1. 电源滤波电路有哪几种
有三种滤波电路:
一,单纯的电容滤波;是最常见的电路;
二,电容电感电容滤波,所谓的π型滤波;
三,电容电阻电容滤波,第二种的变形,效果比第二种差,用于小电流滤波电路。
2. 整流与滤波电路原理
一、整流电路
整流电路的关键问题是利用二极管的单向导电性,将交流电压变换成单相脉动电压。单相整流电路可分半波、全波、桥式、倍压整流等。由于半波整流电路只在电源的半个周期工作,电源利用率低,输出波形脉动较大,且电路简单。
1、全波整流电路
如下图所示,全波整流是由两个单相半波整流电路组成的,变压器的二次线圈的中心抽头把U2分成两个大小相等,方向相反的U21和U22
图1 全波与桥式整流电路
工作原理:在正弦交流电源的正半周,VD1正向导通,VD2反向截至,电流经VD1,负载电阻RL回到变压器中心抽头0点,构成回路,负载得到半波整流电压和电流。
同理,在电源的负半周,VD2导通,VD1截止。电流经VD2,RL流回到变压器中心抽头0点,负载RL又得到半波电压和电流。在负载上得到的电压和电流波形图见图2a。
电路一直重复上述过程,由此可见,全波整流电路的两只二极管VD1,VD2是轮流工作的。
2、桥式整流电路
如上图b)所示,单相桥式整流电路由电源变压器T,整流二极管VD1.VD2.VD3,VD4和负载电阻RL组成。与全波整流电路一样,变压器将电网交流电压变换成整流电路所需的交流电压,设
当电源电压处于U2的正半周时,变压器二次绕组的a端电位高于b端电位,VD1,VD3在正向电压作用下导通,VD2和VD4在反向电压作用下截止,电流从变压器二次绕组的a端出发,经VD1,RL,VD3,由b端返回构成通路。由电流通过负载电阻RL,输出电压Uo=U2..。
相同原理可以分析电源电压处于负半周的情况。
在交流电压的整个周期内,整流器件在正负半周内各导通一次,负载电阻始终有电流通过,并且保持为同一方向,得到两个半波电压和电流,如图2b所示。所以桥式整流也是一种全波整流电路
图2 全波与桥式整流电压电流波形图
二、滤波电路
整流电路可以使交流电转换为脉动直流电,这种脉动直流电不仅包含直流分量,还有交流分量。但是需要的是直流分量,因此必须把脉动直流中的交流分量去掉。从阻抗观点看,电感线圈的直流电阻很小,而交流阻抗很大;电容器的直流电阻很大,交流电阻很小。如果组合起来就能很好地滤除交流分量。这种组合就是滤波器。常用的滤波电路有以下几种形式。
1、电容滤波电路
如下图就是电容滤波电路,即在负载两端并联一只电容。
工作原理:利用电容两端电压不能突变的特性,当二级管导通时,一方面给负载供电,另一方面对电容充电。充电到一定程度,电容开始经过负载电阻放电。放电速度较慢,会持续到交流电的负半周,然后再重复上述过程。
输出电压的大小和脉动程度与放电时间常数有关。
桥式整流电容滤波后,输出电压Uo=(1.1~1.4)U2.。滤波电容选用几十微法以上的电解电容,要注意其耐压值应高于1.4倍U2.。
2、电感滤波电路
如果要求负载电流较大时,输出电压仍较平稳,则采用电感滤波电路。如下图所示。
电感线圈上的直流阻抗很小,所以脉动直流电压中的直流分量很容易通过电感线圈,几乎全部到达负载电阻RL,而电感对交流的阻抗很大,所以脉动电压中的交流分量很难通过电感线圈。由于电感和负载电阻串联,对交流分量可看成一个分压器,如果电感的感抗比负载电阻大很多,那么交流分量将大部分降在电感上,这样就可以将脉动较大的直流输出变为较平稳的直流输出
3. 交流电的滤波电路
虽然整流器输出电压的极性永远一定,把交流电变为直流电,但此种电压是脉动的,并不能作为直流电压使用(如作电子管的直流电源),这是因为整流器本身输出的电压是脉冲或称涟波状。此种具有涟波状的整流器输出电压,在加于电子管的板极,往栅或控制栅电路前,必须先将涟波消除,使此电压平稳而几乎无脉动才行。为使整流器输出电压平稳,必先通过滤波器网路予以滤波,滤波电路是由电容器及扼流圈所构成,如图3-66所示。当电容器的外加电压增加时,电容器靠储存其内的静电场能量,以抵抗此增加的外加电压。但当外加电压降低时,电容器就将其蓄存的静电场的能量变为电压或流动的电流,作为外加电压降低时的补偿。整流器所输出的脉冲能量可蓄存于电容器的电场中,而在整流器所输出的两脉冲间,电容器缓慢的放电,因而经此电容器所输出的电压,其不稳定的涟波大为减小。这就是滤波电路要把一个电容器和整流器负载电阻并联的原因。当加于电感线圈(扼流圈)的电流增大,扼流圈靠存于其中磁场的能量以抵抗此电流的增加。但当流过扼流圈的电流减小时,扼流圈就将其磁场中所储存的能量变为电流,以继续维持电流的流动。因此将扼流圈与整流器的输出端及负载串联,可减小负载电流及电压的突然变化。与整流器输出端相串联的扼流圈,其作用也可由另一观点看:扼流圈对直流电而言,电阻(所谓的直流电阻)低,然而对交流电流(整流器输出电流带有变化的涟波电流)而言,阻抗(所谓的交流阻抗)非常高,因此直流较易于通过扼流圈,而在交流涟波通过时,涟波则被减小。 滤波器是由电感器和电容器构成的网路,可使混合的交直流电流分开。电源整流器中,即借助此网路滤净脉动直流中的涟波,而获得比较纯净的直流输出。最基本的滤波器,是由一个电容器和一个电感器构成,称为L型滤波。所有各型的滤波器,都是集合L型单节滤波器而成。基本单节式滤波器由一个串联臂及一个并联臂所组成,串联臂为电感器,并联臂为电容器,如图3-67所示。在电源及声频电路中之滤波器,最通用者为L型及π型两种。就L型单节滤波器而言,其电感抗XL与电容抗Xc,对任一频率为一常数,其关系为
XL·Xc=K2
故L型滤波器又称为K常数滤波器。倘若一滤波器的构成部分,较K常数型具有较尖锐的截止频率(即对频率范围选择性强),而同时对此截止频率以外的其他频率只有较小的衰减率者,称为m常数滤波器。所谓截止频率,亦即与滤波器有尖锐谐振的频率。通带与带阻滤波器都是m常数滤波器,m为截止频率与被衰减的其他频率之衰减比的函数。每一m常数滤波器的阻抗与K常数滤波器之间的关系,均由m常数决定,此常数介于0~1之间。当m接近零值时,截止频率的尖锐度增高,但对于截止频的倍频之衰减率将随着而减小。最合于实用的m值为0.6。至于那一频率需被截止,可调节共振臂以决定之。m常数滤波器对截止频率的衰减度,决定于共振臂的有效Q值之大小。若把K常数及m常数滤波器组成级联电路,可获得尖锐的滤波作用及良好的频率衰减。 一般家庭用电均为单相交流电,然而电流的大规模生产和分配以及大部分工业用电,则都是以三相交流电路的形式出现。高压输电线,通常是四根线(称为三相四线,其中有一条线为中线)。本质上还是三根导线载负着强度相等、频率相同、而相互间具有120度相位差的交流电。所以代表这三根导线电压变化的曲线为相同频率的正弦波,位相互相错开三分之一个周期。对这三根导线分别对接地线的电压叫做“相电压”,图3-68中以实线R、S和T代表。三线中每两根线之间的电压叫做“线电压”,图3-68中虚线S-T、T-R和R-S所示。相电压和线电压对时间的变化以正弦曲线表示,峰值和有效值之间的关系完全与单相交流电之关系相同,即
图中零线以上至两条水平细线的高度表示相电压和线电压的有效值Uf和UL。它们之间的关系为
三相输电线的电压值常指线路电压的有效值。三相系统的主要优点在于三相电动机的构造简单而坚固。全世界均由这种电动机作为机械动力。 图3-69是三相交流发电机的结构示意图。这种发电机由定子和转子两部分组成。转子是一个电磁铁。定子里有三个结构完全相同的绕组,这三个绕组在定子上的位置彼此相隔120°,三个绕组的始端分别用A、B、C来表示,末端分别用X、Y、Z来表示。当转子匀速转动时,在定子的三个绕组中就产生按正弦规律变化的感应电动势。因为转子产生的磁场是以一定的速度切割三个绕组,所以三个绕组中交变电动势的频率相同。由于三个绕组的结构和匝数相同,所以电动势的最大值相等。但由于三个绕组在空间相互位置相差120°,它们的电动势的最大值不在同一时间出现,所以这三个绕组中的电动势彼此之间有120°的位相差,其数学表示为
eA=Emsinωt
eB=Emsin(ωt-120°)
eC=Emsin(ωt-240°)
电动势变化的曲线如图3-70所示。发电机中的每个绕组称为一相。AX绕组为A相绕组,BY绕组称为B相绕组,CZ绕组称为C相绕组,在电气工程中,通常用黄、绿、红三种颜色分别标出。图3-69中的发电机定子有三个绕组,能产生三个对称的交变电动势,所以称为三相交流发电机。 在电路中只具有单一的交流电压,在电路中产生的电流,电压都以一定的频率随时间变化。比如在单个线圈的发电机中(即只有一个线圈在磁场中转动)。在线圈中只产生一个交变电动势
e=Emsinωt
这样的交流电便是单相交流电。
4. 求助电子滤波器(电路图)
电子滤波电路常用于小电流负载。电路不复杂,最简电路如上图,多加一专节RC滤波效果更好,如中属图。负电源电子滤波如下图。
当负载电流较大时,可用复合管。
电子滤波电路往往与稳压合二为一,实现电子滤波和稳压的双重效果,只要在基极与地并接稳压二极管就行了。如中图和下图。
偏置电阻取值可几百到几千欧姆。主要由负载电流大小决定受三极管放大倍数影响,以该电子滤波电路能输出的电流比最大负载电流大1~5倍为宜。负载电流越大、放大倍数越小则要求阻值越小。
基极滤波电容可取100~1000uF。
偏置电阻和基极滤波电容越大则滤波效果越好,但可能会造成通电时输出电压缓慢上升的现象。
输出滤波电容可取100~1000uF
5. 二阶有源低通滤波器 电路图
图示的是一个多路负反馈二阶有源带通滤波器,可以为低通,它使用单个通用运算放大器(通用运放)接成单电源供电模式,易于实现。它的上限截止频率和下限截止频率可以非常近,具有非常很强的频率选择性。令C1=C2=C,Req是R1和R2并联的值。品质因数Q等于中心频率除以带宽,Q=fC/BW。由式可以看出可以通过让R3的值远大于Req来获得大的Q值,Q值越大,频率选择性越好,带宽越小。反之则反。
6. 电源滤波器的作用 教你正确选型!
电源滤波器是由电容、电感和电阻组成的滤波电路,又名“电源EMI滤波器”,或是“EMI电源滤波器”,一种无源双向网络,它的一端是电源,另一端是负载。那么,电源滤波器的作用是什么呢?下面来看看吧。
一、电源滤波器的作用
电源线滤波器的作用是防止设备本身产生的电磁干扰进入电源线,同时防止电源线上的干扰进入设备。电源线滤波器是一种低通滤波器,它允许直流或50Hz的工作电流通过,而不允许频率较高的电磁干扰电流通过。电源线滤波器是双向的,它既能防止电网上的干扰进入设备对设备产生不良影响,使设备满足传导敏感度的要求;又能防止设备内的电磁干扰通过。电源线传到电网上,使设备满足传导发射的要求。能够产生较强干扰的设备和对外界干扰敏感的设备都要使用电源线滤波器。能够产生强干扰的设备有:含有脉冲电路(微处理器)的设备、使用开关电源的设备、使用可控硅的设备、变频调速设备、含有马达的设备等。敏感电路如:使用微处理器的设备、小信号模拟电路等。
工作原理
电源滤波器是一种无源双向网络,它的一端是电源,另一端是负载。电源滤波器的原理就是一种——阻抗适配网络:电源滤波器输入、输出侧与电源和负载侧的阻抗适配越大,对电磁干扰的衰减就越有效。
二、电源滤波器生产厂家
济南和康电子技术有限公司
北京中恒科泰科技有限公司
常州皓卓电子有限公司
西安浩南电子科技有限公司
上海潘登新电源有限公司
西安浩南电子科技有限公司
山东济南东能电力设备有限公司
深圳市凯比特贸易有限公司
广东省深圳市坚力电子有限公司
三、电源滤波器选型
根据应用场合来选
①滤波器的类型:工业级,军品级或者医用设备;②应用滤波器设备的供电类型:交流单相、三相,直流等;③滤波器的额定电压,电流,结构以及外形尺寸等;④其他一些应用中的特殊要求,例如:耐压,漏电流,工作温度等。
依据电磁兼容标准来选
Fig5.各种标准对传导发射所要求的频段
由于不同标准对传导发射测量的频段各不相同,所以在选择滤波器之前需考虑被测设备所遵循的标准,并在对应标准所要求的频段内提出对滤波器插入损耗的要求。
结构
电源滤波器一般都设计为只由电阻、电容及电感组成的被动滤波器,没有像晶体管之类的主动元件。右图是一个电源滤波器的例子,电源滤波器的上方接电源,电源端有一个共模电感,也就是电源的二条线依同一个方向绕在铁心上,电源线上若有共模讯号,其在共模电感产生的磁场会相加,因此有较大的阻抗,而差模讯号在共模电感产生的磁场会互相抵消,因此可以流过共模电感。电源流过的电流主要是差模的,但上面也可能会噪声以差模的形式出现,若要抑制差模噪声,需要另外使用差模电感,或是各相有个别的电感器。
在电源滤波器上会使用特别的安规解耦电容,分为X电容及Y电容二类:
X电容:抑制差模干扰(电源线之间的干扰)。
Y电容:抑制共模干扰(各组电源线对地之间的干扰)。
由于Y电容提高会使电器的漏电流增加,而电器的漏电流有其规定范围,因此Y电容不能太大,一般都会比X电容要小。
X电容和Y电容属于安规电容,即其失效后不会造成电击,也不会影响人身安全。二者都有自我复原(self-healing)作用,会使局部短路的部份恢复原来的绝缘状态。
以上就是小编为您介绍的电源滤波器的作用,希望能够帮助到您。更多关于电源滤波器的相关资讯,请继续关注土巴兔学装修。
7. 无源滤波器的电路接线图
单相滤波器:L(P)、N接输入端(电源端);L'、N'接输出端(负载端);E接地线;
三相滤波器:专A(L1)、B(L2)、C(L3)接输入端(电源端);A(L1)'、B(L2)'、C(L3)'、接属输出端(负载端);E接地线;
三相四线滤波器:见附图;
8. 滤波器的一般电路组成
滤波器是指在复合的信号中滤除某些不需要的频率。
比如在整流电路中要的是稳定的直流分量,不需要交流分量,所以要滤掉交流分量。
在电视中要从复合的信号中去掉亮度信号取出色度信号,就用梳状滤波器滤掉亮度信号。要取出倦意信号就用6.5MHz的LS滤波器滤除其他信号取出6.5M的倦意信号。
根据不同的要求,滤波器的构成差别很大。
常见的滤波器一般由RLC组合的滤波器,可以是选频式的单频率谐振滤波电路,也可以是宽频的带通滤波器。
也有的根据材料的特性制作的滤波器,比如压电陶瓷滤波器,石英晶体滤波器等。
也有的是利用变频方式提高选频系统的Q值的电路,一般通过降低频率进行选频,以提高滤波器的频率特性。
现在出现了很多不同的固体滤波器,选频原理也是前面说到的一些方式。或者多种方式的组合滤波器。
LC滤波器是比较基本的滤波器。原理是利用电感和电容上电压与电流的相位关系,互相抵消电压或电流达到谐振。
比如串联LC,由于电感和电容上的电流与电压相差+90°和-90°,串联电路电流处处相等,所以电压就相差180度。当某个频率刚好使感抗和容抗相等时,相同的电流就有大小相等方向相反的电压,外电路看上去就是两端的电压是0,但是还有电流,所以谐振时总电抗就是0。
并联LC则相反,由于并联电路两端电压相同,所以谐振时流过L和C的电流就刚好大小相等方向相反。对外电路来说,两端有电压,但却没有电流,所以电抗为∞。
下面是一种RLC带通滤波器电路示意图。