,
调整管工作在射随状态,
输出5V,后端电容起滤波作用,
大电容针对低频信号,
小电容针对高频信号。
㈤ 电路识图与分析实例详解这本书怎么样
用电路元件符号表示电路连接的图,叫电路图。电路图是人们为研究、工程规划的需要,回用物理电学标准化答的符号绘制的一种表示各元器件组成及器件关系的原理布局图。由电路图可以得知组件间的工作原理,为分析性能、安装电子、电器产品提供规划方案。在设计电路中,工程师可从容在纸上或电脑上进行,确认完善后再进行实际安装。通过调试改进、修复错误、直至成功。采用电路仿真软件进行电路辅助设计、虚拟的电路实验,可提高工程师工作效率、节约学习时间,使实物图更直观。
识图
单元电路是指某一级控制器电路,或某一级放大器电路,或某一个振荡器电路、变频器电路等,它是能够完成某一电路功能的最小电路单位。从广义角度上讲,一个集成电路的应用电路也是一个单元电路。
单元电路图是学习整机电子电路工作原理过程中,首先遇到具有完整功能的电路图,这一电路图概念的提出完全是为了方便电路工作原理分析之需要。
㈥ 常见电路图实例分析
热释红外电路原理的分析:
热释电红外传感器的原理特性
热释电红外传感器和热电偶都是基于热电效应原理的热电型红外传感器。不同的是热释电红外传感器的热电系数远远高于热电偶,其内部的热电元由高热电系数的铁钛酸铅汞陶瓷以及钽酸锂、硫酸三甘铁等配合滤光镜片窗口组成,其极化随温度的变化而变化。为了抑制因自身温度变化而产生的干扰 该传感器在工艺上将两个特征一致的热电元反向串联或接成差动平衡电路方式,因而能以非接触式检测出物体放出的红外线能量变化 并将其转换为电信号输出。热释电红外传感器在结构上引入场效应管的目的在于完成阻抗变换。由于热电元输出的是电荷信号,并不能直接使用 因而需要用电阻将其转换为电压形式 该电阻阻抗高达104MΩ,故引入的N沟道结型场效应管应接成共漏形式 即源极跟随器 来完成阻抗变换。热释电红外传感器由传感探测元、干涉滤光片和场效应管匹配器三部分组成。设计时应将高热电材料制成一定厚度的薄片, 并在它的两面镀上金属电极,然后加电对其进行极化,这样便制成了热释电探测元。由于加电极化的电压是有极性的,因此极化后的探测元也是有正、负极性的。
图1是一个双探测元热释电红外传感器的结构示意图。使用时D端接电源正极,G端接电源负极,S端为信号输出。该传感器将两个极性相反、特性一致的探测元串接在一起,目的是消除因环境和自身变化引起的干扰。它利用两个极性相反、大小相等的干扰信号在内部相互抵消的原理来使传感器得到补偿。对于辐射至传感器的红外辐射,热释电传感器通过安装在传感器前面的菲涅尔透镜将其聚焦后加至两个探测元上,从而使传感器输出电压信号。
制造热释电红外探测元的高热电材料是一种广谱材料,它的探测波长范围为0.2~20μm。为了对某一波长范围的红外辐射有较高的敏感度,该传感器在窗口上加装了一块干涉滤波片。这种滤波片除了允许某些波长范围的红外辐射通过外,还能将灯光、阳光和其它红外辐射拒之门外。
3 被动式红外报警器的结构原理
3.1 结构
被动式红外报警器主要由光学系统、热释电红外传感器、信号滤波和放大、信号处理和报警电路等几部分组成。其结构框图如图2所示。图中, 菲涅尔透镜可以将人体辐射的红外线聚焦到热释电红外探测元上,同时也产生交替变化的红外辐射高灵敏区和盲区,以适应热释电探测元要求信号不断变化的特性;热释电红外传感器是报警器设计中的核心器件,它可以把人体的红外信号转换为电信号以供信号处理部分使用;信号处理主要是把传感器输出的微弱电信号进行放大、滤波、延迟、比较,为报警功能的实现打下基础。图3所示的是将待测目标、菲涅尔透镜、热释电红外传感器相结合使用时的工作原理示意图。
3.2 工作原理
在该探测技术中,所谓“被动”是指探测器本身不发出任何形式的能量,只是靠接收自然界能量或能量变化来完成探测目的。被动红外报警器的特点是能够响应入侵者在所防范区域内移动时所引起的红外辐射变化,并能使监控报警器产生报警信号,从而完成报警功能。图4所示是该报警器的工作电路原理图。
当人体辐射的红外线通过菲涅尔透镜被聚焦在热释电红外传感器的探测元上时,电路中的传感器将输出电压信号,然后使该信号先通过一个由C1、C2、R1、R2组成的带通滤波器,该滤波器的上限截止频率为16Hz,下限截止频率为0.16Hz。由于热释电红外传感器输出的探测信号电压十分微弱(通常仅有1mV左右),而且是一个变化的信号,同时菲涅尔透镜的作用又使输出信号电压呈脉冲形式(脉冲电压的频率由被测物体的移动速度决定,通常为0.1~10Hz左右),所以应对热释红外传感器输出的电压信号进行放大。本设计运用集成运算放大器LM324来进行两级放大,以使其获得足够的增益。
当传感器探测到人体辐射的红外线信号并经放大后送给窗口比较器时,若信号幅度超过窗口比较器的上下限,系统将输出高电平信号;无异常情况时则输出低电平信号。在该比较器中,R9、R10、R11用做参考电压,两个运算放大器用做比较,两个二极管的主要作用是使输出更稳定。窗口比较器的上下限电压 即参考电压 分别为3.8V和1.2V。将这个高低电平变化的信号 上升沿信号 作为单稳电路HEF4538B的触发信号,并让其输出一个脉宽大约为10s的高电平信号。再用这一脉宽信号作为报警电路KD9561的输入控制信号,来使电路产生10s的报警信号,最后用三极管VT1和VT2再一次对电信号进行放大,以便有足够大的电流来驱动喇叭使其连续发出10s的报警声。
4 结束语
用热释电红外传感器设计的监控报警系统具有结构简单、成本低等优点。经过多次测试,该系统工作情况稳定。
图4
热释电红外报警器只能安装在室内,其误报率与安装的位置和方式有极大的关系。正确的安装应满足下列条件:
(1)报警器应离地面2.0~2.2米。
(2)报警器应远离空调、冰箱、火炉等空气、温度变化比较敏感的地方。
(3)报警器探测范围内不得有隔屏、家具、大型盆景或其他隔离物。
(4)报警器不要直对窗口,否则窗外的热气流扰动和人员走动会引起误报,有条件的话最好把窗帘拉上。另外,报警器也不要安装在有强气流活动的地方。
热释电红外控制开关
本例介绍一款采用热释电红外传感器 (一种由高热电系数材料、阻抗匹配用场效应晶体管的滤光镜片等组成的新型敏感元件)和专用集成电路制作的热释电红外线控制开关,它在检测到人体发射的红外传感器信号后接通,使负载 (报警器或照明灯、排风扇等)通电工作。
电路工作原理
该热释电红外控制开关电路由热释红外传感器 (PIR)、热释电红外控制电路、光控电路和控制执行电路组成,如图3-66所示。
热释电红外控制电路由集成电路lC(SS0001)和电阻器RZ-R9、电容器Cl-C8组成。SS0001是热释电红外控制专用集成电路,其内部由输入放大器、双向限幅器、状态控制器、延时定时器、锁存定时器和基准电源等电路组成,如图3-67所示。
光控电路由光敏电阻器RG、电阻器Rl和IC第9脚内电路组成。
控制执行电路由电阻器RlO、晶体管V、二极管VD和继电器K组成。
热释电红外传感器应与非涅尔透镜配合使用,才能提高其灵敏度。在热释电红外传感器未检测到人体红外线信号时,IC的2脚输出低电平,V处于截止状态,K不吸合,负载电路不工作。
当有人在热释电红外传感器的有效检测区域内活动时,热释电红外传感器将接收到人体发出的红外信号,并将其转变成微弱的脉冲电压信号,此电压信号经lC内电路放大、鉴幅处理及定时控制后,从2脚输出控制高电平,使V导通,K吸合,负载电路通电工作。
在白天,光敏电阻器RG受光照射而呈低阻状态,IC的9脚 (触发禁止端)被锁定为低电平,使IC的2脚恒定输出低电平。夜晚,RG因无光照射而呈高阻状态,IC的g脚恢复为高电平,热释电红外控制开关又迸人警戒状态。若想该热释电红外控制开关白天、晚上均工作,可将RG去掉或在Rl两端并接一只小开关。
元器件选择
Rl-RlO选用1/4W碳膜电阻器或金属膜电阻器。
RG选用亮阻小于2OkΩ、暗阻大于2MΩ的光敏电阻器。
Cl、C2和C6均选用耐压值为16V的铝电解电容器;C3-C5、C7和C8均选用独石电容器或涤纶电容器。
VD选用IN4007型硅整流二极管。
V选用S9013或C8050、58050、3DG8050型硅NPN晶体管。
IC选用SS0001或BISS0001型热释电红外传感控制集成电路。
热释电红外传感器可选用AMNl或陀28、SDO2等型号,配用Q-lA或CE-024型菲涅尔透镜。
K选用4098型直流继电器
㈦ 模拟电路实例举例
这个还真不好说,抄市袭场上的好书太少,记得以前看过一本什么“日本电子线路图实例分析”(具体书名记不清了,大概是这个)的书。你可以看一看21ic的电路图频道,链接似乎容易被抽风,你网络
21ic
电路图就可以了。不过里面有分析的很少,你还是要准备一本模拟电路基础在旁边比较好。
㈧ 两个独立电路的电路图中只一根线,怎么没有回路,却要求计算,求类似实际电路图实例
这是等效电路图,两个看似独立的回路却有一个公共的参考地,各自对参考地的电压为输入和输出电压,因此可以计算输出和输入电压之比(称为电压放大倍数)等。