A. 反向、同向求和放大电路的工作原理
工作原理:反相求和放大电路与同相求和电路的差异在于输入信号分别从运放的反相输入端和同相输入端输入。输出信号与输入信号的相位相反或相同。
利用虚短和虚断的概念(便于叙述,假设反相输入端的电位为U-,同相输入端的电位为U+),得U-=U+=0
再列出“-”端的KCL:(Ui1-U-)/R1+(Ui2-U-)/R2+(Ui3-U-)/R3=(U--Uo)/Rf
整理得到输出和输入之间的关系式:Uo=-(Rf/R1*Ui1+Rf/R2*Ui2+Rf/R3*Ui3)
假设R1=R2=R3=R,则Uo=-Rf/R*(Ui1+Ui2+Ui3)
电路放大倍数Av=Rf/R,输出信号是三路输入信号之和的Av倍。“-”仅代表输出信号和输入信号的相位相反,或差180°。同相求和电路与此类似。
(1)反向的电路扩展阅读:
有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。
放大电路的输入电阻是从输入端向放大电路内看进去的等效电阻,它等于放大电路输出端接实际负载电阻后,输入电压与输入电流之比,即Ri=Ui/Ii。对于信号源来说,输入电阻就是它的等效负载。
对负载而言,放大电路的输出端可等效为一个信号源。输出电阻越小,输出电压受负载的影响就越小,若Ro=0,则输出电压的大小将不受RL的大小影响,称为恒压输出。当RL<<Ro时即可得到恒流输出。因此,输出电阻的大小反映了放大电路带负载能力的大小。
B. 用pnp怎么搭建 反向电路说明工作原理,谢谢
用PNP管搭建反向电路很简单,输入接b极,输出接集电极就可以了。这里要注意设置好电路的静态工作点。
C. 在反向加法电路中,若有一信号开路或短路,对输出电压有什么影响
没有影响。因为加法器是应用叠加原理设计的,输入信号是电压源,无信号时等于对地短路,与其串联的电阻接地,电路的放大倍数与这个电阻有关。信号源开路,其他输入信号的放大倍数就变了。
例如,物理中几个外力作用于一个物体上所产生的加速度,等于各个外力单独作用在该物体上所产生的加速度的总和,这个原理称为叠加原理。叠加原理适用范围非常广泛,数学上线性方程,线性问题的研究,经常使用叠加原理。
在物理学与系统理论中,叠加原理,也叫叠加性质,说对任何线性系统“在给定地点与时间,由两个或多个刺激产生的合成反应是由每个刺激单独产生的反应之和。”从而如果输入 A 产生反应 X,输入 B 产生 Y,则输入 A+B 产生反应 (X+Y)。
用数学的话讲,对所有线性系统F(x)=y,其中x是某种程度上的刺激(输入)而y是某种反应(输出),刺激的叠加(即“和”)得出分别反应的叠加
在数学中,这个性质更常被叫做可加性。在绝大多数实际情形中,F的可加性表明它是一个线性映射,也叫做一个线性函数或线性算子。
叠加原理适用于任何线性系统,包括代数方程、线性微分方程、以及这些形式的方程组。输入与反应可以是数、函数、矢量、矢量场、随时间变化的信号、或任何满足一定公理的其它对象。注意当涉及到矢量与矢量场时,叠加理解为矢量和。
(3)反向的电路扩展阅读:
其它应用示例
在电机工程学的一个线性电路中,输入(一个应用时变电压信号)与输出(在回路中任何一处的电流或电压)通过一个线性变换相关。从而如数信号的叠加(即和)将得出反应的叠加。以此为基础应用傅里叶分析特别普遍。电路分析中另一个有关技术参见叠加定理。
在物理学中,麦克斯韦方程蕴含(可能随时间变化)电荷与电流和电场与磁场通过一个线性变换相关。从而叠加原理可哟过来简化由给定电荷与电流分布引起的物理场的计算。此原理也用于物理学中其它线性微分方程,比如热方程。
在机械工程中,叠加用来解组合荷重的梁与结构的形变,如果作用是线性的(即每个荷重不影响其他荷重的结果且每个荷重的作用不明显改变结构系统的几何)。
在水文地质学中,叠加原来用于在一个理想蓄水层中抽水的水井的水位降低量。在过程控制中,叠加原理用于模型预估计控制。叠加原理可用于利用线性化分析一个非线性系统的已知解的小导数。
在音乐中,理论家约瑟夫·施林格利用叠加原理的一种形式作为他《音乐作曲施林格系统》中的“音律理论”。
参考资料来源:网络-叠加原理
D. 反向比例运算电路的特点
比较反相输入运算电路和同相输入比例运算电路的特点:
(1)输入信号端不同:
反相比例运算电路中,输入信号从运放反相端输入;而同相比例运算电路,输入信号从运放同相端输入。
(2)输出电压与输入电压方向不同:
反相比例运算电路的特点是:输出电压与输入电压反相,输入电阻较小,共模输入信号约为零。
同相比例运算电路的特点是:输出电压与输入电压同相,输入电阻大,共模输入电压较大,因此对集成运放的共模抑制比要求较高。
(4)反向的电路扩展阅读
运算电路的特点:
(1)运算电路的输入输出关系,仅仅决定于反馈网络;因此只要选取适当的反馈网络,就可以实现所需要的运算功能,如比例、加减、乘除、微积分、对数等。
(2)这样的运算电路,被广泛地应用于对模拟信号进行
各种数学处理,称之为模拟运算电路。
(3)模拟运算电路通常表现输入/输出电压之间的函数关系
参考资料来源
网络-同相比例运算电路
网络-运算电路
E. 用于反向传输信号的电路是什么
反馈电路。
F. 反相放大电路怎样实现反相
三极管输出电容’隔直通交;作用,三极管输出端只有交流分量即:-icRc。其中符号代表反方向。这就是三极管的反向放大作用。
电子电路中的运算放大器,有同相输入端和反相输入端,输入端的极性和输出端是同一极性的就是同相放大器,而输入端的极性和输出端相反极性的则称为反相放大器。
反相器是CMOS电路中的基本增益级,采用共源结构,负载可以是有源负载或者电流源。
用一个集成运放、一个51K电阻、一个255K电阻、一个18K电阻和一个82K电阻构成一个带有部分正反馈的反向比例运算放大器。引入部分正反馈可以实现高增益放大,具体结构描述如下:
1.组成基本负反馈放大器部分:51K电阻一头接输入端,另一头接在运放的反向输入端,255K电阻一头接在运放反向输入端,另一头接在运放输出端。18K电阻一头接在运放的同向输入端,另一头接地,基本负反馈放大器部分的增益为5。
2.进一步组成带有部分正反馈的反向比例运算放大器:在上述基本负反馈放大器基础上再添加一个 82K正反馈电阻,电阻一头接在运放的同向输入端,另一头接在运放输出端即可,它的正反馈系数为K=18/(18+82)=0.18.这样的话输入电阻约 为51K(如果觉得输入电阻太大,则可用49.9K和249K电阻分别取代51K和255K电阻)放大倍数为A/(1-A*K)=5 /(1-5*0.18)=5/0.1=50。
G. 反向比列运算电路和正向比列运算电路的不同
反向比例运算电路和正向比例运算电路的不同点有:
1、电路组成不同:反向比例运算版电路输入通过电阻引到反权向输入端,正向比例运算电路的输入电路直接音响同向输入端。
2、两者反馈性质不同:反向比例运算电路为电压并联负反馈,正向比例运算电路为电压串联负反馈。
3、电压增益输出表达式不同:反向比例运算电路为Av=-Rf/R1,
正向比例运算电路为Av=(1+Rf/R1)。
,
H. 求一个是三极管反向电路,有图,我要使信号输入端在0v是,点亮灯泡,请问这电路要怎么改,请帮忙指点一下
图: