❶ 试分析降压斩波电路中各元件起到的作用是什么
六种斩波电路原理分析
1、降压斩波电路
图1:降压斩波电路(Buck Chopper)原理图及波形图
如上图1:降压斩波电路原理图及波形图所示,图中V为全控型器件,选用IGBT;D为续流二极管。由图1中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向负载供电,UD=Ui。当V处于断态时,负载电流经二极管D续流,电压UD近似为零,至一个周期T结束,再驱动V导通,重复上一周期的过程。负载电压的平均值为:
式中ton为V处于通态的时间,toff为V处于断态的时间,T为开关周期,α为导通占空比,简称占空比或导通比(α=ton/T)。由此可知,输出到负载的电压平均值UO最大为Ui,若减小占空比α,则UO随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。
2、升压斩波电路
图2:升压斩波电路(Boost Chopper)原理图及波形图
如上图2:升压斩波电路原理图及波形图所示,电路也使用一个全控型器件V。由图2中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向电感L1充电,充电电流基本恒定为I1,同时电容C1上的电压向负载供电,因C1值很大,基本保持输出电压UO为恒值。设V处于通态的时间为ton,此阶段电感L1上积蓄的能量为Ui*I1*ton。当V处于断态时Ui和L1共同向电容C1充电,并向负载提供能量。设V处于断态的时间为toff,则在此期间电感L1释放的能量为(UO-Ui)*I1*toff。当电路工作于稳态时,一个周期T内电感L1积蓄的能量与释放的能量相等,即:
上式中的T/toff≥1,输出电压高于电源电压,故称该电路为升压斩波电路。
3、升降压斩波电路
图3:升降压斩波电路(Boost-Buck Chopper)原理图及波形图
如上图3:升降压斩波电路原理图及波形图所示,电路的基本工作原理是:当可控开关V处于通态时,电源Ui经V向电感L1供电使其贮存能量,同时C1维持输出电压UO基本恒定并向负载供电。此后,V关断,电感L1中贮存的能量向负载释放。可见,负载电压为上负下正,与电源电压极性相反。输出电压为:
若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压
4、Cuk斩波电路
图4:Cuk斩波电路原理图
如上图4:Cuk斩波电路原理图所示,电路的基本工作原理是:当可控开关V处于通态时,Ui—L1—V回路和负载R—L2—C2—V回路分别流过电流。当V处于断态时,Ui—L1—C2—D回路和负载R—L2—D回路分别流过电流,输出电压的极性与电源电压极性相反。输出电压为:
若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压。
5、Sepic斩波电路
图5:Sepic斩波电路原理图
如上图5:Sepic斩波电路:原理图所示,电路的基本工作原理是:可控开关V处于通态时,Ui—L1—V回路和C2—V—L2回路同时导电,L1和L2贮能。当V处于断态时,Ui—L1—C2—D—R回路及L2—D—R回路同时导电,此阶段Ui和L1既向R供电,同时也向C2充电,C2贮存的能量在V处于通态时向L2转移。输出电压为:
若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压。
6、Zeta斩波电路
图6:Zeta斩波电路原理图
如上图6所示:Zeta斩波电路原理图所示,电路的基本工作原理是:当可控开关V处于通态时,电源Ui经开关V向电感L1贮能。当V处于断态后,L1经D与C2构成振荡回路,其贮存的能量转至C2,至振荡回路电流过零,L1上的能量全部转移至C2上之后,D关断,C2经L2向负载R供电。输出电压为:
若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压。
❷ 升降压斩波电路原理是什么啊简单我文字描述就好了
瞬间改变电感的电流,从而在电感上产生较高的反向电压,叠加了源电压以后,经过电容积分/滤波电压就升高了。
❸ 解释降压斩波电路和升压斩波电路的电容、电感、二极管各起什么作用
升压斩波电路:电感L储能,具有使电压泵升的作用;电容C可将输出电压保持住;二极管可以防止在电源E给电容L充电或电容C放电的时候与通态的可控开关V短路。
降压斩波电路:二极管可在可控开关关断时给负载中电感电流提供通道。
用斩波器实现直流变换的基本思想是通过对电力电子开关器件的快速通、断控制把恒定的直流电压或电流斩切成一系列的脉冲电压或电流。
在一定滤波的条件下,在负载上可以获得平均值可小于或大于电源的电压或电流。如果改变开关器件通、断的动作频率,或改变开关器件通、断的时间比例,就可以改变这一脉冲序列的脉冲宽度,以实现输出电压、电流平均值的调节。
(3)降压斩波电路工作原理扩展阅读:
从原理上讲,有源功率因数校正可以采用任一种直流斩波电路的拓扑结构,如Buck 、Boost、Sepic及Cuk等。以Boost电路为例,采用峰值电流控制方法实现的有源功率因数校正(PFC)的工作原理。主电路由单相桥式整流器和Boos斩波电路组成,虚线框内为PWM控制电路。
给定的参考电压Uref与经检测电路变换的输出电压Uo比较后,输入给电压误差放大;整流电压ud的检测值与电压误差放大器的输出信号共同加到乘法器的输入端,乘法器的输出则作为电流反馈控制的参考信号。
与输入电流检测值比较后,产生PWM信号,经放大和隔离为IGBT提供删极驱动信号,以控制开关器件T的通断,从而使输入电流(即电感电流)iL的波形与整流电压ud的波形基本保持一致,从而提高了输入端的功率因数。