1. 这个电路的运放接法,作用,原理
这是个电压跟随器,运放与JFET构成电压全反馈电路(无电压增益)。当V11≤Voff时(大内于0V),JFET理应夹断截止,容但因截止后Vref2为0V,就使反相输入端的电位比同相端还低,于是输出端就一个正向电压,这个正向电压的值使JFET微导通,这个微导通的电流在RL上产生的电压降使Vref2的电位刚好与V11相等,虚地条件构成,电路就稳定在这一状态,即DC扫描直线段。当逐渐增大V11,电路因无电压增益,输出只能1:1地跟随V11增大,这是典型的电压跟随器的特性。
2. 运放电路的原理
【运放电路的原理】运放如图有两个输入端a(反相输入端),b(同相输入端)和一个输出端o。也分别被称为倒向输入端非倒向输入端和输出端。当电压U-加在a端和公共端(公共端是电压为零的点,它相当于电路中的参考结点。)之间,且其实际方向从a 端高于公共端时,输出电压U实际方向则自公共端指向o端,即两者的方向正好相反。当输入电压U+加在b端和公共端之间,U与U+两者的实际方向相对公共端恰好相同。为了区别起见,a端和b 端分别用"-"和"+"号标出,但不要将它们误认为电压参考方向的正负极性。电压的正负极性应另外标出或用箭头表示。反转放大器和非反转放大器如下图:
一般可将运放简单地视为:具有一个信号输出端口(Out)和同相、反相两个高阻抗输入端的高增益直接耦合电压放大单元,因此可采用运放制作同相、反相及差分放大器。
运放的供电方式分双电源供电与单电源供电两种。对于双电源供电运放,其输出可在零电压两侧变化,在差动输入电压为零时输出也可置零。采用单电源供电的运放,输出在电源与地之间的某一范围变化。
运放的输入电位通常要求高于负电源某一数值,而低于正电源某一数值。经过特殊设计的运放可以允许输入电位在从负电源到正电源的整个区间变化,甚至稍微高于正电源或稍微低于负电源也被允许。这种运放称为轨到轨(rail-to-rail)输入运算放大器。
运算放大器的输出信号与两个输入端的信号电压差成正比,在音频段有:输出电压=A0(E1-E2),其中,A0 是运放的低频开环增益(如 100dB,即 100000 倍),E1 是同相端的输入信号电压,E2 是反相端的输入信号电压。
【运放】是运算放大器的简称。在实际电路中,通常结合反馈网络共同组成某种功能模块。由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”,此名称一直延续至今。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。
3. 请教一个简单的运放电压变换电路
这三种都是可行的,方法一、二需要在输出端对地在接一个220~330欧的电阻,使得回输出接近0V,在使用相同精答度的电阻的情况下,方法二的精度反而更高且更便宜。方法三的精度是最高的,但因需要3个运放外且需要双电源供电,故成本是最高的,不划算。方法二的精度大约为2%(169K/1%),若能满足精度要求的情况下,方法二足已。建议在100K前串联一个1K的电阻,则增益为169/101约为1.67,精度就能控制在1%以内了,再串一个330欧的电阻,则增益为169/101.33=1.6678,再换成别的高精运放,精度就能做到很好了,比方法三更管用。
4. 运放的电压跟随电路图
运放内部输入端是差分电路,所以要求P和N所接电阻对称,才能抑制零漂,所以R32和内R33都是2k,输出直接反馈到输出的容N端,中间没有电阻那根线,这样的接法是跟随器的接法,即Uout=Uin。二极管起嵌位作用。如果是一个正弦信号从N端收入,只取信号的负半轴输出。正半轴二极管截止。R34是反馈电阻,作用不大
5. 如何分析运放电路
输入电阻是无穷大,输出电阻是0,放大倍数是无穷大,没有负反馈的话输出不是在电源的最高点就是在电源的最低点,记得同相和反相放大电路的电压放大倍数,了解了前面说的就简单了,目前来说绝大多数的运放都是电压反馈型的,所以,分析运放电路,可以不考虑电流。
6. 运放电路分析,请问这个电路图的输出端电压为什么是负的呢
同理:vp=vn=0。in=0。
vi=2V,i1=(0-vi)/R1=-vi/10=-0.2(mA)。
i2=(vi-vo)/R2=(2-vo)/20。
所以:(2-vo)/20=-0.2,vo=6(V)。
可见,电路结构不同,电路中电流方向也发生了变化,造成输出有正有负,输出不只是和运放本身有关系。
7. 运放电路中为什么会出现虚短和虚断
虚短:在运算放大器的线性应用电路中,由于理想放大器的高电压放大倍数的抑制作用,使得运算放大器的同相输入端与反相输入端的电位差非常小,以至于近似相等,两点间压差为零,就好像两点间短路一样。当然这不是真正的短路,而是一种近似,所以称为“虚短”。
虚断:由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。
(7)运放电压电路扩展阅读:
虚短的使用条件
1、运放的开环增益足够大,即放大倍数要大。运放的输出Vo=G×Vi,在实际电路中Vo受到供电电压的影响是一个有限的值,放大倍数G如果足够大,那么输入Vi就要足够小,就导致流入运放的电流几乎为0。
2、存在负反馈电路,其实这是为了强调运放处于“线性状态”。
8. 运放电路分析
1、当输入信号电压低于电容两端电压时,输出负的饱和电压,二极管截止,输出电压维持。
2、当输入信号电压高于电容两端电压时,输出正的饱和电压,二极管导通,向电容充电,电容电压升高。
3、当电容电压升高至运放正的饱和电压减去二极管正向导通压降的电压值之后,无论输入如何变化,输出电压不变。
小结:
该电路若在电容端并联一个合适的电阻,可以给电容放电的话,可以作为峰值检波电路,否则,没有多大应用价值。
9. 运放电路的工作原理
运放电路的工作原理是把被控制的非电量(如温度、转速、压力、流量、照度等)用传感器转换为电信号,再与给定量比较,得到一个微弱的偏差信号。因为这个微弱的偏差信号的幅度和功率均不足以推动显示或者执行机构,所以需要把这个偏差信号放大到需要的程度,再去推动执行机构或送到仪表中去显示。
内部原理是有5个引脚,分为正电源跟负电源,两个输入和一个输出,输入会有两个电压,输入之后就会产生一个电压差,电压差加在输入电阻上面,里面还有一个压控电压源,它会把收到的一个小电压放大G倍,这个增益是非常非常大的,然后再通过一个内部的输出电阻输出出去,那么就可以得到一个被放大的电压。如果输入的两个电压差异比较大,又没有一个反馈的话,那么就会形成一个电压比较。如果上面输入的电压比较大的话,那就会导致增益的结果电压特别大,则会达到一个电压的上限。如果上面的电压比下面的要小一点的话,那么这里就会出现一个下限的电压值接近于负电压的值。因此,反馈在这个电路中是非常重要的,加上反馈后,输入的电压就会构成一个比较正常的数学关系,这也是运放最常见的使用方法。
10. 求一个电压放大10倍的运放电路信号是200mv放到2V
电压放大10倍的运放复电路:
在实际电制路中,通常结合反馈网络共同组成某种功能模块。是一种带有特殊耦合电路及反馈的放大器。其输出信号可以是输入信号加、减或微分、积分等数学运算的结果。由于早期应用于模拟计算机中,用以实现数学运算,得名运算放大器。
运算放大器最早被设计出来的目的是将电压类比成数字,用来进行加、减、乘、除的运算,同时也成为实现模拟计算机的基本建构方块。
然而,理想运算放大器的在电路系统设计上的用途却远超过加减乘除的计算。今日的运算放大器,无论是使用晶体管(transistor)或真空管(vacuum tube)、分立式(discrete)元件或集成电路元件,运算放大器的效能都已经逐渐接近理想运算放大器的要求。
早期的运算放大器是使用真空管设计,当前则多半是集成电路式的元件。但是如果系统对于放大器的需求超出集成电路放大器的需求时,常常会利用分立式元件来实现这些特殊规格的运算放大器。