导航:首页 > 电器电路 > boost电路

boost电路

发布时间:2020-12-31 14:19:22

① boost电路

摘要:提出了一种Boost电路软开关实现方法,即同步整流加上电感电流反向。根据两个开关管实现软开关的条件不同,提出了强管和弱管的概念,给出了满足软开关条件的设计方法。一个24V输入,40V/2.5A输出,开关频率为200kHz的同步Boost变换器样机进一步验证了上述方法的正确性,其满载效率达到了96.9% 关键词:升压电路;软开关;同步整流 引言 轻小化是目前电源产品追求的目标。而提高开关频率可以减小电感、电容等元件的体积。但是,开关频率提高的瓶颈是器件的开关损耗,于是软开关技术就应运而生。一般,要实现比较理想的软开关效果,都需要有一个或一个以上的辅助开关为主开关创造软开关的条件,同时希望辅助开关本身也能实现软开关。 Boost电路作为一种最基本的DC/DC拓扑而广泛应用于各种电源产品中。由于Boost电路只包含一个开关,所以,要实现软开关往往要附加很多有源或无源的额外电路,增加了变换器的成本,降低了变换器的可靠性。 Boost电路除了有一个开关管外还有一个二极管。在较低压输出的场合,本身就希望用一个MOSFET来替换二极管(同步整流),从而获得比较高的效率。如果能利用这个同步开关作为主开关的辅助管,来创造软开关条件,同时本身又能实现软开关,那将是一个比较好的方案。 本文提出了一种Boost电路实现软开关的方法。该方案适用于输出电压较低的场合。 1 工作原理 图1所示的是具有两个开关管的同步Boost电路。其两个开关互补导通,中间有一定的死区防止共态导通,如图2所示。通常设计中电感上的电流为一个方向,如图2第5个波形所示。考虑到开关的结电容以及死区时间,一个周期可以分为5个阶段,各个阶段的等效电路如图3所示。下面简单描述了电感电流不改变方向的同步Boost电路的工作原理。在这种设计下,S2可以实现软开关,但是S1只能工作在硬开关状态。 1)阶段1〔t0~t1〕该阶段,S1导通,L上承受输入电压,L上的电流线性增加。在t1时刻,S1关断,该阶段结束。 2)阶段2〔t1~t2〕S1关断后,电感电流对S1的结电容进行充电,使S2的结电容进行放电,S2的漏源电压可以近似认为线性下降,直到下降到零,该阶段结束。 3)阶段3〔t2~t3〕当S2的漏源电压下降到零之后,S2的寄生二极管就导通,将S2的漏源电压箝在零电压状态,也就是为S2的零电压导通创造了条件。 4)阶段4〔t3~t4〕S2的门极变为高电平,S2零电压开通。电感L上的电流又流过S2。L上承受输出电压和输入电压之差,电流线性减小,直到S2关断,该阶段结束。 5)阶段5〔t4~t5〕此时电感L上的电流方向仍然为正,所以该电流只能转移到S2的寄生二极管上,而无法对S1的结电容进行放电。因此,S1是工作在硬开关状态的。 接着S1导通,进入下一个周期。从以上的分析可以看到,S2实现了软开关,但是S1并没有实现软开关。其原因是S2关断后,电感上的电流方向是正的,无法使S1的结电容进行放电。但是,如果将L设计得足够小,让电感电流在S2关断时为负的,如图4所示,就可以对S1的结电容进行放电而实现S1的软开关了。 在这种情况下,一个周期可以分为6个阶段,各个阶段的等效电路如图5所示。其工作原理描述如下。 1)阶段1〔t0~t1〕该阶段,S1导通,L上承受输入电压,L上的电流正向线性增加,从负值变为正值。在t1时刻,S1关断,该阶段结束。 2)阶段2〔t1~t2〕S1关断后,电感电流为正,对S1的结电容进行充电,使S2的结电容放电,S2的漏源电压可以近似认为线性下降。直到S2的漏源电压下降到零,该阶段结束。 3)阶段3〔t2~t3〕当S2的漏源电压下降到零之后,S2的寄生二极管就导通,将S2的漏源电压箝在零电压状态,也就是为S2的零电压导通创造了条件。 4)阶段4〔t3~t4〕S2的门极变为高电平,S2零电压开通。电感L上的电流又流过S2。L上承受输出电压和输入电压之差,电流线性?小,直到变为负值,然后S2关断,该阶段结束。 5)阶段5〔t4~t5〕此时电感L上的电流方向为负,正好可以使S1的结电容进行放电,对S2的结电容进行充电。S1的漏源电压可以近似认为线性下降。直到S1的漏源电压下降到零,该阶段结束。 6)阶段6〔t5~t6〕当S1的漏源电压下降到零之后,S1的寄生二极管就导通,将S1的漏源电压箝在零电压状态,也就是为S1的零电压导通创造了条件。 接着S1在零电压条件下导通,进入下一个周期。可以看到,在这种方案下,两个开关S1和S2都可以实现软开关。 2 软开关的参数设计 以上用同步整流加电感电流反向的办法来实现Boost电路的软开关,其中两个开关实现软开关的难易程度并不相同。电感电流的峰峰值可以表示为 ΔI=(VinDT)/L (1) 式中:D为占空比; T为开关周期。 所以,电感上电流的最大值和最小值可以表示为 Imax=ΔI/2+Io (2) Imin=ΔI/2-Io (3) 式中:Io为输出电流。 将式(1)代入式(2)和式(3)可得 Imax=(VinDT)/2L+Io (4) Imin=(VinDT)/2L-Io (5) 从上面的原理分析中可以看到S1的软开关条件是由Imin对S2的结电容充电,使S1的结电容放电实现的;而S2的软开关条件是由Imax对S1的结电容充电,使S2的结电容放电实现的。另外,通常满载情况下|Imax| |Imin|。所以,S1和S2的软开关实现难易程度也不同,S1要比S2难得多。这里将S1称为弱管,S2称为强管。 强管S2的软开关极限条件为L和S1的结电容C1和S2的结电容C2谐振,能让C2上电压谐振到零的条件,可表示为式(6)。 将式(4)代入式(6)可得 实际上,式(7)非常容易满足,而死区时间也不可能非常大,因此,可以近似认为在死区时间内电感L上的电流保持不变,即为一个恒流源在对S2的结电容充电,使S1的结电容放电。在这种情况下的ZVS条件称为宽裕条件,表达式为式(8)。 (C2+C1)Vo≤(VinDT/2L+Io)tdead2 (8) 式中:tdead2为S2开通前的死区时间。 同理,弱管S1的软开关宽裕条件为 (C1+C2)Vo≤(VinDT/2L-Io)tdead1 (9) 式中:tdead1为S1开通前的死区时间。 在实际电路的设计中,强管的软开关条件非常容易实现,所以,关键是设计弱管的软开关条件。首先确定可以承受的最大死区时间,然后根据式(9)推算出电感量L。因为,在能实现软开关的前提下,L不宜太小,以免造成开关管上过大的电流有效值,从而使得开关的导通损耗过大。 3 实验结果 一个开关频率为200kHz,功率为100W的电感电流反向的同步Boost变换器进一步验证了上述软开关实现方法的正确性。 该变换器的规格和主要参数如下: 输入电压Vin24V 输出电压Vo40V 输出电流Io0~2.5A 工作频率f200kHz 主开关S1及S2IRFZ44 电感L4.5μH 图6(a),图6(b)及图6(c)是满载(2.5A)时的实验波形。从图6(a)可以看到电感L上的电流在DT或(1-D)T时段里都会反向,也就是创造了S1软开关的条件。从图6(b)及图6(c)可以看到两个开关S1和S2都实现了ZVS。但是从电压vds的下降斜率来看S1比S2的ZVS条件要差,这就是强管和弱管的差异。 图7给出了该变换器在不同负载电流下的转换效率。最高效率达到了97.1%,满载效率为96.9%。 4 结语 本文提出了一种Boost电路软开关实现策略:同步整流加电感电流反向。在该方案下,两个开关管根据软开关条件的不同,分为强管和弱管。设计中要根据弱管的临界软开关条件来决定电感L的大小。因为实现了软开关,开关频率可以设计得比较高。电感量可以设计得很小,所需的电感体积也可以比较小(通常可以用I型磁芯)。因此,这种方案适用于高功率密度、较低输出电压的场合。

麻烦采纳,谢谢!

② BOOST电路为什么要工作在电流连续状态

电流不连续状态下的boost电路的工作效率较高,但是对电路尤其是开关管冲击较大,一般用于小功率情况下,大功率下一般采用电流连续模式。

③ 请教,BOOST电路中这两个二极管是起什么作用的

连续导电模式Boost PFC电路将是分布式电源系统中首选的前级整流环节之一。众所内周知,Boost电路中快恢复二极管存容在反向恢复问题,当硬开关的Boost电路工作在高频时,二极管的反向恢复电流会在电路上引起可观的能量损耗和过高的di/dt,危及开关器件的安全工作,并产生严重的电磁干扰(EMI)。 致力于快恢复二极管反向恢复电流抑制,在主开关和Boost二极管的公共节点与直流地之间并联一个由谐振电感和辅助开关串联而成的支路,用来实现主开关的零电压开关,同时抑制快恢复二极管的反向恢复电流。但是辅助开关工作在硬开关方式,因而带来了一定的开关损耗。而且辅助开关的结电容与谐振电感存在寄生振荡,引起环流损耗。通常,为了抑制寄生振荡,须在谐振电感支路中串入快恢复二极管和饱和电感,这进一步增加了电路的复杂性和成本。所以,应选取MUR型的快恢复二极管。

④ BOOST电路开关管尖峰如何去除

有尖峰有可抄能是吸收电路中C偏小了。RCD电路参数设计网上都有,根据需要自己看吧。还有一个问题,开关频率越高,尖刺也就会越高,如果没有硬性要求,可以把开关频率降一降。另外,负载处除了主要的电解电容,可以加一些钽电容试试。顺便说一下,光耦牵扯一个反逻辑的问题,不知道你注意了没有,如果没有在后面的驱动处最好做一下修正。

⑤ boost升压电路输出电压

oost升压电路中
占空比D=(Vo-Vi)/Vo,Vo是输出电压,Vi是输入电压。
从公式上看,你能把10V电压升版到10000V或任意倍数的电权压。
在工程上,占空比一般不超过0.9,所以工程的极限在10倍左右。

没有比boost更成熟的升压方案了,如果需要输出电压输入电压比更高,可以接多级的boost升压。

⑥ BOOST升压原理是怎样的

BOOST升压电路我们又称为升压斩波电路,斩波意思是将直流电变为另一固定电压或可调电压的直流电压的过程称为斩波,斩波有两种方式,一种是脉宽调制方式,另一种是频率调制,频率调制这种易受干扰。BOOST升压又是DC-DC电路的一种,因为它的输出电压比输入电压高,所以又称为升压电路。

现在的开关电源一般是由脉冲宽度调制(PWM)控制IC和MOSFET构成,结合各种开关电源拓扑结构,组成完整的开关电源,开关电源最主要的是开关IC,如下图是BOOST升压电路拓扑结构,主要是由电感L1、开关管Q1以及二极管D1组成

这里的电感在一个周期内有可能全部大于零,有可能等于零,全部大于零时候处于连续工作模式(CCM),等于零时候称为断续工作模式(DCM)。一般输出电容C2要足够大,这样在输出端才能保证放电时候能够保持一个持续的电流,同时二极管一般至少采用快恢复二极管。

⑦ 什么是boost电路

boost电路时直流到直流的升压斩波电路。

⑧ boost升压电路的电路图

假定那个开关来(三极管或者mos管)已自经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。
分析升压斩波电路工作原理时,首先假设电路中电感L值很大,电容C值也很大。当可控开关V处于通态时,电源E向电感L充电,充电电流基本恒定为I1,同时电容C上的电压向负载供电。因为C值很大,基本能保持输出电压uo为恒值,记为Uo。设V处于通态的时间为ton,当V处于断态时E和L共同向电容C充电并向负载提供能量。设V处于关断的时间为toff,则在此期间电感L释放的能量为(Uo-E)I1toff。当电路工作于稳态时,一个周期T中电感L积蓄的能量与释放的能量相等。
下面要分充电和放电两个部分来说明这个电路

⑨ Boost升压电路在实际工程应用中能将电压升几倍

boost升压电路中
占空比D=(Vo-Vi)/Vo,Vo是输出电压,Vi是输入电压。
从公式上看,你能把10V电压升专到10000V或任意倍属数的电压。
在工程上,占空比一般不超过0.9,所以工程的极限在10倍左右。

没有比boost更成熟的升压方案了,如果需要输出电压输入电压比更高,可以接多级的boost升压。

阅读全文

与boost电路相关的资料

热点内容
市政工程质量保修期多少年 浏览:662
对于维修费应附带的票据规定 浏览:480
租20年的房子住厕所坏了维修费应该谁付出 浏览:192
国家电网一纸证明产能怎么计算 浏览:525
电路板烧铜 浏览:967
加法的家具是什么 浏览:614
如何提高轮胎维修效率 浏览:89
好师傅空调维修电话小程序 浏览:120
非洲中东有哪些家电展会 浏览:214
别克售后临沂电话 浏览:398
上门清洗家电注意什么意思 浏览:648
二手红木家具多少钱一平方 浏览:775
娄底js防水涂料什么牌子好 浏览:775
衢州防水材料批发多少钱 浏览:690
进气歧管真空度怎么维修 浏览:683
房屋电防水工程价格多少 浏览:608
水电维修安装app如何运营 浏览:576
创维电视岳阳售后电话 浏览:326
16年的H6的后保险杠维修多少钱 浏览:853
江门家电市场在哪里 浏览:122